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Abstract: As cities grow in size, traffic also increases, thus making the population more exposed to
road noise and traffic accidents. It is therefore important to study and understand which properties
of the pavement influence its acoustic impact and skid resistance performance. The pavement texture
plays a major role in generating noise and friction, and it can be engineered in order to control both
of them at the same time. The phenomena regulating skid resistance are well understood today. The
same applies for noise generation and propagation; the literature contains methods of designing
the pavement surface layer to achieve consistent results. Several types of solutions can be found for
asphalt mixtures, most of them derived from decades of studies and research. They use different
approaches to be effective for noise and friction, but all have in common the control of the surface’s
macro and microtexture. Finally, some considerations are made regarding novel paving solutions
with artificial aggregates instead of natural ones to address noise and skid resistance.

Keywords: road noise; skid resistance; quiet pavements; polished stone value; microsurfacing

1. Introduction

The main function of highway pavement is to withstand traffic and allow mobility in
a safe, comfortable, and economical way by distributing the surface loads to the existing
natural subgrade [1]. As pavement is the main structural element of the road infrastructure,
it must provide a durable, solid structure capable of withstanding the traffic loads carried
during its service life without suffering damages that can eventually reduce its safety.
Along with the structure, the pavement’s surface functional performance is a key factor,
due to its direct relation to safety, riding quality, noise, and appropriate visibility at night
and in adverse weather conditions [2].

Among the mentioned aspects of road pavement’s structure and surface, traffic noise
has become one of the major environmental concerns of densely populated areas worldwide.
In fact, road vehicles are, by virtue of their numbers, their traveling speeds, and their strong
output, a powerful sound source [3]. Indeed, population growth in urban areas has
increased traffic, thus increasing noise sources and receivers and hence affecting the quality
of life and, eventually, the health of people [4,5].

With a focus on the asphalt concrete surface of roads, the pavement’s texture appears
to be a crucial aspect that can be controlled by the type and sizes of aggregates, type of
asphalt binder, and through the laying processes. Control of these variables can increase
friction, reduce water spray and splash, and abate noise. Following the surface texture de-
scription, pavement roughness can be divided into four texture wavelengths: unevenness,
megatexture, macrotexture, and microtexture [6]. Each range interacts with the vehicle and
its tires in a different manner. However, macro and microtextures are the most relevant
ones, since they have the strongest influence on noise and friction. A higher macrotexture
with similar microtextures has a greater influence on the friction than surfaces with similar
microtextures and lower macrotextures [7]. Pavement surfaces with the same macrotexture
and microtexture can also differ due to the spatial distribution of the particles in reference
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to a baseline. The literature shows that pavements with a positive texture (more peaks)
usually have higher noise levels than those with a similar macrotexture but arranged in a
negative manner (more valleys) [8,9].

The term skid resistance is generally used to describe the pavement’s contribution
to the development of friction. It denotes a measurement of friction obtained under
standardized conditions, in which the various parameters are controlled so that the effects
of the road surface characteristics can be isolated [10,11]. Other studies show that skid
resistance and friction can be controlled by the pavement texture. A higher macrotexture
and a higher microtexture often results in higher friction, thus reducing accident risks [12].
Adequate texture on the pavement surface is required to provide skid resistance at the
tire–road interface for vehicle safety in wet conditions [13,14].

This paper aims to offer a review of the depicted topic by discussing pavement texture
properties and their relation to skid resistance and noise. Besides that, a pioneering asphalt
pavement solution is presented, which combines the noise abatement and skid resistance
properties due to the adoption of innovative engineered artificial aggregates.

2. Road Pavement Surface Properties
2.1. Texture

The pavement texture is defined as the deviation of a pavement surface from a true
planar surface, caused by the random arrangement of the surface elements and their
superficial roughness [15]. The texture of the pavement and its interaction with the tire can
have desirable and undesirable outcomes, ranging from a high skid resistance (desirable)
to discomfort and wear in the vehicle (undesirable). These effects mainly depend on
the wavelength range of the texture, as shown in Figure 1. The International Standards
Organization (ISO) [15] identified the different orders of the texture of a road pavement:

• The microtexture covers wavelengths that are of the same order as the texture of the
aggregates with wavelengths below 0.5 mm;

• The macrotexture covers wavelengths of the same order of size as the tire tread
elements (i.e., from 0.5 mm to 50 mm);

• Wavelengths over 50 mm correspond to the megatexture and unevenness.

Figure 1. Tire-pavement interactions and ranges of the texture wavelength and spatial frequency (adapted from [16]).
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Unevenness and megatexture are usually undesirable for textures, while road friction
and tire–road noise can be regulated by controlling the macrotexture and microtexture.
The macrotexture is primarily influenced by the size, shape, and gradation of the coarse
aggregates. It is mainly the nominal maximum aggregate size [17] that governs the surface
3D geometry and the other parameters affecting the volumetrics of the asphalt surface.
As for microtexture, it is primarily influenced by the aggregate particle mineralogy that
affects the initial texture of the aggregate and its capability to preserve the texture due to
the polishing action of traffic and environmental actions [17].

It has been proven that the texture of the pavement can have a given wavelength.
However, it may have a different outcome when interacting with the tire due to how this
wavelength is distributed on the pavement. It is considered positive when its particles are
protruding above the plane of the surface. The texture can also be negative, which is when
it is comprised of voids between the particles and usually has a flat rolling surface. Both
situations are represented in Figure 2.

Figure 2. Schematic representation of a positive texture (a) and negative texture (b).

According to researchers, depending on the size of the particles, positive texturing
leads to higher indentation levels in the rolling tire, thus having good results for the
skid resistance. In comparison, negative textures contribute to lower noise levels due to
the valleys’ predominance [18–20]. The surface arrangement of the texture, positive or
negative, is of the highest importance. It has been reported that a negative texture results in
a decrease of rolling noise, while the positive texture is more detrimental from an acoustical
point of view [21]. Research has been conducted on how to achieve better skid resistance
and lower noise, as is described in the following sections.

2.2. Skid Resistance

Concerning the Sustainable Development Goals devoted to the health and well-being
of the population (SDG n◦3) and the sustainability of cities and communities (SGD n◦11),
different research shows that when the pavement texture design has improved, the risk
of accidents is significantly reduced [22–24]. According to the World Health Organization
(WHO) report on traffic, road traffic injuries are among the top leading causes of death
for people of all ages [25]. The death toll was rising, and it reached 1.35 million in 2016.
Hence, road traffic crashes constitute an important public issue with significant health and
socioeconomic costs, which should be tackled by road agencies and research [25,26].

The interaction between the tire and pavement, which governs vehicle driving actions,
depends upon the pavement’s surface characteristics (including its contamination) and the
tire’s mechanical and physical properties. Skid resistance is the force developed when a tire
that is prevented from rolling starts to slide on the pavement [27]. This interaction is usually
identified with the skid resistance, which is defined as a measure of the friction phenomena
that have a direct and important effect on perceived and quantified road safety [8].

For instance, the existing data plotted in Figure 3 show that as the coefficient of friction
(given as a parameter of the skid resistance) increases, the crash rate is reduced. The crash
rate (every 108 vehicles-km) is plotted here against Sideway-force Coefficient Routine
Investigation Machine (Scrim) data from the Scrim.
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Figure 3. Sideway-force Coefficient Routine Investigation Machine (Scrim) coefficient vs. crash rate
(adapted from [22]).

The skid resistance of pavement, especially in wet conditions, is of the utmost impor-
tance. In fact, a set of studies showed that approximately 20% of all road accidents occur
when the surface is wet [26,28].

In theory, the available skid resistance is given by the frictional forces developed
at the tire-road interface, which are partially governed by the surface properties of the
pavement (e.g., the texture and its level of contamination) [29]. Moreover, the geometrical
dimensions and the aggregates’ source are relevant properties, as far as skid resistance
development is concerned. This is because the aggregates’ mineralogy can affect the
resistance to polishing (hence the aggregate’s microtexture). It should be recalled that the
microtexture of the surface aggregates and the overall macrotexture is directly related to
the two main components of the friction, which are hysteresis and adhesion, as represented
in Figure 4 [30,31].

Figure 4. Key parameters of pavement-tire interaction (adapted from [30]).

Both phenomena concur to regulate friction. The adhesion is the friction that results
from the small-scale bonding of the tire’s rubber and the pavement surface, while the
hysteresis results from the energy loss due to the bulk deformation of the tire rubber when
it deforms against the pavement surface. The stress causes the deformation energy to be
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stored within the rubber [30]. The adhesion is often neglected because when the texture is
positive, the hysteretic part is more relevant to increasing the skid resistance. However, this
behavior changes once the texture becomes smoother [32], with fewer peaks and valleys.
The presence of contaminants or water can influence both adhesion and hysteresis, which
will decrease the number of contact points needed for friction to occur.

2.3. Noise

Noise pollution from roads has major effects on people’s health [33]. Studies indicate
that it is directly related to several common diseases, such as cardiovascular ones, myocar-
dial infarction, deafness, and depression. Noise also has an influence on the birth rate,
work-related stresses, and productivity, as well as the impairment of learning of children
in schools [34–37].

According to the Imagine-Project [38], tire-pavement noise is the most relevant com-
ponent of overall traffic noise at speeds over 40 km/h, as represented in Figure 5. The
overall noise is mainly given by propulsion and tire-pavement noises, which are both
speed-dependent, but tire-pavement prevails at speeds over 30 km/h for car traffic and for
trucks when their speed is above 75 km/h [38].

Figure 5. An estimate of passenger and commercial vehicle noise and its main sources (adapted from [38]).

It is important to notice that even at higher speeds, if the tire–pavement noise is re-
duced, it is possible to mitigate the overall noise; the noise levels are on a logarithmic scale.

The most important noise generation mechanisms and propagation have been identi-
fied [3,30], as represented in Figure 6. Road engineers can design road surfaces by focusing
on these mechanisms, aiming for the most appropriate material selection to achieve specific
layer characteristics.

The tire–pavement interaction related to noise consists of three main generation and
amplification or reduction phenomena. Vibrational mechanisms are deformations related
to impact and tire rolling, mainly on the hysteretic component, and adhesion mechanisms
are mainly related to the adhesion component of the interaction. They are highly dependent
on the tire characteristics, as well as the pavement material and texture. The aeroacoustics
depend mainly on the geometry of the tire-pavement contact and the number of air voids.
The amplification or reduction also depends on the geometry and the mechanical and
acoustic absorption properties of the pavement. For instance, to reduce the tire tread
impact noise generation, a lower layer stiffness can be achieved by means of asphalt
rubber or rubberized asphalt. Similarly, aggregate selection can be targeted to improve the
microtexture, thus addressing the noise generation mechanisms related to surface adhesion
(e.g., the stick and slip and the stick and snap).
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Noise generation and propagation can also be attenuated or mitigated by reducing
the pavement surface layer’s stiffness by increasing its porosity while reducing the size
of the aggregates and making its texture negative [39] or adding rubber to the asphalt
mixture [40,41]. There are studies which aimed to model the texture and predict the
noise [42–44].

Figure 6. Road noise mechanisms due to tire-pavement interaction (adapted from [14]).

In Figure 7, it is shown that the skid resistance increases as the noise increases. This
can be due to many factors, but because the most important ones are the texture depth and
whether the surface is positive or negative, it should be considered that it is quite difficult
to achieve a low noise surface while recording very high skid resistance. It is usually a
tradeoff that should also consider other pavement characteristics, above all the durability.

Figure 7. Noise level versus friction coefficient on a dry pavement (adapted from [45]).

3. Existing Pavement Solutions to Address Noise Pollution and Skid Resistance

Several different asphalt layer alternatives vary in terms of the sieve size distribution
(open-graded, dense, or gap-graded), type of binder, production and laying processes,
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pavement stratigraphy, and other connected variables. These alternative pavements might
be suitable to perform as acoustic surfaces, improve the wearing course skid resistance, or
in some cases, to target a compromise between both aspects. In the following sections, each
type of pavement will be briefly described, and comments on their main characteristics
will be given in terms of their acoustic or skid resistance performance.

3.1. Dense-Graded Hot Mix Asphalt

Dense-graded asphalt concrete is the base benchmark for all comparisons, because it
is the most common asphalt pavement and is the commonly used pavement for comparing
standardized noise measurements [46]. It has a dense aggregate gradation curve with a
low amount of air voids in the compacted mixture. Since it is not produced as acoustic
pavement, it has, in principle, no noise reduction capabilities, but proper selection of the
particle size distribution can lead to reduced noise impacts. The sound pressure levels
are usually as high as 84 dB(A) [47,48], while the initial friction values are approximately
60–65 BPN [48]. Variations in data are obviously expected according to the gradation size,
aggregate type, and mixture proportions.

3.2. Open-Graded Friction Courses

According to Alvarez et al. [49], open-graded friction courses are special gap-graded
asphalt mixtures that are known for having a large proportion of interconnected air voids.
This volumetric property results in large permeability values and noise reduction capabil-
ities, with the air void contents ranging between 15% and 35%. Due to its porosity and
aggregate gradation, this asphalt concrete has a negative texture, and it can mitigate noise
with sound pressure level differentials of approximately 3.5 dB(A) at standard speeds. The
usual levels can range from 74 to 76 dB(A) [50]. As for friction, the initially measured
values can range from 50 to 70 BPN [51]. Moreover, it has positive performance in wet
conditions because its permeability reduces the water spray and splash phenomena.

3.3. Stone Mastic Asphalt (SMA)

Stone mastic asphalt (SMA) was developed in Germany in the 1960s as a solution
for paving heavily trafficked roads. The asphalt layer has a high content of coarse aggre-
gates, which forms a gap-graded, skeleton-like stone structure [52], as shown in Figure 8.
SMA has a low air void content. However, it can mitigate the noise pressure levels up
to 2–3 dB(A) [53,54], with typical values ranging from 76 to 80 dB(A) [55]. The selection of
an appropriate aggregate size is crucial to achieving consistent noise mitigation. SMA has
good behavior regarding friction, with values ranging from 50 up to 65 BPN [56].

Figure 8. The inner section of a typical stone mastic asphalt (SMA) compacted layer [54].

3.4. Porous Elastic Road Surface (PERS)

Porous elastic road surface (PERS), Figure 9, is made with rubber, usually from
scrap tires, and it has a 20–40% air void content. The rubber content comprises about
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20% of the volume of the total mix. This pavement type is still experimental, and more
research is required to confirm its performance in terms of durability and safety [3,53,54].
However, as it has a low stiffness modulus and is highly porous, it can effectively mitigate
noise, achieving results that can potentially reach differentials up to 10 dB(A) [57,58].
Studies conducted by Goubert [54] and Ejsmont et al. [57] stated that the noise reduction
could be as high as 12 dB(A), and the skid resistance was around 60 BPN, which was
acceptable. However, more studies should be conducted to assess the skid resistance
values’ consistency [59].

Figure 9. Porous elastic road surface samples [59].

3.5. Twin Layer Courses

Twin layers were first developed in the Netherlands in the 1990s and were originally
called twinlay because of the two porous layers with different gradations (Figure 10). This
solution has been proven to have good performance in mitigating noise at the source and
has some of the porous asphalt course’s similar pros and cons, like reducing splash and
spray effects. Moreover, since it has two layers, the top one acts as a filter, hindering
clogging and preventing that the bottom layer from eventual clogs [60–62]. Studies have
shown that the twin layer’s noise reduction capabilities can reach up to 6–7 dB(A) in
reference to a standard Hot Mix Asphalt (HMA) [63–65].

Figure 10. Twin layer scheme (adapted from [60]).

3.6. High-Friction Surface Dressing (Nonbituminous)

According to Woodward and Friel [66], a High Friction Surfaces is a special type of
road coating with very high skid resistance, mainly used in locations with a high risk of
accidents (including pedestrians), and it has been used in the UK since the 1960s. It is a cold
applied mixture of selected aggregates (high resistance to abrasion and polishing) mixed
with a bond coat resin (epoxy, polyurethane, resin, or acrylic) (Figure 11). These proprietary
solutions are commercially available, and typically, they have a higher economic impact
and do not aim to mitigate road noise. Nevertheless, in specific design scenarios, such as
intersections, it has been shown that, in optimal conditions, they can abate up to 5 dB(A) of
noise [3].
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Figure 11. High-friction surface dressing.

3.7. Microsurfacings

Microsurfacings are polymer-modified, binder emulsion-based, dense-graded, cold-
mixed, and quick-setting asphalt surfacing materials. They are a widely used solution for
pavement maintenance and increasing safety. They act as a protective wearing course that
can be applied over the existing pavement, thus reducing some irregularities and filling
cracks. They provide a surface with a regular and even texture, as shown in Figure 12. Mi-
crosurfacings are well known as a construction method with economic and environmental
benefits [26,67,68]. Apart from the proven positive effects in terms of skid resistance, recent
studies were conducted to assess their performance in terms of noise reduction when a
specific mix gradation and powdered rubber were used in combination [68].

Figure 12. Cold laid acoustic microsurfacing at an Italian experimental site [69].

Table 1 provides the typical values of skid resistance, given in traditional BPN units,
and noise levels in terms of the absolute sound pressure levels. It is important to recall that
these values can be found in the literature. They are referred to as specific admixtures in
terms of constituents, proportions, aggregate size, and physical characteristics.
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Table 1. Typical friction and noise characteristics of different paving solutions.

Paving Solution Friction (BPN) Noise (dB(A)) Reference

Dense-Graded Hot Mix Asphalt 60–65 >84 [48,70]
Open-Graded Friction Courses 50–80 74–76 [50,51,71]

Stone Mastic Asphalt (SMA) 50–65 76–80 [53–56]
Porous Elastic Road Surface (PERS) 60 −10 dB(A) reduction 1 [57,59,72–74]

Twin Layer Courses Like open-graded courses −6 dB(A) reduction 1 [62,63]
High-Friction Surface Dressing Up to 90 −5 dB(A) reduction 1 [52,75,76]

Microsurfacings 54–72 69–75 [68,77]
1 The reduction is in reference to a standard hot mix asphalt called the ISO surface (ISO 10844:2011).

4. High-Friction Acoustic Surface Pavements

Surface treatments, especially those using cold binders, play a major role in the
development of more sustainable and safer pavements. This paving solution (valid both
for new constructions and maintenance interventions) shows promising results in terms
of friction performance and can also be specifically designed to address noise. This is still
under research and has been recently addressed as a high-friction acoustic surface for road
pavements, in order to distinguish it from the high-friction surface dressing.

The most advanced high-friction acoustic surface pavement (HiFASP) makes use of
engineered artificial aggregates partially made of waste materials, which are applied in
slurry seals or microsurfacings on a new or existing road, as they are not designed to bring
any structural benefit to the pavement.

The HiFASP-engineered artificial aggregates must be polish- and abrasion-resistant
and be shaped in an Archimedean solid that enables space-filling as well as their handling,
mixing, laying, and eventual repairing in a bound layer. They can be used along with other
natural or recycled particles or fillers to form the so-called aggregate matrix. The engineered
layer should provide a surface with designed homogeneous micro and macrotextures that
can abate noise pollution and increase skid resistance if compared with a standard friction
surfacing. Furthermore, as the HiFASP is an innovative solution that has the high-friction
surface treatment basis in its conceptual background, it becomes mandatory to focus
research on its durability and recyclability.

4.1. HiFASP with Natural Aggregates

Aggregates used in traditional high-friction surfaces are selected to have a concen-
trated distribution of high contact pressures in the tire–pavement interaction surface, thus
eventually providing higher skid resistance. To achieve such a surface property, it is
necessary to use specific aggregates to ensure the aimed skid resistance and guarantee a
sufficient life span under the common traffic wearing actions.

According to Woodward et al. [66], the aggregate particles must be extremely hard-
wearing to maintain their sharp edges and must not become rounded or wear away under
the stresses of turning or braking tires. The traffic, in fact, tends to polish the aggregate,
thus reducing the friction, as is shown in the schematic graph of Figure 13.

Figure 13 shows that the friction changes over time. At first, traffic causes abrasion that
removes the thin binder film on the aggregates, consequently exposing their microtexture
and therefore usually developing additional skid resistance. This microtexture is usually
worn off over time, mainly due to polishing, and reducing the overall friction. Therefore,
the correct selection of aggregates is important to achieve the desirable wear resistance
and thus the sought durable skid resistance. The aggregate can be natural, artificial or
industrial, recycled, or even specifically engineered, as is described in the following section.
Some research was conducted to evaluate the quality of the aggregates [27,60,62], in which
natural and artificial aggregates were compared through specific polishing tests (e.g., the
well-known polished stone value [71]), as well as the surface texture and surface behavior.
In the niche literature, authors classified the aggregates through their PSVs as shown in
Table 2. For instance, it can be seen that the best PSV values were obtained for calcined
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bauxite [68] and sandstone. According to the author’s laboratory work, the aggregates
were crushed to obtain cube-shaped particles. Table 2 also presents the texture depth and
pendulum test results for the tests performed on asphalt concrete specimens.

Figure 13. Possible development of friction over time for asphalt pavements (adapted from [76]).

Table 2. Different types of natural aggregates used in high-friction mixtures, showing polished stone values (PSVs) and
asphalt surface characteristics.

Rock Type PSV
(EN 1097-8:2009)

Pendulum Test (PTN)
(ASTM E303:1991)

Texture Depth (mm) (ISO
13473-1:2019)

Limestone A 40 82 3.29
Limestone B 54 89 3.35

Greywacke A 65 81 3.32
Greywacke B 68 85 3.26

Granite A 55 87 3.47
Granite B 55 84 3.18
Sandstone 70 98 3.05
Quartzite 58 91 3.10

Basalt 53 95 3.74
Calcined Bauxite 70+ 89 3.10

Table 2 shows that high pendulum tester numbers (PTNs) and a higher texture depth
are not related. The difference in PTNs is highly dependent on the aggregate type, which
also affects the PSV and the surface texture depth, denoting the importance of selecting
specific aggregates to achieve high levels of friction.

Similarly, the selection of aggregates is very relevant to the pavement surface’s actual
noise emissions, as the origin, mineralogy, and production processes of natural aggregates,
and especially their nominal size and gradation, strongly affect their contribution to the
overall pavement acoustic performance. The literature states that to achieve a low road
noise impact, it is crucial to create open- or gap-graded gradation curves with aggregate
sizes no larger than 10 mm [3,19]. As shown in the example graph of Figure 14, for the
same type of pavement layer, only changing the aggregate size can induce a sound level
difference of about 1dB(A), even after years of traffic.
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Figure 14. Noise evolution over time for a passenger car at 60 km/h for dense-graded asphalt
concrete with 11 mm and 8 mm maximum aggregate sizes (adapted from [78]).

Aggregates with a small maximum aggregate size tend to generate a texture with
fewer peaks, therefore being smoother if compared to the average size of rubber tire treads.
Their shape is also relevant, as cubic aggregates will allow the pavement to have a more
negative texture [19,78]. However, to control noise, it is important not only to select the
aggregates and their mixtures, but also the compaction method during construction or even
consider the use of surface grooving techniques. Indeed, grooving or grinding techniques
are more common for cement concrete pavements, with reported results ranging from
1.5 dB(A) to 3.0 dB(A) reductions relative to traditional asphalt concretes [78]. The grinding
technique can also be applied to asphalt pavements, with results in terms of noise levels
ranging from 3 dB(A) to 5 dB(A) when compared with the previous existing surface [19,79].
This reduction is mainly due to the effects of the grinding process, which eliminates the
peaks, thus giving a final, more negative texture.

4.2. HiFASP with Artificial Aggregates

The use of artificial engineered aggregates for the construction of HiFASPs can appear
to be a challenge. On one hand, they can be considered environmentally friendly, as
they can reduce the need for virgin aggregates, while on the other hand, they might have
higher costs associated with the achievement of specific physical and mechanical properties.
Nevertheless, the latter aspect could be overcome with the use of waste constituents and
low-energy production techniques, and their added value will reside in that they can be
designed to a specific shape, size, and even microtexture to be used in HiFASPs.

The use of artificial engineered aggregates in pavements is still under research, but
interest is growing around it. One of the first successful attempts was to create artificial
lightweight aggregates (LWAs) made from clay waste minerals [80]. Recent studies have
shown promising results, as surface layers containing LWAs could achieve friction levels
above the requirements (0.30–0.35 F60, the friction number at 60 km/h). As for the noise
levels, according to the same specific literature, a reduction of 3dB(A) could be achieved
even with traditional artificial LWAs [81].

The use of geopolymers or alkali-activated materials can have a predominant role in
the development of artificial engineered aggregates for HiFASPs or other paving solutions.
In fact, those materials can be produced with specific waste powders generated from
different industrial processes (e.g., mining, milling, sawing, and washing) and transformed
into castable construction elements, including engineered aggregates. Indeed, recent
and ongoing studies on the use of geopolymers or Alkali-Activated Mixtures (AAM) for
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the production of aggregates and mixtures are promising [67,82–84]. Nonetheless, with
respect to their use in HiFASPs and other severe wearing surface conditions, additional
research must be conducted to guarantee their durability, recyclability, and avoid any
potential environmental impact. Finally, it is straightforward that the use of artificial
engineered aggregates can provide opportunities in the ways of smartening the pavements
by embedding specific sensors and carrying different materials that can provide self-healing,
self-sensing, and temperature-controlling features in the pavement layers [85,86].

5. Conclusions

Safety and health are of paramount importance when designing pavements, especially
in the context of growing traffic. These aspects must be considered in order to find
appropriate paving solutions. In light of the proposed review, it is possible to infer the
following final remarks:

• Solutions for improving skid resistance and noise exist and are currently used in many
roads worldwide. They require a specific design of the pavement texture to address
one or both aspects;

• Aggregates are commonly natural and virgin, and for this reason, a careful selec-
tion is needed for their use in pavements, providing specific skid resistance and
acoustic characteristics;

• Artificial aggregates can be engineered to the desired shape, size, and microtexture so
that specific characteristics can be implemented into the pavement layers. In particular,
their design can guarantee enhanced skid resistance and acoustic performance;

• HiFASPs represent a new solution that can make use of artificial engineered aggregates,
bringing road safety, human health, and environmental advantages. These can also
be seen as highly reproducible, thus providing spatial and time homogeneity to the
quality of road pavements worldwide;

• Engineered aggregates can become a tool for the implementation of different smart
paving solutions. In these terms, future pavements are very likely to be a pattern
of engineered surfaces having different functions and characteristics for different
locations and uses.
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