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Abstract: A crucial step in measuring the resilience of railway infrastructure is to quantify the
extent of its vulnerability to natural hazards. In this paper, we analyze the vulnerability of the
German railway network to four types of natural hazards that regularly cause disruptions in German
rail operations: floods, mass movements, slope fires, and tree falls. Using daily train traffic data
matched with various data on disruptive events, we quantify the extent to which these four types of
natural hazard reduce daily train traffic volumes. With a negative binomial count data regression,
we find evidence that the track segments of the German railway network are most vulnerable to
floods, followed by mass movements and tree-fall events. On average, floods reduce traffic on track
segments by 19% of the average daily train traffic, mass movements by 16%, and tree fall by 4%.
Moreover, when more than one type of natural hazard affects the track segment on the same day,
train traffic on that segment falls by 34% of the average train traffic. Slope fires have an ambiguous
and nonrobust effect on train traffic due to the reverse causality due to its triggering factors. This is
the first study that attempts to rank different natural hazards according to their impact on railway
traffic. The results have implications for the selection of resilience strategy and can help prioritize
policy measures.

Keywords: railway traffic; natural hazards; resilience; econometric modelling; regression analysis

1. Introduction

A functioning and efficient transportation system is a basic requirement for a modern
economy, supplying society with goods and services. Disruptions or breakdowns in the
transportation system affect many areas of life, with prolonged disruptions having lasting
impacts on administration and society. Natural hazards such as earthquakes or storms
may have fatal impacts on the safe operation of both the rail infrastructure and may even
threaten passengers’ lives [1,2]. The impact of disruptions caused by natural hazards can
grow to enormous proportions, as recently demonstrated by the flood disaster in Germany
and central Europe in July 2021. The heavy rainfall due to the low-pressure system Bernd
caused severe flooding across the region that led to many fatalities and considerable
damage to infrastructure [3]. For instance, around 600 km of the German railway lines
were affected, some of which were completely destroyed. The reconstruction of these lines
is predicted to take several years and estimated to cost around EUR 1.3 billion [4].

Compared to road transport, railway transport is especially vulnerable to traffic
interruptions because of its relatively lower network density and hence fewer route alter-
natives [5]. In the event of a disruption, the track is immediately affected in its entirety
due to its track-bound nature. Causes of railway disruptions are manifold, e.g., accidents,
construction work, or damage to infrastructure, but among the most important of these
causes is natural hazards [6,7]. As adverse weather and climate conditions trigger many if
not most natural hazards [8], the increase in climate extremes is changing the frequency and
magnitude of natural hazards, thereby increasing the vulnerability of the transportation
sector [9,10]. According to Molarius et al. [11], the weather phenomena with the most
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potential harm to rail transport in temperate Central Europe are wind gusts, heat waves
with temperatures above +25 ◦C, and heavy precipitation (>30 L/m2 per day). In Germany,
regional climate models predict a further increase in extreme climate events, particularly
more intense heat waves and longer drought periods, as well as heavy precipitation and
storms [12]. It is therefore likely in the future that disruptions to rail operations due to
natural hazards will not only occur more frequently, but will also last longer and reach
supraregional dimensions more often [13].

In the context of climate change, it is therefore of great importance to ensure rail
operations are more resilient to natural hazards. The United Nations Office for Disaster
Risk Reduction (UNISDR) defines resilience as:

The ability of a system, community or society exposed to hazards to resist, absorb,
accommodate and recover from the effects of a hazard in a timely and efficient
manner, including through the preservation and restoration of its essential basic
structures and functions [14].

In terms of the transport sector, the European Committee for Standardization (CEN) defines
resilience as the “ability to continue to provide service if a disruptive event occurs”. Service
here means the safe and sustainable mobility of persons and goods from one point to
another within a specified time [15]. The resilience of transport infrastructure is therefore
the ability to withstand disruptive events and maintain capacity to provide mobility as
a service. According to CEN [15], the resilience of an infrastructure to natural hazards
comprises two aspects: absorption and recovery. Absorption is the ability to manage
the adverse effects of the natural hazard upon impact, whereas recovery is the process
of returning to the original level of service. The first aspect, absorption, by definition
encompasses the vulnerability of the infrastructure, i.e., the propensity of the infrastructure
to be adversely affected by natural hazards. The first step in measuring resilience is
therefore to quantify the extent of an infrastructure’s vulnerability to natural hazards. In
this study, we analyzed the vulnerability of railway infrastructure by taking daily train
traffic volumes as the level of mobility service and investigating the extent to which the
infrastructure is adversely affected by natural hazards using deviations from the standard
level of service.

Only a handful of studies have evaluated the effects of natural hazards on railway
traffic. Chan and Schofer analyzed the impact of hurricanes and snowstorms on service
days lost on urban rail systems in the United States [16]. Kellermann et al. developed
a flood damage model for estimating both the structural damage and economic losses to the
railway infrastructure [7]. Janić used a deterministic approach to measure the resilience of
the Shinkansen high-speed rail network to the Great East Japan Earthquake of 2011 [17]. All
three studies have one thing in common: they attempted to measure resilience for isolated
cases, either for specific catastrophic events [17] or for a specific type of natural hazard
such as floods [7,18] or weather disruptions [16]. One study that investigated different
types of disruptions on train delays is Xu et al. [19], but they focused mostly on technical
train or infrastructure failures and lumped all natural hazards together into one category.
To the best of our knowledge, no previous study has compared the effects of different types
of natural hazards in a single empirical framework.

The objective of this study is to quantify the vulnerability of the German railway
network to different types of natural hazards, thereby addressing the absorption aspect of
infrastructure resilience. We focus on four types of natural hazards that regularly cause
disruptions in German rail operations: floods, mass movements, slope fires, and tree falls.
We match daily train traffic data with geospatial information on disruptive events along
the railway network and conduct a negative binomial regression analysis to quantify the
extent to which these natural hazards reduce daily train traffic volumes. Our study aims to
answer the following research questions: (1) How do the different natural hazards affect
daily train traffic volumes? (2) Which natural hazard has the strongest impact on daily
train traffic volumes?
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2. Materials and Methods

The empirical basis of this study revolves around two types of data: (1) daily train
traffic data and (2) event data on the four different types of natural hazards. In the
following sections, we describe each dataset in detail, explain how the datasets are matched,
and elaborate on the regression models developed for the analyses.

2.1. Train Traffic Data

Quantifying vulnerability requires a measure of the level of mobility service a transport
infrastructure provides. To represent the level of service provided by each track segment
of the German railway network, we used data on daily train traffic from DB Netz AG,
Frankfurt, a wholly owned subsidiary of Deutsche Bahn (DB) and the largest railway
network operator in Germany. A track segment is defined as a section of the railway
network between two operating points (Betriebsstelle) along a specific route (Strecke). For this
study, DB Netz AG provided extensive panel data on train movement from 12 March 2018
to 31 December 2020 across all track segments of the railway network. For each track
segment, the data contain information on whether it is single- or double-tracked as well as
daily numbers of passing trains in both directions, counting freight trains as well as long-
and short-distance passenger trains. The data consist of 10,705 track segments, of which
9988 have average traffic of at least one train per day within a given year.

The full unbalanced panel dataset consists of 10,040,607 observations. Each observa-
tion represents one track segment per day. Every track segment in the dataset therefore
appears at most 1026 times, because there are 1026 days between 12 March 2018 and
31 December 2020. Similarly, each day appears at most 9988 times, because there are
9988 relevant track segments in the panel. Table 1 presents the descriptive statistics of the
variables in the train traffic data. On average, close to 94 trains pass each track segment
per day. The track segments are nearly equally distributed between single (46%) and
double-tracked (54%).

Table 1. Descriptive statistics of the variables in the train traffic data with N = 10,040,607 observations.

Variable Mean SD Min Max

Trains per day 93.84 91.19 0 1001
Single track 0.46 0.5 0 1

A histogram of daily train counts per day over the investigation period is presented
in Figure 1. As expected of count data, the distribution is not normally distributed, as can
be seen in Figure 1a, being truncated on the left with a mass of data points around zero.
A standard method of dealing with truncated and highly right-skewed distributions is to
take the logarithm. When zero values were present, as is common with count data, we used
the continuity-corrected transformation log(0.5 + x) for graphical purposes. After log-
transforming (Figure 1b), the shape of the distribution was closer to the normal distribution.
However, a mass of data points remained to the left of the distribution, representing the
zero values in the untransformed count variable. These zero values were dealt with using
the hurdle and zero-inflated models explained in Section 2.4.

Figure 2 plots the time series of total distance travelled across the whole DB railway
network over the sample period. The time series is relatively stable and varies between
2.0 to 3.5 million km travelled per day, with regular fluctuations between the weekdays
and the weekends. Of note is the clear decrease in distance travelled during the beginning
of the COVID-19 pandemic in March 2020, which took until October of the same year to
return to pre-pandemic levels. Furthermore, seasonal variations occur during the German
Easter and Christmas holidays. There is also a gradual drop in travelled distance around
July that recovers by mid-September. This is when summer break takes place in schools
and many employees take weeklong vacations, which the Germans call the summer slump
or Sommerloch. Interestingly, despite the significant disruption in 2020 caused by the
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COVID-19 restrictions, the seasonal variations due to Easter and summer holidays are still
clearly observable.
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2.2. Event Data

DB Netz AG provided event data from their accident database for four different types
of natural hazards for the years 2018 to 2020: floods, mass movements, slope fires, and tree
falls. We chose these processes because they regularly cause disruptions to German rail
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operations [13]. They differ in spatial extent, seasonal occurrence, and triggering factors,
thereby covering a broad spectrum of natural event-related disturbances. Information about
the date and geographical location of the events are provided in the database. The different
natural hazards occur and are reported at different frequencies (Table 2), with tree falls
having the most reports (9862), followed by slope fires (924 reports). Floods (98 reports) and
mass movements (114 reports) have the least number of reports during the investigation
period, suggesting that they seldom occur along the German railway network. The monthly
distribution () shows that tree falls occur mainly during January to March, whereas slope
fires occur predominantly from April to August (Figure 3a). Of note is the summer of
2018, where huge spikes in floods, gravitational mass movements, and slope fires can
be observed. The summer of 2018 was one of the hottest and driest summers reported
in Germany, leading to visible heat- and drought-induced disturbances in installations
of the roadway and the control and safety technology [13]. Heavy thunderstorms with
torrential rain and localized squalls in late summer caused disruptions due to tree falls,
track undermining, and lightning strikes [13].

Infrastructures 2021, 6, x FOR PEER REVIEW 6 of 18 
 

 
Figure 3. Statistics on natural hazard events: (a) disruption reports over time by type of natural hazard; (b) histogram of 
disruption duration. Note: For mass movements, no information on disruption duration was provided. 

2.3. Matching Traffic and Event Data 
Information on the geographic location of the disruptive events differs across event 

datasets. For the data on mass movements and tree falls, the route number and track kil-
ometer associated with the location of the disruptive event are provided, allowing for a 
straightforward spatial matching with the train traffic panel. However, the datasets on 
slope fires and floods have no information on the route number or on the track kilometer 
where the event took place. Instead, the DB accident database assigns these events only to 
the nearest operating point. Note that an operating point could belong to intersecting 
routes on the network, and for every route to which it belongs, it has a different track 
kilometer. Slope fire and flooding events were therefore matched with the train traffic 
panel as follows: All track segments along different routes with endpoints associated with 
the corresponding operating point in the event dataset were counted as having the appro-
priate disruptive event. This means that each flood or slope fire event may be assigned to 
at least two track segments. The consequence of this relatively less accurate matching pro-
cedure is increased variability in the traffic values associated with slope fires and floods. 
As a result, slope fires and floods will have larger standard errors in the econometric anal-
yses. This affects the hypothesis testing, potentially resulting in less statistically significant 
regression estimates. 

Among the disruptive event reports present in the four events datasets, we success-
fully matched 98 reported flood disruptions (match rate 100%), 97 mass movements dis-
ruptions (85%), 904 slope-fire disruptions (98%) and 8724 tree-fall disruptions (88%) to a 

Figure 3. Statistics on natural hazard events: (a) disruption reports over time by type of natural hazard; (b) histogram of
disruption duration. Note: For mass movements, no information on disruption duration was provided.



Infrastructures 2021, 6, 174 6 of 16

Table 2. Number of reports of the different natural hazards and the duration of the disruption.

Natural Hazard No. of Reports Mean Duration (in min) (± SD) No. of Disruptions > 1 Day
(% of Total No. of Reports)

Flood 98 4565.9 (±13,051.9) 32 (32.7%)
Mass movement 114

Slope fire 924 186.6 (±1981.4) 13 (1.4%)
Tree fall 9862 271.5 (±2219.5) 236 (2.4%)

Note: For mass movements, no information on disruption duration was provided.

In all event datasets except for mass movements, information on the start and end
times of every disruptive event is provided. The start time is when the event is first
noticed, and the end time marks the time when the damage from the event is removed and
operations can resume as scheduled. This information allowed us to calculate disruption
duration in minutes for floods, slope fires, and tree fall events, shown in the second column
of Table 2. The mean duration for all three types of natural hazards exceeds three hours,
with floods averaging more than three days. The histograms of log-transformed disruption
duration by natural hazard is presented in Figure 3b. The duration of flood events is
more variable compared to tree falls and slope fires owing to the fewer number of reports.
Nevertheless, it is clear that the curve for floods lies slightly to the right of the curves for
slope fires and tree falls, and the median duration of flood events is longer. For floods,
around one-third of all reported events last longer than one day, while the proportions of
the events lasting longer than one day are very small for slope fires and tree falls (Table 2).

2.3. Matching Traffic and Event Data

Information on the geographic location of the disruptive events differs across event
datasets. For the data on mass movements and tree falls, the route number and track
kilometer associated with the location of the disruptive event are provided, allowing for
a straightforward spatial matching with the train traffic panel. However, the datasets on
slope fires and floods have no information on the route number or on the track kilometer
where the event took place. Instead, the DB accident database assigns these events only
to the nearest operating point. Note that an operating point could belong to intersecting
routes on the network, and for every route to which it belongs, it has a different track
kilometer. Slope fire and flooding events were therefore matched with the train traffic panel
as follows: All track segments along different routes with endpoints associated with the
corresponding operating point in the event dataset were counted as having the appropriate
disruptive event. This means that each flood or slope fire event may be assigned to at least
two track segments. The consequence of this relatively less accurate matching procedure is
increased variability in the traffic values associated with slope fires and floods. As a result,
slope fires and floods will have larger standard errors in the econometric analyses. This affects
the hypothesis testing, potentially resulting in less statistically significant regression estimates.

Among the disruptive event reports present in the four events datasets, we successfully
matched 98 reported flood disruptions (match rate 100%), 97 mass movements disruptions
(85%), 904 slope-fire disruptions (98%) and 8724 tree-fall disruptions (88%) to a track
segment in the train traffic dataset. Events that could not be matched with corresponding
train data were those that occurred prior to 12 March 2018, or those that took place on track
segments with mean traffic below one train per day. They were therefore excluded from
the rest of the analyses.

2.4. Empirical Methods

Due to the count nature of the traffic variable in the dataset, conventional regression
methods such as the ordinary least squares (OLS) would yield biased and inefficient results.
Several count-data regression models have been proposed to deal with this problem:
the Poisson regression model, the negative binomial regression model, the hurdle model,
and the zero-inflated regression model.
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The most common method for dealing with count data is the Poisson regression model,
which yields efficient results as long as the conditional mean of the count variable is equal
to its variance. This assumption, called equidispersion, is the biggest shortcoming of the
Poisson regression model because most count data in the real word are over-dispersed [20].
In our dataset, the mean value of the train-count variable (93.3) is much smaller than
the variance (8315.6), suggesting that the Poisson model might be inappropriate for our
analysis. In such cases of overdispersion, the negative binomial regression model is
a popular alternative to the Poisson because it introduces a dispersion parameter that
allows the variance of the count variable to differ from the conditional mean [21,22],
thereby loosening the equidispersion assumption.

One limitation of both the Poisson and negative binomial models, however, is the
assumption that zeros and nonzeros come from the same data-generating process. For cases
when this assumption is violated, both models insufficiently account for the heteroskedas-
ticity caused by excess zeros. This is where the hurdle model [23] and the zero-inflated
model [23,24] are useful. Both methods allow the data-generating processes for zeros
and nonzeros to be different by modeling a second binary component that estimates the
probability that the value of the dependent variable is zero.

The difference between the hurdle and the zero-inflated model lies in their assump-
tions about subpopulations of the data sample (in our case, subpopulations of track seg-
ments). The hurdle model assumes two types of track segments: (i) those where trains
never pass and (ii) those where trains always pass at least once. The zero-inflated model
instead assumes subpopulations of track segments where: (i) trains never pass or (iii) trains
can pass, but not always [25,26]. More technically, the hurdle model separately estimates
the zero values (generated by subpopulation (i)) from the count component of positive
values (generated by (ii)). In contrast, the zero-inflated approach, although having a similar
binary component estimating “structural” zeros from subpopulation (i), allows the count
component to take both positive and zero values (i.e., “sampling” zeros).

In the case of train traffic, we can think of a subpopulation of tracks segments described
in (i), i.e., where trains never pass, to be the track segments belonging to decommissioned
routes. However, given that our dataset includes only track segments with at least one
train per day on average, decommissioned routes and other track segments where trains
never pass throughout the investigation period do not appear in the data. Therefore,
in our dataset, the zeros and the nonzeros can be safely assumed to come from the same
data-generating process, making a hurdle or a zero-inflated model superfluous. For this
reason, we employed a negative binomial regression model to estimate the effect of natural
hazards on train traffic in track segments.

2.4.1. Negative Binomial Regression Model

The negative binomial regression model estimated from the pooled panel dataset
takes the form

log(yit) = β0 +β′1NatHazit +β′2zi + uit (1)

where the dependent variable yit is the count variable for the number of trains that pass
through track segment i on day t, and NatHazit is a vector of mutually exclusive dummy
variables indicating the occurrence of each type of natural hazard in track segment i on
day t. The dummy variables in NatHazit are as follows: flood only, mass movement only,
slope fire only, tree fall only, and two or more natural hazard events. This distinction
allowed us to separately identify the individual effects of each natural hazard. The base
variable is when no natural hazard event occurs.

The vector zit represents the control variables, namely whether a track segment is
single-tracked, and dummy variables for day of the week, month, and year. The week
dummies (with Friday as the base variable) control for weekday and weekend variation.
The month dummies (with January as the base) control for seasonal effects. The year
dummies (with 2018 as the base) control for the fact that variations in train traffic differed
substantially during the COVID-19 pandemic (year 2020) compared to the other years in
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the sample. The parameter β0 is a constant term that represents the log number of trains
when all dummy variables are at their base levels. Finally, uit is an error term.

Assuming a negative binomial distribution for yit conditioned on all the regressors in
(1), denoted xit = (NatHazit, zit), one parametrization of the probability density function
of yit|xit is

f (yit|xit) =
Γ(y + θ)

Γ(θ)·y!
· µyθθ

(µ + θ)y+θ
(2)

where θ is the dispersion parameter and Γ(·) is the gamma function. This density function
has conditional mean µ and conditional variance = µ + µ

θ . Note that the value of θ
determines whether the equidispersion assumption of the Poisson model holds, i.e., as θ
approaches infinity, the conditional variance approaches the mean, and the distribution
approximates a Poisson distribution. A maximum likelihood estimation is applied to the
negative binomial model in (2) to obtain estimates of the parameter coefficients in (1).

The parameter of interest in Equation (1) is β1, which is the coefficient vector of
the variables indicating the occurrence of a natural hazard event. Our hypothesis is the
following: the occurrence of a natural hazard reduces the number of trains passing by
a track segment. We therefore expect negative and significant values for the parameter
coefficients β1.

2.4.2. Estimating the Effect Sizes of the Natural Hazard Events on Train Traffic

Although the signs and statistical significance of the coefficients could be easily
obtained from the regression model in (1), the size of the effects in terms of reductions in
the number of trains could not be obtained directly from β1 due to the logarithmic nature of
the models. To obtain the size of each natural hazard’s effect on train traffic, we computed
the average marginal effect (AME). The AME is calculated from the predicted values of
the dependent variable yit in its base (non-logarithmic) form, i.e., the predicted number of
trains per day. The marginal effect of a dummy variable (e.g., flood) is the difference in
the predicted number of trains when the dummy variable has a value of one (i.e., when
a flood occurs) versus the base variable (no disruptive event). Since the negative binomial
regression is nonlinear, the predicted value and marginal effect depend on the values of all
the regressors on the righthand side of Equation (1). This means that the marginal effects
differ across all observations in the dataset. When the marginal effects are averaged over all
observations, the result is the AME. In our study, the AMEs represent the average deviation
in the number of trains per day compared to the base variable (no disruptive event). Using
95% confidence intervals, an estimate of the AME is statistically significant if confidence
interval does not include zero. If the confidence interval includes zero, this means that
the AME is not significant at the 5% level or that the train count during an event is not
statistically different from the train count when no disruptions occur.

3. Results
3.1. Descriptive Statistics

The first column of Table 3 presents the frequency counts of the natural hazard events
in the matched traffic and event datasets. Note that the counts of disruptive event differs
from the number of reports in Table 2 for three reasons: First, one reported disruption
could span several days, and each day is counted separately in the matched panel. Second,
several reports could be filed for the same track segment on the same day, and third,
for slope fires and floods, one report is matched to at least two track segments because
only information on the nearest operating point is provided. Looking at the different
categories, about 99.88% of the observations belong to the category “no disruptive event”,
i.e., no natural hazard event occurred in that specific track segment on that specific day. In
other words, disruptions due to either floods, mass movements, slope fires, or tree falls
occur in only 0.12% of the observations. The smallest category with only 16 observations is
the category of track segments hit by two or more types of natural hazard in the same day.
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Flood and tree fall events are the two natural hazards that most often occur on the same
day as another event.

Table 3. Descriptive statistics and results from the regression analysis.

Categories No. of Observations
per Category

Median Trains per Day
(Log-Transformed Values)

Average Marginal Effect (AME)

Deviation in
Number of Trains (±SD)

95% Confidence
Interval

No disruptive event 10,028,672 4.2
Flood 802 4.0 −17.5 (± 2.0) (−21.5, −13.5)
Mass movement 90 4.3 −14.8 (± 6.2) (−27.0, −2.6)
Slope fire 3052 4.5 +2.6 (± 1.3) (0.05, 5.2)
Tree fall 7975 4.0 −4.0 (± 0.7) (−5.4, −2.7)
2+ disruptive events 16 3.7 −31.5 (± 11.7) (−54.5, −8.6)

Total no. of observations 10,040,607

Figure 4 presents box plots of the train traffic distributions on days with and without
natural hazard events. The exact values of the median in the box plots can be found in
the second column of Table 3. Compared to days with no disruptive events, days with
disruptions due to tree falls and floods have a noticeably lower median, which is statistically
different from days without disruptive events based on the Wilcoxon two-sample test. This
descriptive result supports our hypothesis. The difference is particularly striking on days
with at least two natural hazard events, albeit not statistically significant due to the low
number of observations in the sample. On days with mass movements, we found no
discernable difference. Days with slope fires have a higher median, on average, than days
with no disruptive events, an outcome that we discuss in detail in Section 4.
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Figure 4. Box plots of train-count distributions by natural hazard event compared to the distribution
of days with no disruptive event (leftmost plot). Asterisks indicate the level of statistical significance
of the Wilcoxon two-sample test between the natural hazard event and no disruptive event. Data are
based on the continuity-corrected log-transformation of trains per day, as shown in Figure 1.

Although these results already provide an indication of how natural hazards affect
train traffic, other factors that may influence this relationship, for instance, seasonal vari-
ation, are not taken into account. Controlling for these other factors involves regression
analysis, the results of which we present in the next section.
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3.2. Results from the Regression Analysis

Table 4 presents the estimation results of the negative binomial regression model in
column (1). To check for robustness of the results, columns (2) to (4) present the estimates
of the other count data models discussed in Section 2.4. The full regression table with
the coefficient estimates and standard errors of all independent variables is provided in
Appendix A Table A1.

Table 4. Regression estimates.

Dependent Variable: Trains per Day

Variable Negative Binomial
(1)

Poisson
(2)

Hurdle
(3)

Zero-Inflated
(4)

Tree fall only −0.044 *** −0.088 *** −0.064 *** −0.064 ***
(0.008) (0.007) (0.007) (0.007)

Slope fire only 0.027 * 0.018 0.016 0.016
(0.014) (0.012) (0.012) (0.012)

Flood only −0.206 *** −0.156 *** −0.184 *** −0.184 ***
(0.026) (0.022) (0.024) (0.024)

Gravitational mass movement only −0.172 * −0.219 *** −0.194 ** −0.193 **
(0.079) (0.057) (0.070) (0.070)

Two or more disruptive events −0.409 * −0.606 ** −0.441 ** −0.443 **
(0.188) (0.187) (0.167) (0.167)

Single-tracked −1.282 *** −1.283 *** −1.255 *** −1.255 ***
(0.0005) (0.0004) (0.0004) (0.0004)

Constant Yes Yes Yes Yes

Week effects Yes Yes Yes Yes
Month effects Yes Yes Yes Yes
Year effects Yes Yes Yes Yes

Observations 10,040,607 10,040,607 10,040,607 10,040,607
Log likelihood −52,983,781 −231,628,464 −52,332,085 −52,332,078
Dispersion parameter (θ) 1.837 *** (0.001)
Akaike Information Criterion (AIC) 105,967,614 463,256,979 104,664,276 104,664,261

Notes: * p < 0.05; ** p < 0.01; *** p < 0.001; standard errors in parentheses.

The log-likelihood and the Akaike information criterion (AIC) provide an indication of
the fit of the four count-data models. The higher the log-likelihood and the lower the AIC,
the better the model fit. Comparing the log-likelihoods and AIC statistics of all four models,
the Poisson model in column (2) of Table 4 is substantially inferior to the negative binomial,
hurdle, and zero-inflated models, which indicates that overdispersion is a major issue in
the data. The estimated dispersion parameter in the negative binomial model is much
smaller (1.87) compared to the mean of the dependent variable (93.8), suggesting that the
equidispersion assumption does not hold (recall that equidispersion holds if the dispersion
parameter approaches infinity).

After overdispersion was corrected using the negative binomial regression, correcting
for zero values no longer provided substantial improvement in the fit of the model. The
hurdle and zero-inflated models in columns (3) and (4) of Table 4 have almost the same log-
likelihoods and AIC values as the negative binomial in column (1). This is to be expected as
our dataset already excludes track segments with fewer than one train per day on average.

Turning now to the parameter estimates, tree fall, flood, and mass movements have
negative and significant coefficients in all count data models. This confirms our hypothesis
that days with floods, mass movements, or tree-fall events have fewer passing trains com-
pared to days with no disruptions, even after controlling for seasonal and confounding
factors. Furthermore, the coefficients are negative and significant in all models, proving
that these results are robust to model choice. For slope fires, the coefficients are positive
but insignificant in all models except the negative binomial regression. This means that
although we obtained a significant estimate, the result does not survive the use of other
count-data models. Nevertheless, the positive coefficient in the negative binomial regres-
sion warrants deeper consideration, and can be explained by the triggering factors peculiar
to slope fires, which we discuss extensively in Section 4.



Infrastructures 2021, 6, 174 11 of 16

While Table 4 provides information on the direction and significance of the different
natural hazards, the nonlinearity of the regression models makes the magnitude of the
coefficients difficult to interpret. For this reason, in Figure 5, we converted the effects into
deviations in the number of trains per day via the AMEs and their 95% confidence intervals.
The zero line intersecting a confidence interval means that there is no difference in the daily
number of trains compared with days without disruptions. Exact values of the AMEs and
their confidence intervals can be found in the last two columns of Table 3. Days with two or
more natural hazard events have around 32 fewer trains than days without disruptions.
This is one -third of the average number of trains per day across all observations (Table 1)
and is by far the largest effect. In case of a flood event, there are, on average, 18 fewer trains,
reducing the average number of trains by almost one-fifth. On days with mass movement
events, the number of trains is lower by around 15, while days with tree-fall events have
the smallest effect of only four fewer trains. For floods, mass movements, and tree falls,
the AMEs are statistically significant. Looking at the slope-fire variable, the AME is positive
at a value of two, meaning that days with slope fires have, on average, two trains more than
days without disruptions. However, this estimate is barely significant, with a confidence
interval that touches the y-axis at zero.
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4. Discussion

In this study, we analyzed the impact of four different types of natural hazard on
railway traffic, which differ in their dimension, spatial distribution and extent, frequency
of occurrence, and triggering factors. Mass movements are a major threat to infrastructure
in alpine environments (e.g., [27]). In countries such as Germany, railway lines running
along river valleys in middle mountain regions are particularly at risk (e.g., [28]), and the
events are predominantly small with local effects: only a small number of events related
to mass movements are recorded in the event database. When events occur infrequently,
other more pressing matters may overshadow the salience of these events, thereby making
infrastructure managers more prone to being underprepared when they happen. As
a result, the impact of a single infrequent event can be substantial [11]. This could partially
explain what we observed in our results, where the two most infrequent events in our
dataset, floods and mass movements, have the largest effects on daily traffic among the
natural hazards analyzed in this study (Figure 5). A recent example of a large mass
movement event with a major impact on the European railway traffic is the Kestert rock
fall in March 2021, which took place in the Upper Middle Rhine valley. This disaster
resulted in the months-long closure of Europe’s busiest freight train route between Genoa
and Rotterdam [29].
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The seasonal distributions of flood, mass movement, and tree fall events are quite
similar, suggesting that the triggering factors for these processes are closely related. Pre-
cipitation is a major trigger of floods and mass movements, specifically heavy precipita-
tion events (>20 L/m2 per day) or prolonged precipitation that lasts over several days.
Tree-fall hazards are predominantly associated with storm events or strong wind gusts,
which are often accompanied by heavy precipitation. Depending on the triggering factor,
floods and tree-fall events can either be of local, e.g., thunderstorms in summer, or of
regional/nationwide distribution, e.g., a winter storm caused by a large-scale low-pressure
area. In the investigation period of 2018 to 2020, both types of triggering events occurred,
e.g., the low-pressure area Nadine in August 2018 and Orkan Sabine in February 2020. The
occurrence of storm and precipitation events are exogenous and are beyond the influence
of infrastructure managers. Nevertheless, one preventive measure in the event of a storm
warning is the partial or complete cessation of train operations. Shortly before Orkan
Sabine hit Germany in February 2020, the DB put a nationwide stop on all its long-distance
trains [30], resulting in a slump in travelled kilometers, which can be observed in Figure 2.
Such measures might partially explain why storm-induced hazard events, particularly
floods, mass movements, and tree falls, have a significant influence on the number of trains.

The results of the regression analysis showed that the number of trains fell during
days with flood, mass movement, and tree-fall events, which supports our hypothesis.
For slope fire events, however, we observed the opposite effect: the number of trains was
higher than the average. This can be explained by the triggering factors that are peculiar
only to slope fires. Dry vegetation and soils represent initial situations conducive to fires,
but events are necessary for their initiation, e.g., sparks caused by technical defects on
trains or discarding of burning cigarette butts. Therefore, while the occurrence of floods,
mass movements, and tree falls is mainly caused by external factors and not by train
operation itself, the occurrence of slope fires is related to the volume passing trains. Some
studies have shown that slope fires are frequently caused by fixed brakes [31,32], making
slope fires more likely to occur on lines with high train traffic volume, especially freight
traffic. In other words, more trains passing a track segment could increase the probability
that, under certain conditions, a train ignites a fire in a nearby embankment. If there is
a positive feedback effect of the number of passing trains on the incidence of slope fires,
the coefficients that are estimated by the regression model will be upward-biased [33]. This
is because the relationship between slope fires and traffic consists of two opposing effects:
(i) the positive effect from the fact that more passing trains could result in more slope fires,
and (ii) the negative effect from the temporary track closures once a slope fire breaks out.
These two effects cancel each other out, making the net effect ambiguous. In Table 4 and
Figure 5, the estimates show that the net effect is positive, suggesting that the positive effect
of (i) trumps the negative effect of (ii). This is not surprising as the temporary track closures
due to slope fires are brief (Table 2). The ambiguity of the net effect is reflected in the
coefficient of slope fires being significant in only one of the four regression models. Because
of the estimation bias caused by (i), we cannot definitively conclude that the impact of
slope fires on train traffic is different from zero. A deeper investigation is required that
either calculates the size of the estimation bias or removes the estimation bias altogether
via instrumental variables.

To answer the questions we posed at the beginning of this study, we estimated the
effect sizes using average marginal effects (Figure 5). The results revealed that floods
have the strongest impact on the railway system in terms of reduction in train traffic on
the affected lines. Mass movements are ranked second, while tree fall events have the
smallest impact. This implies that the German railway network is more vulnerable to and
potentially less resilient against floods and mass movements than to tree falls. These results,
i.e., the extent to which the infrastructure is vulnerable to a specific type of natural hazard,
may have implications on the selection of the most appropriate resilience strategy.

According to Chan and Schofer, there are three resilience strategies that transportation
systems can employ against natural hazards: hardening, redundancy, and elasticity [16].
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For single tree-fall events that reduce daily train traffic by only a few trains, hardening
measures may suffice. Hardening measures, such as protective walls, levees, and rock fall
nets, are widespread and diverse on the German rail network. Hardening measures alone,
however, may not be enough for larger natural hazard events. For events such as floods or
mass movements with more substantial negative effects, additional redundancy and elas-
ticity measures might be necessary. Unfortunately, redundancy measures are difficult
to implement in railway systems due in part to the prevalence of single-line tracks,
the lack of excess capacity, and the limited routing possibilities [5]. Nevertheless, identify-
ing alternate lines as potential detour routes is a viable strategy that can increase resilience
(e.g., [34]). The relative infeasibility of redundancy measures for railway makes elasticity
measures the second-best alternative to minimize the damage caused by natural hazards.
The temporary local or nationwide suspension of train services is a frequent practice in
Germany, often implemented in the event of storm warnings or forecasted heavy snowfall.

The occurrence and hence the impact of all four types of natural hazards analyzed in
this paper can be influenced by the trackside vegetation, both positively and negatively.
Optimized vegetation management is therefore a crucial tool for a more resilient railway
traffic. By choosing appropriate tree species and understory vegetation, the risks of tree
falls and slope fires can be minimized (e.g., [35]). Additionally, appropriate vegetation has
positive impacts on slope stability [36] and can reduce the erosive potential of slopes and
railroad embankments during (heavy) precipitation events.

The frequency of simultaneous natural hazards affecting a track segment is very low;
however, the importance of simultaneously occurring events and the associated damages
and disruptions should not be underestimated. Despite the large confidence intervals
of two or more disruptive events in Figure 5, we still identified a statistically significant
effect that is at least twice as large as the effect of any natural hazard on its own. There
are several reasons for the co-occurrence of different natural hazards in our study having
such a low frequency. We assigned the events to track segments, which may be too detailed
a spatial resolution, as a track segment is, on average, 6.9 km long. Further uncertainty
arises from the event data, since the location is not always exact, so that spatially close
events could theoretically have occurred at the same site. Since all the events occurred in
the past and are predominantly small events that have no visible long-term traces in the
landscape, the exact location can be retrospectively determined only in individual cases.
For slope fires and floods, exact localization is not possible at all, since the events in the
dataset are only assigned to the nearest operating point. Moreover, although reports were
each assigned to one event category, an event can also represent a combination of different
processes, e.g., the uprooting of trees due to mass movements or flash floods. Furthermore,
the dataset has a short time span of only three years. If we were to study simultaneously
occurring events, a route-level analysis with a longer time series of at least 10 years would
be more appropriate. Despite these limitations, however, we are convinced that our study
demonstrates the potential of matching natural hazard event data with train traffic data.
Further efforts should be directed toward this previously under-represented area of rail
transportation research.

5. Conclusions

In this study, we analyzed the impact of four different types of natural hazard in terms
of the reduction in daily train volumes, and identified floods as having the strongest effect.
We are the first to use a multihazard approach to attempt to rank different natural hazards
according to their impact on railway traffic, the results of which can help to prioritize
appropriate resilience strategies.

The results of this study open the door to further research, ideally with a dataset
that has a wider spatial and temporal coverage. Not only will this capture more of the
relatively infrequent events, such as simultaneously occurring natural hazards, but it will
also provide enough information for forecasting trends in the effects of natural hazards.
Furthermore, other potentially confounding factors must be taken into consideration,
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such as weather and other causes of railway disruptions, which is necessary in order to
remove reverse causality and other potential endogeneity in train traffic. With this, less
ambiguous and more robust measures of the vulnerability of railway infrastructure can be
estimated, especially for natural hazards such as slope fires.

We concentrated on four natural hazards, but the same empirical methodology can
be applied to any other type of natural hazard, depending on which threats to the rail-
way network are being considered. Furthermore, it is also possible to apply the empir-
ical method to other types of disruptive events with similar features to natural hazards
(e.g., unpredictable and spontaneous), for example, railroad crime, wildlife collisions,
and other accidents. Moreover, the same approach can be used to study the vulnerability
of other transport modes such as roads and waterways. This study therefore puts forward
a method that could potentially be used to compare natural hazard effects across different
modes of transport.

In the context of resilience research, infrastructure vulnerability investigation is only
a first step in understanding and measuring resilience. The recovery aspect of resilience
is another feature that must be analyzed. The next step would be to investigate the
determinants of disruption duration and service recovery in more detail toward the aim of
completing the whole picture of resilience.
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Appendix A

Table A1. Full regression table.

Trains per Day

Variable Negative Binomial
(1)

Poisson
(2)

Hurdle
(3)

Zero-Inflated
(4)

Tree fall only −0.044 *** −0.088 *** −0.064 *** −0.064 ***
(0.008) (0.007) (0.007) (0.007)

Slope fire only 0.027 * 0.018 0.016 0.016
(0.014) (0.012) (0.012) (0.012)

Flood only −0.206 *** −0.156 *** −0.184 *** −0.184 ***
(0.026) (0.022) (0.024) (0.024)

Gravitational mass movement only −0.172 * −0.219 *** −0.194 ** −0.193 **
(0.079) (0.057) (0.070) (0.070)

Two or more disruptive events −0.409 * −0.606 ** −0.441 ** −0.443 **
(0.188) (0.187) (0.167) (0.167)

Single-tracked −1.282 *** −1.283 *** −1.255 *** −1.255 ***
(0.0005) (0.0004) (0.0004) (0.0004)

Day of the week: Saturday −0.210 *** −0.208 *** −0.198 *** −0.198 ***
(0.001) (0.001) (0.001) (0.001)

Day of the week: Sunday −0.316 *** −0.320 *** −0.295 *** −0.295 ***
(0.001) (0.001) (0.001) (0.001)

Day of the week: Monday −0.060 *** −0.075 *** −0.060 *** −0.060 ***
(0.001) (0.001) (0.001) (0.001)
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Table A1. Cont.

Trains per Day

Variable Negative Binomial
(1)

Poisson
(2)

Hurdle
(3)

Zero-Inflated
(4)

Day of the week: Tuesday −0.0001 −0.0005 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001)

Day of the week: Wednesday 0.007 *** 0.008 *** 0.006 *** 0.006 ***
(0.001) (0.001) (0.001) (0.001)

Day of the week: Thursday 0.001 0.003 *** 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Month: February 0.022 *** 0.027 *** 0.021 *** 0.021 ***
(0.001) (0.001) (0.001) (0.001)

Month: March −0.007 *** −0.003 *** −0.006 *** −0.006 ***
(0.001) (0.001) (0.001) (0.001)

Month: April −0.082 *** −0.079 *** −0.076 *** −0.076 ***
(0.001) (0.001) (0.001) (0.001)

Month: May −0.041 *** −0.041 *** −0.037 *** −0.037 ***
(0.001) (0.001) (0.001) (0.001)

Month: June −0.007 *** −0.005 *** −0.003 ** −0.003 **
(0.001) (0.001) (0.001) (0.001)

Month: July −0.005 *** −0.003 * 0.004 ** 0.004 **
(0.001) (0.001) (0.001) (0.001)

Month: August −0.019 *** −0.017 *** −0.008 *** −0.008 ***
(0.001) (0.001) (0.001) (0.001)

Month: September 0.010 *** 0.016 *** 0.017 *** 0.017 ***
(0.001) (0.001) (0.001) (0.001)

Month: October 0.002 0.008 *** 0.010 *** 0.010 ***
(0.001) (0.001) (0.001) (0.001)

Month: November 0.010 *** 0.015 *** 0.013 *** 0.013 ***
(0.001) (0.001) (0.001) (0.001)

Month: December −0.026 *** −0.028 *** −0.023 *** −0.023 ***
(0.001) (0.001) (0.001) (0.001)

Year: 2019 0.001 0.001 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001)

Year: 2020 −0.023 *** −0.022 *** −0.025 *** −0.026 ***
(0.001) (0.001) (0.001) (0.001)

Constant 5.043 *** 5.042 *** 5.048 *** 5.048 ***
(0.001) (0.001) (0.001) (0.001)

Observations 10,040,607 10,040,607 10,040,607 10,040,607
Log-likelihood −52,983,781 −231,628,464 −52,332,085 −52,332,078
Dispersion parameter (θ) 1.837 *** (0.001)
Akaike information criterion (AIC) 105,967,614 463,256,979 104,664,276 104,664,261

Notes: * p < 0.05; ** p < 0.01; *** p < 0.001; standard error in parentheses.
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17. Janić, M. Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: The case of HSR

(high speed rail). Transportation 2018, 45, 1101–1137. [CrossRef] [PubMed]
18. Martello, M.V.; Whittle, A.J.; Keenan, J.M.; Salvucci, F.P. Evaluation of climate change resilience for Boston’s rail rapid transit

network. Transp. Res. Part D Transp. Environ. 2021, 97, 102908. [CrossRef]
19. Xu, P.; Corman, F.; Peng, Q. Analyzing Railway Disruptions and Their Impact on Delayed Traffic in Chinese High-Speed Railway.

IFAC Pap. 2016, 49, 84–89. [CrossRef]
20. Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2003; ISBN 9780130661890 9780131108493.
21. Hausman, J.; Hall, B.H.; Griliches, Z. Econometric Models for Count Data with an Application to the Patents-R&D Relationship.

Econometrica 1984, 52, 909–938.
22. Johnson, N.L.; Kemp, A.W.; Kotz, S. Univariate Discrete Distributions, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 9780471272465.
23. Mullahy, J. Specification and testing of some modified count data models. J. Econom. 1986, 33, 341–365. [CrossRef]
24. Lambert, D. Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics 1992, 34, 1. [CrossRef]
25. Fisher, W.H.; Hartwell, S.W.; Deng, X. Managing Inflation: On the Use and Potential Misuse of Zero-Inflated Count Regression

Models. Crime Delinq. 2017, 63, 77–87. [CrossRef]
26. Feng, C.X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J. Stat. Distrib. App. 2021,

8, 8. [CrossRef]
27. Rachoy, C.; Scheikl, M. Anthropogenic caused mass movements and their impact on railway lines in Austria. In Disaster

Mitigation of Debris Flows, Slope Failures and Landslides; Marui, H., Mikoš, M., Eds.; Universal Academy Press: Tokyo, Japan, 2006;
pp. 639–643.

28. Fröhlich, B.; Jehle, R.; Krauter, E. Systematische Bestandsaufnahme des Gefährdungspotentials an Bahnstrecken durch Steinschlag,
Felssturz und Hangrutsch im Mittelrhein-, Mosel- und Lahngebiet. In Proceedings of the Berichte von der 14. Tagung für
Ingenieurgeologie, Kiel, Germany, 26–29 March 2003; pp. 281–296.

29. Zeit Bahn: Europas Meistbefahrene Güterzugstrecke Noch länger Gesperrt. Available online: https://www.zeit.de/news/2021-0
3/26/europas-meistbefahrene-gueterzugstrecke-noch-laenger-gesperrt (accessed on 29 October 2021).

30. Zeit Unwetter: Deutsche Bahn Beginnt Schrittweise Wieder Mit Fernverkehr. Available online: https://www.zeit.de/gesellschaft/
zeitgeschehen/2020-02/sturm-orkantief-sabine-verletzte-schaeden-deutsche-bahn (accessed on 29 October 2021).

31. Zhang, Z.X.; Zhang, H.Y.; Zhou, D.W. Using GIS spatial analysis and logistic regression to predict the probabilities of human-
caused grassland fires. J. Arid Environ. 2010, 74, 386–393. [CrossRef]

32. Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Finn, J.T.; Bradley, B.A. Quantifying the human influence on fire ignition across the
western USA. Ecol. Appl. 2016, 26, 2390–2401. [CrossRef]

33. Basu, D. Economics Department Working Paper Series. In Asymptotic Bias of OLS in the Presence of Reverse Causality; University of
Massachusetts: Amherst, MA, USA, 2015.

34. Cats, O.; Jenelius, E. Planning for the unexpected: The value of reserve capacity for public transport network robustness.
Transp. Res. Part A Policy Pract. 2015, 81, 47–61. [CrossRef]

35. Indermühle, M.; Raetz, P.; Volz, R. LOTHAR Ursächlich Zusammenhänge und Risikoentwicklung. Synthese des Teilprogramms 6;
Bundesamt für Umwelt, Wald und Landschaft (BUWAL): Bern, Switzerland, 2005.

36. Papathoma-Köhle, M.; Glade, T. The role of vegetation cover change for landslide hazard and risk. In the Role of Ecosystems in
Disaster Risk Reduction; Sudmeier-Rieux, K., Estrella, M., Renaud, G., Eds.; UNU-Press: Tokyo, Japan, 2013; pp. 293–320.

http://doi.org/10.5194/nhess-16-2357-2016
http://doi.org/10.1007/s11069-013-0851-3
http://doi.org/10.1007/s11069-013-0895-4
http://doi.org/10.1061/(ASCE)NH.1527-6996.0000200
http://doi.org/10.1007/s11116-018-9875-6
http://www.ncbi.nlm.nih.gov/pubmed/30956368
http://doi.org/10.1016/j.trd.2021.102908
http://doi.org/10.1016/j.ifacol.2016.07.015
http://doi.org/10.1016/0304-4076(86)90002-3
http://doi.org/10.2307/1269547
http://doi.org/10.1177/0011128716679796
http://doi.org/10.1186/s40488-021-00121-4
https://www.zeit.de/news/2021-03/26/europas-meistbefahrene-gueterzugstrecke-noch-laenger-gesperrt
https://www.zeit.de/news/2021-03/26/europas-meistbefahrene-gueterzugstrecke-noch-laenger-gesperrt
https://www.zeit.de/gesellschaft/zeitgeschehen/2020-02/sturm-orkantief-sabine-verletzte-schaeden-deutsche-bahn
https://www.zeit.de/gesellschaft/zeitgeschehen/2020-02/sturm-orkantief-sabine-verletzte-schaeden-deutsche-bahn
http://doi.org/10.1016/j.jaridenv.2009.09.024
http://doi.org/10.1002/eap.1395
http://doi.org/10.1016/j.tra.2015.02.013

	Introduction 
	Materials and Methods 
	Train Traffic Data 
	Event Data 
	Matching Traffic and Event Data 
	Empirical Methods 
	Negative Binomial Regression Model 
	Estimating the Effect Sizes of the Natural Hazard Events on Train Traffic 


	Results 
	Descriptive Statistics 
	Results from the Regression Analysis 

	Discussion 
	Conclusions 
	
	References

