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Abstract: The estimate of internal prestressing in concrete beams is essential for the assessment of
their structural reliability. Many scholars have tackled multiple and diverse methods to estimate
the measurable effects of prestressing. Among them, many experimented with dynamics-based
techniques; however, these clash with the theoretical independence of the natural frequencies of
the forces of internally prestressed beams. This paper examines the feasibility of a hybrid approach
based on dynamic identification and the knowledge of the elastic modulus. Specifically, the author
considered the effect of the axial deformation on the beam length and the weight per unit of volume.
It is questioned whether the uncertainties related to the estimate of the elastic modulus and the first
natural frequency yield reasonable estimates of the internal prestressing. The experimental testing of
a set of full-scale concrete girders with known design prestressing supports a discussion about its
practicability. The author found that the uncertainty in estimating the natural frequencies and elastic
modulus significantly undermines a reliable estimate of the prestressing state.

Keywords: prestress concrete structures; prestressing estimate; nondestructive methods

1. Introduction: The Role of Prestressing in Structural Reliability

The question of a prestressing estimate may lie between two issues: (1) Is the resisting
bending moment of a beam affected by the prestressing force?; (2) Why is the prestress
value necessary for the assessment of the structural reliability? The prestressing force does
not affect the bending resistance of a prestressed concrete beam: the resistance depends on
the resistances of concrete and steel, as depicted in Figure 1, which represents a simplified
rectangular cross-section with an eccentric prestressing cable. Likely, the knowledge of the
prestressing value is not necessary for the ultimate limit state design inequality:

Mrd ≥ Med (1)

where Mrd is the resisting bending moment, and Med is the bending moment induced by
the external loads. However, the prestress force enhances the performance of the beam in
operational conditions by reducing its deformability [1] and preventing the cross-section
cracking [2–4]. A loss in the prestress force makes the concrete attain tensile stresses with
lower load levels. Since the tensile stresses are not admitted or allowed in a limited range,
a loss in the prestress force compromises the operational performance of the beam but not
its ultimate resistance. The knowledge of the prestressing state is then determined when
assessing the maximum admitted loads of a bridge and the performance in operational
conditions [5,6].
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Figure 1. Evaluation of the resisting bending moment of a prestressed beam, where εcu and εpu are
the ultimate deformations of concrete and the prestressing cable, fcd is the design concrete stress and
fps is the design tensile stress of the prestressing cable, Mrd is the resisting design moment.

2. Efforts in Prestress Estimate

The estimate of prestressing in existing concrete beams is becoming crucial since there
is no reliable and widely acknowledged nondestructive method for its estimation [7,8].
Firstly, the author discusses dynamics-based methods; then, they append a brief paragraph
about different nondestructive techniques.

2.1. Dynamic-Based Methods

In the last few decades, prestressing techniques have been used to build very important
structures, infrastructures, and bridges. Since the serviceability and the safety of prestressed
concrete members rely on the effective state of prestressing, the development of tools and
dynamic procedures capable of estimating the effective prestress loss have been widely
carried on [9–11]. Since the 1970s, many researchers focused on structural dynamics as
a possible way to estimate prestressing [12–18]. Vibration-based approaches have been
proven successful for damage detection purposes in multiple theoretical analysis and
case study analyses [19–22]. However, so far, none have made successful attempts in
identifying the internal prestressing forces using vibration-based approaches. The absence
of a dynamic-based nondestructive method mainly originates from physical evidence:
internal prestressing does not affect the natural frequencies of the beam, and external
prestressing has low, barely measurable effects over the natural frequencies. Most of the
existing prestressed bridge stocks have internal prestressing.

Recently, Hamed et al.Reference [23] soundly proved the independence of the natural
frequencies of internally prestressed beams via a rigorous mathematical approach and con-
demned the erroneous or unproven formulations by [24–27]. Despite the rigour exhibited
in the research paper by [23], the physical reason is unmistakable: internal prestressing is
a self-balanced force; see also [28,29]. The total axial force obtained by summing up the
tension of steel and the compression of concrete is null. Likely, the beam does not reveal its
internal self-balanced stress state, which does not generate effects on the global dynamics.
The internal prestressing is concealed and, so far, no one has found a reliable method.

Physics supports any possible way, and experiments have mostly confirmed the
absence of measurable effects.

Still, many scholars have found experimental correlations with internal prestressing.
Despite the compression softening effect, the authors of [30] discovered a positive nonlinear
correlation with increasing internal prestressing. References [31,32] showed significant
correlations between the natural frequency and prestressing. Reference [33] found that the
natural frequency increases as the prestressing increases.

Lastly, in 2018, Reference [34] solved an inverse problem and identified the stress–
strain relationship of concrete, which yielded the experimental findings by [24,30–32].
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They concluded that the experimented beams showed a positive correlation between the
natural frequency and the prestressing force due to the concrete constitutive behaviour
(micro-cracking, nonlinear stress–strain behaviour, etc.). This trend is evident for low
values of prestressing level, while higher prestressing lowers the rate of change or produce
negative correlations. The author acknowledges the efforts and value of Breccolotti’s work.
Additionally, many scholars [35–37] strived to persist in experimenting with finite element
(FE) methods. They found possible alternatives and obtained some satisfying results, such
as [35], who affirmed that a sensitive parameter is a relative ratio of prestressing to the total
weight of the structure rather than the prestressing itself.

However, the physics of FE models cannot differ from that of experiments. The faith
in progressing technology and computer sciences cannot feed the belief in identifying FE
models with real structures. FE models cannot contradict the physical evidence, nor can
sophisticated algorithms extract what is proved to have no measurable effect.
Nowadays, it is common practice to tackle physical problems by experimenting using
numerical simulation [38]. However, the issue of the prestressing estimate is so delicate
that it needs a more traditional approach: firstly, the search for a measurable quantity
affected by internal prestressing.

2.2. Other Methods

The most widespread but costly method for testing the operational performance of a
beam is the so-called static load test. Static load tests consist of the step-by-step loading of
the beam associated with the measurement of the mid-span deflection. The experimenter
expects the measurement points to align with a constant slope. The change of slope in the
loading curve is generally associated with a reduction of the cross-section inertia due to
concrete cracking; hence, the prestressing state can be indirectly obtained by interpolating
the load that caused the initial cracking of the cross-section. In addition to vibration-based
methods, there are parallel approaches based on acoustoelasticity, static tests, electrical
impedance or elastomagnetic effects. In 2019, the authors of [39] reviewed the attempts of
identifying and monitoring prestressing forces.

According to the theory of acoustoelasticity, the modulus of elasticity of a material
is stress-dependent and increases with the applied compressive stress. References [40,41]
successfully identified the prestressing state by exploiting the acoustoelastic effect.

Reference [42] developed a method that can detect the prestress force in a concrete
member with a straight unbonded tendon based on second-order static deflections.

The electrical impedance of the piezoelectric actuator is related to the mechanical
impedance of the host structure. References [43–45] used the measured electrical impedance
to estimate the stress state.

The elastomagnetic methods found the dependence of the magnetic properties of
ferromagnetic materials on the mechanical stress, and References [46–48] made successful
endeavours.

2.3. Purpose of the Paper: A Diverse Vibration-Based Approach

The current research aims at exploring the effect of axial deformation over the natural
frequency of prestressed beams. To the authors’ knowledge, no scholar has published
results about this effect. This paper shows that the axial deformation might yield measur-
able outcomes in some situations. The author develops a mathematical formulation of an
internal prestressed beam by accounting for the effect of axial deformation over the total
length and the mass per unit of volume. Then, they present a hybrid method based on the
estimation of the elastic modulus from the static load test and the natural frequency. It is
tested how the uncertainty of the elastic modulus and the natural frequency propagates
to that of prestressing. Then, in the validation section, the elastic moduli and the natural
frequencies estimated from existing concrete box girders yield the approximate estimate
of prestressing. The prestressing estimations, compared to the design ones, support the
discussion about the method’s reliability.
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The paper has the following structure: the second section presents the method, and
the remaining sections deal with the discussion part regarding a set of full-scale structures.

3. Problem Formulation

The prestressing of concrete, caused by either bonded or unbonded tendons, causes
the axial deformation of concrete, εG,c. The axial deformation determines a length reduction
and the cross-section expansion due to the Poisson effect, as depicted in Figure 2. In this
paper, positive deformations are associated with tensile forces and vice versa. Equation (2)
relates the axial deformation of concrete, due to the prestressing force Nc, with the elastic
modulus of concrete Ec and the concrete cross-section area Ac.

εG,c = εG =
Nc

Ec · Ac
(2)

where εG is the axial deformation of the beam. The deformation of the beam is not
associated with mass variations; hence, the axial deformation affects the weight per unit of
volume of the beam. The mass density due to deformation, named ρ′c, may descend from
the mass density before the deformation, named ρc, by equaling the total mass value before
and after the effect of prestressing. Equation (3) equals the total mass of concrete before the
deformation with that after the deformation:

ρc · Ac · l = ρ′c ·
[
(1− νεG)

2 · Ac

]
· [(1 + εG) · l] (3)

where ν is the Poisson ratio. The modification of the mass density of concrete is:

ρ′c = ρc ·
1

(1− νεG)2 · (1 + εG)
(4)

Equation (5) bestows the total mass density, by summing the contributions of concrete
and steel.

ρ = ρc
Ac

A
+

Ms

A · l ρ′ = ρ′c
Ac

A
+

Ms

A · [(1 + εG) · l]
(5)

The total mass of steel is constant and equal to Ms, while A is the cross-section area
including the contributions of concrete and steel, and l is the total length of the beam.

This section is based on an elementary mechanical model, a simply supported beam:
algebraic equations describe its natural bending frequencies. The axial deformation directly
affects the total length of the beam and the total mass density.

Figure 2. Effect of axial compression in volume contraction.

Equation (6) presents both the natural frequencies of a non-prestressed fnp and pre-
stressed fp simply-supported beam:

fnp =
n2π

2l2

(
EI
ρA

)0.5
fp =

n2π

2(l + εGl)2

(
EI

ρ′A

)0.5
(6)

where I is the cross-section inertia and n is the mode number.
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A k factor, explained in Equation (7), shows the relative variation of the natural
frequency in a non-prestressed beam due to prestressing.

k =
fp − fnp

fnp
≈
(

1 +
σc

Ec

)−3/2(
1− ν

σc

Ec

)
− 1 if ρ′ ≈ ρ′c, ρ ≈ ρc (7)

where σc = Nc/A. The approximation of the mass density (ρ′ ≈ ρ′c, ρ ≈ ρc) aims
at simplifying the expression to yield a straightforward interpretation. There are two
contributions that act oppositely and do not convey the immediate estimation of the sign of
the expression. In the case of negative axial deformations, the reduction of the total length
may increase the natural frequencies by reducing the free vibration length. Reversely, the
compression yields an increment of the mass density, which should cause the reduction
of the natural frequency. Interestingly, the k factor is independent of the cross-section
characteristics and the total length of the beam: it depends on three variables, the concrete
stress σc due to prestressing, the elastic modulus of concrete Ec and the Poisson ratio, ν, see
Equation (8).

k = k(Ec, σc, ν) (8)

In practical situations, the Poisson ratio can be considered as known, and σc and Ec
are the significant variables. Figure 3 plots Equation (7) in a range of variations possibly
consistent with practical situations; the concrete stress spans between −100 and 100 MPa,
and the elastic modulus ranges between 15,000 and 40,000 MPa. The plots reveal an inverse
phenomenon to that observed about external prestressing, i.e., the compression softening
effect. In this situation, compression determines a rising of the natural frequencies, while
tension is lowering. Likely, prestressing yields a sort of “compression hardening”. The
neologism “compression hardening” indicates the increment of the natural frequencies due
to internal prestressing, as if concrete exhibited a sort of hardening effect.

Figure 3 may convey the following evidence:

• Compression stresses determine the increase of the natural frequencies, likely af-
fecting the hardening of concrete. Tension stresses determine the lowering of the
natural frequencies, likely affecting the softening concrete. The author will refer to
the two phenomena as “compression hardening” and “tension softening effect”. This
effect is opposite to that caused by external prestressing, which induces the so-called
“compression softening” effect;

• The relative variation of the natural frequencies due to prestressing range between
−1 and 1% in an interval between −100 and 100 MPa. In ordinary prestressed
structures, where concrete may have a−50 MPa compression, the frequency increment
is about 0.5%;

• Equation (7) depends on the sole axial deformation, expressed by the ratio σc/Ec. The
contour plot in Figure 3 is then invariant to the σc/Ec ratio;

• The functional dependence between the relative frequency variation and σc is practi-
cally linear in the range of interest;

• Natural frequencies can be measured with extreme accuracy, up to the fourth decimal
place. The “compression hardening” effect may yield a measurable effect over the
natural frequencies.

It must be remarked that, theoretically, when the axial force acting in one direction
reaches a critical value, the vibration stops. Conversely, when the axial force acts per-
pendicularly to the cross-section and the cross-section experiences rotation with force,
the frequency of vibrations increases with force. Additionally, the axial force can change
direction during vibration due to the rotation of the cross-section.
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(a)

(b)

Figure 3. Percentage variation of the natural frequency expressed by the approximate k ratio in
Equation (7). (a) The variation of both E and σc;b) the dependence of the k factor on the natural sole
compression stress given the elastic modulus. The solid vertical lines in (b) indicate the range of
interest in existing concrete structures, averaging between −100 and 0 MPa.

3.1. Comparison between the “Compression Hardening” and “Compression Softening”

The effect of the axial deformation on the beam length and the mass density also
affect beams with external prestressing. Equation (9) expresses the natural frequency of
a simply-supported beam, compressed by two external forces Nc. Equation (9) considers
both the compression softening effect due to external prestressing and that counted in
Equation (6).

fep =
n2π

2(l + εGl)2

(
EI

ρ′A

)0.5(
1 +

Ncl2

π2EI

)0.5

(9)

Equation (10) defines the relative variation of the natural frequency due to prestress-
ing. In contrast with Equation (7), the h ratio depends on the beam inertia and the total
axial force.

h =
fep − fnp

fnp
≈
(

1 +
σc

Ec

)−3/2
·
(

1− ν
σc

Ec

)
·
(

1 +
Ncl2

π2EI

)0.5

− 1 (10)

The author compared the compression softening to the compression hardening in
two sample cases to merely understand the magnitude of the effects. Figure 4 proves
that the compression softening effect, ranging between 0–4%, is on average higher than
the hardening one, between 0–1%. The absolute ratio between h and k is nearly constant
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and spans between 73 and 74. In conclusion, higher prestressing forces magnifies the
compression softening effect.

(a)

(b)

Figure 4. Percentage variation of the natural frequency in externally prestressed beams expressed by
the h ratio in Equation (10), given two sample cases (a) with A = 6 m2, I = 4 m4, ν = 0.2, ρ = 2500 kg/m3

and (b) with A = 2 m2, I = 4 m4, ν=0.2, ρ = 2500 kg/m3.

3.2. General Formulation

This part proves that the effect of prestressing can be easily considered under boundary
conditions different from those treated in the previous section. Equations (11) and (12) describe
the transversal and axial dynamics of a planar beam, according to the Euler–Bernoulli theory.

EI
∂4v
∂x4 + ρ

∂2v
∂t2 = 0 (11)

EA
∂2u
∂x2 + ρ

∂2u
∂t2 = 0 (12)

v is the transversal displacement, u is the axial displacement, x is the abscissa spanning the
length of the beam, and t is the time. In the classical formulation, both the bending stiffness
and the mass density are constant. Equations (11) and (12) describe the equilibrium of a
planar beam by considering the effect of axial deformation on the value of the mass density.
This effect couples the two equations, uncoupled in the Euler–Bernoulli formulation.

EI
∂4v
∂x4 + ρ ·

[
(1− ν

∂u
∂x

)2 · (1 + ∂u
∂x

)

]−1 ∂2v
∂t2 = 0 (13)
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EA
∂2u
∂x2 + ρ ·

[
(1− ν

∂u
∂x

)2 · (1 + ∂u
∂x

)

]−1 ∂2u
∂t2 = 0 (14)

Equations (11) and (12) are nonlinear partial differential equations. However, the
coupling term is constant in the case of uniform prestressing; Equation (13) returns uncou-
pled, but has a different mass density. Equations (13) and (14) confirm that the effect of
prestressing can be easily considered in different boundary conditions, as the one tested in
the previous paragraph, by solving the homogeneous equation.

4. Method

The possible negligible but explicit dependence of the natural frequencies on the
prestressing force may endorse an attempt for its estimation. The identification problem
is a classical optimization: minimizing an objective function. The objective function is
the difference between the natural frequency of the prestressed beam according to the
formulation in Equation (13), while fm is the natural frequency measured in situ.

g(Nc) =
n

∑
i

fp,i − fm,i = 0 (15)

where i indicates the mode number, while n is the total number of modes. The minimum
of Equation (15) yields an estimate of the prestressing force. Equation (16) explicates the
dependence of the estimated Nc on three sets of variables, related to the cross-section
geometry, the material constitutive behaviour and the experimental natural frequencies.

Nc = f ({A, I}1, {Ec, ν, ρ}2, { fm}3) (16)

The three sets of variables are associated with distinct levels of uncertainty. While the
geometry of the cross-section can be known precisely from an accurate survey, the material
and the experimental outcomes may be affected by a higher uncertainty. According to
the author, among them, three variables may suffer from the highest level of uncertainty:
the elastic modulus of concrete Ec, and the experimental frequency fm. The uncertainties
associated with the three variables propagate to the prestress estimate. The assessment of
the role of each variable is essential to understand the feasibility of the approach.

Quantification of the Uncertainty

From a statistical point of view, there are three types of errors on the estimated prestressing:

• Bias of the mechanical model: the model is not entirely representative of the tested structure;
• Bias of the input variables: the estimates of the material property or natural frequencies

may be biased;
• Variance of the input variables: the estimates of the material property or the natural

frequencies may have variance errors.

At this stage, the author will ignore the bias error, which can be partially removed in
many occurrences. Otherwise, the variance errors can only be estimated, but not removed.
The author will assess the variance error of the prestressing estimates by using a linear
sensitivity analysis. The first-order Taylor expansion of Equation (16) is:

Nc ≈ f 0 +
3

∑
i

∂ f
∂xi

xi (17)

where ∂ f
∂xi

denotes the partial derivative of f with respect to the i-th variable, evaluated at
the mean value of x. In matrix notation:

Nc ≈ f 0 + Jx (18)
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where J is the Jacobian matrix, while x collects all the xi variables. The propagation of the
variance can be written as:

ΣNc = JΣx JT (19)

where ΣNc and Σx are the covariance matrices.
Rather than assessing the propagation of variance, the author thinks that the inverse

problem should deserve more attention at this step. Which variances of input variables
yield an estimate of prestressing within acceptable bounds?

In the next section, the estimates of prestressing on existing concrete bridges are
associated with the estimation of the admitted confidence values of the elastic modulus to
yield a possibly reliable estimate.

5. Testing of the Procedure on a Real Case Problem

In 2019, the author carried out the dynamic identification of a set of seven prestressed
concrete girders. The girders have a hollow cross-section and are 40 m long. Ten force-
balance accelerometers (FBA) measured the deck response to ambient excitation. The
recordings, sampled at 200 Hz, lasted approximately 40 min. The Stochastic-Subspace
Identification (SSI) method returned an estimate of the modal parameters [49–51]. The
reader might find sufficient details about the girders, the experimental setup and the
results of operational modal analysis in the following research papers [51–53]. The author
will avoid replicating the same information reported in these papers by focusing on the
prestressing estimate.

This manuscript lacks a proper validation section on multiple laboratory girders with
known prestressing. However, the discussion based on the seven girders may have some
merit; the girders are operational and representative of the uncertainties of real applications.
Such applications comprise uncertainties of which laboratory tests cannot easily replicate.

The seven girders are nominally identical with the same design prestressing. Addi-
tionally, the static load test confirmed that the actual prestressing losses are not higher than
30% of the design prestressing Nd. This information will be the basis of the discussion. The
following questions are answered: does the prestressing estimate fall within the expected
range of variation Nd ± 30%? Which variances of the variables can generate the assumed
confidence bounds, Nd ± 30%? The variances of the measured natural frequencies are
known. They originate from the procedure described by [54]. The sole variable with
unknown variance is the elastic modulus of concrete.

The purpose of this section is then the estimation of the prestressing forces and the
boundary values of the elastic modulus associated with a 30% variation of prestressing by
assuming the variance of the natural frequencies as known.

Results

The author solved the optimization problem described in Equation (15) by using
the input parameters in Table 1 and the experimental values in Table 2; the first natural
frequency and the elastic modulus from the static load test. The use of the first natural
frequency depends on the good accordance between the first mode shape and that of a
simply supported beam, as remarked in [53]. This supports the use of Equation (6) in
Equation (15). Table 2 details the resulting prestressing values obtained from the elastic
moduli estimated with static load tests and concrete specimens.

The prestressing values obtained from Equation (15) are far beyond the actual prestress
state, and the estimates are entirely unreliable.

As a second step, the author estimated the elastic moduli, which would yield the de-
sign prestressing Nd = 29,000 kN, by using the same parameters reported in Tables 2 and 3.
Table 2 shows the elastic moduli associated with the design prestressing and those cor-
responding to a 30% variation of prestressing. An estimate of prestressing within 30%
confidence bounds would require the elastic modulus to have a maximum deviation of
3 MPa from the mean.
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Table 1. Characteristics of the girders.

ρ [kg/m3] 2500
A [m2] 6
I [m4] 4
l [m] 40

Table 2. Outcomes of the experimental tests on the prestressed concrete girders. Static T. stands for static test, Concr. Samp.
stands for concrete samples.

Viaduct Span
Elastic Modulus (MPa) Estimated Prestressing (kN)

fm σ fmStatic T. Concr.
Samp. Static T. Concr.

Samp.

Biselli 12 24,900 / 18,811,320 / 2.655 2.00 × 10−4

Cerchiara 4 15,000 19,361 17,076,890 11,105,390 2.967 2.15 × 10−3

Cerchiara 7 23,700 23,299 19,959,130 20,501,280 2.678 1.50 × 10−4

Cretara 9 26,000 26,416 44,637,030 44,540,770 3.564 1.50 × 10−4

Le Grotte 5 36,000 / −3,930,700 / 2.661 2.00 × 10−4

San Nicola 10 26,700 29,978 17,808,040 11,932,910 2.683 3.50 × 10−3

Temperino 6 35,900 / −16,558,670 / 2.515 5.00 × 10−5

Table 3. Elastic moduli associated with the design prestressing Nd = 29,000 kN.

Viaduct Elastic Moduli Yielding Nc within ± 30% (MPa)
Ec(0.7 · Nd) Ec(1.3 · Nd) Ec(Nd) ∆Emax

Biselli 27,367 27,373 27,370 6
Cerchiara 19,638 19,644 19,641 6
Cerchiara 27,875 27,881 27,878 6
Cretara 45,347 45,353 45,350 6

Le Grotte 27,554 27,560 27,557 6
San Nicola 28,224 28,230 28,227 6
Temperino 23,994 24,000 23,997 6

The design prestressing value is associated with elastic moduli not significantly dif-
ferent from that obtained from static load tests. However, a moderate variation in the
elastic modulus generates a considerable variation of the estimated prestressing, as shown
in Figure 5a. Figure 5a depicts the estimate of prestressing as a function of the elastic
modulus in the case of the Biselli bridge span. The visualization of the dot representative
of the elastic modulus corresponding to the design prestressing requires the focusing in
Figure 5b.

The results of this analysis remark the considerable sensitivity of the prestress estimate
on the elastic modulus. The natural frequencies can be obtained with high accuracy
(≈10−4), but the same accuracy does not belong to the estimates of the elastic modulus
in working situations. The values from static load tests do not discern the tenths of the
measure, while the values from concrete samples are generally scattered, with a variance
far higher than 3 MPa.
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(a)

(b)

Figure 5. Estimated values of the elastic modulus to yield the design prestressing value within the given ±30% confidence
bounds: (a) spans between 25,000 and 30,000 MPa, (b) focuses on the estimated value.

The variance of the elastic modulus given by the variances of the natural frequency and
the prestress force may provide useful information about the required level of resolution
in the elastic modulus estimate to yield reliable results. If the elastic modulus and the
natural frequency are uncorrelated variables, the variance of the prestress estimate can be
approximated by:

σ2
Nc
≈
(

∂ f
∂ fm

)2
σ2

f m +

(
∂ f
∂Ec

)2
σ2

Ec
(20)

Figure 6 shows the contour plot of the variance of the elastic modulus σEc , given σ2
f m

and σ2
Nc

, estimated from Equation (20). Interestingly, σEc does not strongly depend on
the confidence bounds of prestressing given a certain variance of the natural frequency.
Furthermore, σEc grows almost linearly as the variance of the natural frequency increases.

Still, a reliable estimate of Nc would require a very high resolution of Ec, not exceeding
7 MPa.
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Figure 6. Variance of the elastic modulus associated with the variances of prestressing and the first
natural frequency, ranging between 0–10,000 kN and 10−5–10−4 MPa, respectively.

6. Discussion

The effect of the axial deformation in the estimate of the prestressing forces does not
return reliable estimates if the geometric and mechanical properties of the beam are not
known with sharp precision. While the experimental variances of the natural frequencies
can be considerably low, that of the elastic modulus does not have the same accuracy due
to several causes. The estimates of the elastic modulus from the static load test do not have
sufficient resolution. Additionally, concrete is not an entirely homogeneous material; the
mechanical properties of concrete change from point to point, and the elastic modulus,
within the same beam, may have a scatter higher than the required interval for a reliable
estimate of prestressing. In conclusion, the method reveals to be unreliable.

Still, the author experimented the feasibility of the technique on the first natural
frequency. The frequency shift due to the axial deformation increases when attaining
higher modes. Precisely, the acoustic emission of a beam may be read profitably in light
of this effect. The author will aim at experimenting with the method on higher modes by
exploiting alternative methods to estimate the elastic modulus based on more accurate
methods, like the ones based on the longitudinal wave propagation.

7. Conclusions

The author tested the effect of the axial deformation due to internal prestressing on the
estimate of the prestressing force. The axial deformation affects the beam length and mass
density. Hence, the natural frequencies can be written as a function of the prestressing state.
The prestress forces may descend by solving an elementary optimization problem. The
method requires the knowledge of the geometrical and mechanical properties of the beam
in terms of cross-section area and inertia, elastic modulus, Poisson ratio and experimental
natural frequencies. Additionally, the method further requires the precise knowledge of
the boundary conditions not to have a biased mechanical model, representative of the
beam dynamics. The procedure is tested on a set of seven simply-supported prestressed
concrete girders, using the first experimental natural frequency. The elastic modulus of
the seven girders descended from static load tests, whereas the natural frequencies were
from the operational modal analysis. Regrettably, the outcomes of the method are not
reliable; the estimated values enormously exceed the expected prestressing. The main
reason for the method’s deficiency is found in the significant sensitivity of the estimates on
the elastic modulus. A reliable estimate would require extremely sharp precision of the
elastic modulus, which is difficult to attain given the intrinsic scatter within the same beam
and the measurement limits. Still, the effect of frequency variation is considerable at higher
frequencies. The author will attempt to test this method at higher modes by using a different



Infrastructures 2021, 6, 83 13 of 14

and more accurate procedure to measure the elastic modulus. Additionally, he aims at
testing the effect of the prestressing state on the elastic modulus of concrete via extensive
experimental tests and detailed modelling of the concrete nonlinear constitutive behaviour.
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