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Abstract: Decision support and optimization tools to be used in construction often require an accurate
estimation of the cost variables to maximize their benefit. Heavy machinery is traditionally one
of the greatest costs to consider mainly due to fuel consumption. These typically diesel-powered
machines have a great variability of fuel consumption depending on the scenario of utilization. This
paper describes the creation of a framework aiming to estimate the fuel consumption of construction
trucks depending on the carried load, the slope, the distance, and the pavement type. Having a
more accurate estimation will increase the benefit of these optimization tools. The fuel consumption
estimation model was developed using Machine Learning (ML) algorithms supported by data, which
were gathered through several sensors, in a specially designed datalogger with wireless communi-
cation and opportunistic synchronization, in a real context experiment. The results demonstrated
the viability of the method, providing important insight into the advantages associated with the
combination of sensorization and the machine learning models in a real-world construction setting.
Ultimately, this study comprises a significant step towards the achievement of IoT implementation
from a Construction 4.0 viewpoint, especially when considering its potential for real-time and digital
twins applications.

Keywords: cyberphysical systems; IoT; machine learning; construction machinery remote monitoring;
fuel consumption

1. Introduction

Fuel is one of the largest costs in construction and, in particular, in transportation
infrastructure projects. Typically, decisions regarding heavy machinery allocation, schedul-
ing, or performance evaluation are carried out using fuel consumption estimates based on
experienced professionals or in generic specification documents and guides, such as the
CATERPILLAR performance handbook [1]. These are usually a function of the machine
type and the number of hours of work. On average, these estimations are good for most
applications (budgeting, fuel stocking, etc.). However, when the objective is to improve
processes in their efficiency (cost, time, resources, etc.), it becomes important to estimate
fuel consumption in a more precise way and as a function of the input parameters such
as the distance, slope, the vehicle’s load, or others. As one can intuitively guess, fuel
estimation may also be linked to the route characteristics, vehicle type, or driving behavior.
One of the scientific challenges, approached here, relies on determining what characteristics
influence the most fuel consumption in these vehicles. One key constraint for the success
of this work is related to the fact that it is very difficult to acquire precise fuel consumption
data from vehicles. Accurate fuel consumption is required to be used as the ground truth
for Machine Learning (ML) algorithms, and therefore, it is critical to obtain these data
reliably. In more modern trucks, for instance, the information is presented in the vehicle’s
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dashboard and fuel consumption is presented as instant consumption and/or average
consumption (liters per kilometer or miles per gallon). On the one hand, this information
is typically not reliable and the values presented are typically underestimated. On the
other hand, extracting that visual information from the vehicles is a complex task, since the
character’s font and placement are specific to the manufacturer’s system, rendering Optical
Character Recognition (OCR) technology unfeasible to implement for such applications.
Considering this, the considered alternatives are based on reading the vehicle’s communi-
cation bus, in order to extract data concerning the flow of fuel for injection, the reservoir’s
level, or the fuel consumption sensor that some vehicles have. However, the access to the
Controller Area Network (CAN) bus and to the On-Board Diagnostic (OBD) plug has been
considered invasive and difficult to achieve in some vehicles. Therefore, it was decided
that the approach should be noninvasive, thus compatible with every vehicle, and simple
enough to rely on the drivers or operators in order to obtain reliable measurements and
support. Yet, being able to indirectly estimate fuel consumption in such a way means that
the necessary data must be acquired (sensors) and leveraged by resorting to prediction
models (using machine learning).

The potential of machine learning applications in transportation infrastructures and
geotechnics has been the target of considerable attention in the past decade [2]. Indeed,
accompanying the ever-increasing development of remote monitoring and data warehousing
technologies, successful machine learning applications in this field span several different
areas, from earthworks productivity [3,4], slope safety [5], and jet grouting compressive
strength [6], to pavement management and monitoring [7,8]. These can often address spe-
cific processes, such as the estimation of compaction work rate [9] or of excavator cycle
time [10,11], as well as comprise an essential part of larger, more complex systems, such as
fleet management and allocation systems [12] or pavement design and management sys-
tems [7,8].

The latter field has also seen several applications in the context of pavement condition
assessment and maintenance [13–15]. A noteworthy aspect of these systems is related to
the fact that they leverage concepts such as sensorization and digital twins to gather data,
which, in turn, provides the basis for the training and testing databases. In other words,
predictive models in these pavement management systems are trained on data stemming
from different sensors placed in the field, either in maintenance vehicles [13,14] or in the
pavement itself [7,8,15].

This notwithstanding, there has not been specific focus on the estimation of the costs
associated with construction processes. In particular, the estimation of fuel consumption via
a predictive machine learning model is a topic that, despite having had some developments
in other fields such as logistics and long-haul truck routes [16–18], has not been given
equivalent effort in the construction field. Thus, the availability of real-world sensor-based
information allows the decision-making teams to properly manage their resources (both
economic resources and physical ones, such as construction equipment) not only during the
design and planning phases, but also during the construction phase itself, in which resource
allocation can be adjusted as a function of restrictions and unpredictable occurrences (e.g.,
equipment malfunction, low productivity).

Taking into account the availability of data and the increasing affordability of remote
sensors, this work aims to fill this gap in the literature, presenting the preliminary results
of an ongoing field project carried out in association with a Portuguese road construction
company. The project aims to study the viability of implementing a data-gathering remote-
monitoring system to support data-driven models, which in turn attempt to estimate the
fuel consumption of transportation equipment in a construction site as a function of aspects
such as the transported cargo, the specifications of the equipment, and the characteristics
of the chosen route. Naturally, the aforementioned study analyzes the requirements of the
sensorization parameters for transportation equipment in construction environments (e.g.,
trucks, dumpers), since their activity is considerably different in comparison to other fields.
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As such, this work is organized as follows: Section 2 depicts the methodology and
prediction models that were adopted in this approach. Section 3 describes the experimen-
tal project that was developed in order to validate the methodology and the prediction
models, but also to acquire data that will support the latter. Finally, the results and the
associated discussion are presented in Section 4, while some conclusions and further work
recommendations are drawn in Section 5.

2. Methodology and Prediction Models

The scope of this project is to implement an IoT-based sensing framework capable
of retrieving field data and transmitting them in (near) real time, which, in turn, can
be leveraged by machine learning algorithms to create a prediction model capable of
estimating fuel consumption. The model is trained by resorting to both sensor data and a
ground truth, which, in turn, can be used by applications to provide fuel estimations, as
portrayed in Figure 1.

Figure 1. Fuel estimation workflow diagram.

Ultimately, one of the possible applications of this project is to provide a web applica-
tion and an API that allow a user to input a given route, vehicle data, and carried load and
retrieve fuel consumption estimations in order to assess the project cost based on real case
scenario data. This platform could allow users to omit some parameters when not known,
resulting in a prediction with a wider confidence interval, but still proving itself useful to
predict the project’s cost.

2.1. Data Acquisition

As previously mentioned, route characteristics, load, and vehicle classification seem,
at first sight, relevant parameters to estimate fuel consumption. One can perceive that if
the truck carries a larger load, consumption will increase substantially on steeper roads.
Similarly, if the type of vehicle used is not adequate for the carried load, the fuel con-
sumption will not be optimal. Thus, the system must use sensor data, together with the
vehicle characteristics, to provide accurate fuel estimations. To be capable of providing
fuel consumption estimations before the project is in course, the input system parameters
must be available during the project’s planning. However, in this work, to validate the
hypothesis, we tracked real-time vehicle data to train the machine learning algorithm,
which we discuss in detail below to define the requirements to assist sensor selection
among several possibilities:

• Road grade: As one may imagine, a heavy vehicle, given its weight, can rapidly
develop speed on a descending road without needing the engine and oppositely
requiring a considerable amount of mechanical energy to climb ascending roads.
Thus, road grade, which can be monitored by tracking the inclination of the vehicle,
together with vehicle moving speed or acceleration, is a promising indicator of the
engine need. Thus, since vehicle inclination empirically oscillates between 5 Hz and
15 Hz, it is desired to configure a low-pass filter to attenuate road irregularities and
roughness at that frequency range either by postprocessing data or configuring built-in
sensor filters;

• Vehicle acceleration: As previously mentioned, a vehicle’s moving acceleration, to-
gether with the road grade and cargo weight, can be a promising indicator of the
engine’s need (and consequently fuel consumption). Movement acceleration can be
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obtained by sampling acceleration data with a low pass filter to exclude vibration,
road roughness and irregularities. Additionally, as an experimental project, having
higher-frequency data also allows perceiving the engine’s rotational speed by carrying
through a frequency analysis of the acceleration signal within 13–83 Hz, which corre-
sponds to 800 to 5000 rotations per minute. According to Nyquist’s theorem, the signal
must be sampled at, at least, twice the frequency of the original signal, thus at 166 Hz.
Moreover, to classify road quality and roughness, which have a substantial impact
on fuel consumption, a sampling frequency of around 250 Hz [19,20] is required to
measure the vehicle’s frequency vibration. This way, three datasets are defined (vehicle
moving speed, road quality/roughness, and motor speed), which can be retrieved by
applying three different filters;

• Vehicle global position: Gathering position data allows calculating the total distance
traveled, as well as the average speed if the data are timestamped. Distance, together
with time, is what the simpler tools often use to estimate fuel consumption, being able
to provide a rough estimate of consumption on light vehicles, so one could expect
these data to increase the accuracy of the prediction model. Given that the maximum
speed allowed on highways in Portugal is 120 km/h and considering the desired
5 m positioning updates, the sampling frequency of this parameter is required to
be at least 6.67 Hz. Moreover, with awareness of the road being used together with
real-time road quality assessment, one could create a map of roads annotated with the
corresponding pavement surface regularity to provide the prediction algorithm with
a more accurate and case-specific fuel estimation;

• Cargo weight: As any moving body, the vehicle’s weight influences its inertia and
momentum, which in turn dictate the amount of mechanical energy the engine is
forced to use to increase or maintain the vehicle’s speed, thus having a strong influ-
ence on fuel consumption. Therefore, monitoring the load weight is very important.
However, as the load does not vary continuously, it is only required to weigh the
load when the truck is loaded or unloaded, allowing these data to be input by a user
when a sensor is not present. Measuring the cargo weight, apart from providing data
to the fuel prediction model, is also an opportunity to digitize and automate cargo
weighing, which is very useful for operations (e.g., material stocking and productivity
evaluation), which, at the time, is still mostly a manual process.

2.2. Data Storage and Communication

Since the accuracy of prediction models is strongly linked to the size of the dataset
used to train them, it is key that within the training data a vast set of distinct scenarios is
covered and these span across, at least, several months. Considering the possibility of bugs
or unforeseen situations in the sensor acquisition system, which should be fixed as quickly
as possible to avoid loosing data, sensor data must be uploaded to a server that one could
access in the lab and easily evaluate the data’s integrity. To cope with extended periods
without Internet connectivity, typical of the remote nature of infrastructure works, a large
local data buffer is required to be in place so the data can be opportunistically uploaded to
the server. Furthermore, it is important to have raw sensor data available in the lab as soon
as they are available so that the training process of the prediction model can be started and
continuously evolve. To this end, raw sensor data were locally stored on the acquisition
device’s memory, divided into a dataset per run, which consists of each one-way trip the
truck makes in which the load and the consumed fuel are known. Then, when an Internet
connection becomes available, the data are uploaded to the cloud, the implementation
details of which are further discussed in Section 3.

As concerns cloud connectivity, since the data were only required to be downloaded
once per day and the data size could vary based on the remote reconfigurations of the
target device resulting from the implementation iterations, a WiFi connection available
at the plant was used. This approach allowed dramatically reducing the implementation
time to rapidly test our proposal. However in the near future, in order to increase the
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scalability of the training phase of the machine learning model, which requires a vast and
diversified dataset, a sensor-data-optimized communication protocol, for example NB-IoT
or LoRaWAN, would be more suitable for this task by reducing the hardware costs and
providing real-time features that can expand this system’s possibilities.

2.3. Machine Learning

Random Forests (RFs) [21], Artificial Neural Networks (ANNs) [22], and Support
Vector Machines (SVMs) [23] are examples of well-known and widely used machine
learning algorithms, capable of scrutinizing extensive databases in view of extracting
patterns and tendencies in the data, resulting in a deeper understanding of the latter and
potentially the generation of new knowledge for the user. Guided by domain knowledge
and under a semi-automated process, ML is an iterative and interactive process, in which
the extracted knowledge can be used to understand the connections and influence of
the independent variables on the dependent variable, ultimately being able to predict
the behavior of the latter. The process is often framed in methodologies such as the
Cross-Industry Standard Process for Data Mining (CRISP-DM) [24,25], a widely known,
tool-neutral methodology that facilitates understanding, implementation, and analysis
(Figure 2).

Figure 2. CRISP-DM methodology [24].

The different algorithms can be used for different tasks, such as data classification
or regression. Whereas the former focuses on analyzing the behavior of the data in order
to classify the target variable into classes or discrete values, the latter aims to predict
continuous values. While the predictive evaluation of classification models usually revolves
around the quantification of its accuracy, regression model assessment focuses on the
calculation of errors and its capability to fit to the data. In this work, since the implemented
techniques focus on regression models, their evaluation was primarily based on three main
metrics, namely the Mean Absolute Error (MAE), depicting the error associated with the
degree of learning of a given model, the square root of the average of the squared errors,
RMSE, which penalizes higher error values, and the correlation coefficient, R2, comprising
the correlation between the observed and the predicted values [26]:

MAE =
∑N

i=1(yi − ŷi)

N
(1)

RMSE =

√
∑N

i=1(yi − ŷi)2

N
(2)

R2 =

 ∑N
i=1((yi − ŷi)× (ŷi − ¯̂yi))√

∑N
i=1(yi − ȳ)2 × ∑N

i=1(ŷ − ¯̂y)2

2

(3)

where y is the computed network output vector, ŷ is the target output vector, and N is the
number of samples in the database.

Additionally, the Regression Error Characteristic (REC) curve [27] was also adopted
as a measure of the cumulative distribution function of the error of different regression
algorithms, allowing for a comparative analysis among the latter.
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3. Experimental Project

The purpose of the developed IoT framework is to gather data from sensors and store
them for later use as the foundation of the aforementioned ML algorithms. To this end,
the first step was to define the sensor acquisition system, as well as the data storage and
communications system.

The system was designed with transportation equipment in view. The latter consisted
of a truck that transported material from a quarry and an asphalt plant to several different
work fronts. This diversity in the truck’s routes, as well as in the carried loads adds
significant variability to the available dataset, which is a relevant contribution towards
achieving a better predictive accuracy by the ML algorithms.

The acquisition system was installed in the driver’s cabin (see Figure 3a), facilitating
the interface by the operator through a simple start/stop button and a status LED. When
activated, the system gathers sensor data from IMU and GNSS sensors and records the
information locally. When the driver finishes a run, the button is pressed to interrupt the
gathering process, and the associated data are saved and ready to be sent to the server.
Since, most of the time, the truck does not have Internet access, data were stored and
later sent to a server when it was in range of the WiFi network present at the quarry near
the weight scale. Figure 3b depicts the electronics inside the prototype’s housing, which
include an Nvidia Jetson Nano 2GB and a breadboard, which has the GNSS and IMU
sensors mounted, as well as some discrete electronics to interface with the user button
and the RGB LED. All the electronics were powered from the vehicle’s lighter port using a
general purpose 12 V to 5 V USB adapter.

(a) Final installation (b) Electronics inside

Figure 3. Sensor acquisition prototype.

3.1. Cyber-Physical Systems

As presented in the previous section, the sampling rate of each sensor was configured
to match the information desired while balancing it with the data size. For global posi-
tioning, the ublox NEO-M9N sensor was selected and for acceleration and inclination, the
STMicroelectronics ASM330LHH.

According to the considerations in Section 2.1, with the exception of the accelera-
tion sensor, the sensors were configured to the nearest available settings as presented in
Tables 1 and 2. The acceleration sensor was configured to 1 Hz due to reliability issues in
the recording of IMU sensor data, which was only used for data validation purposes and
not used for the prediction model. Instead, GNSS data were used to obtain the traveled
distance by integrating speed over time, while inclination was obtained from the derivative
of the altitude over time. Resorting to the GNSS resulted in decreased accuracy and, due to
its data sampling frequency, prevented measuring road roughness.
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Table 1. IMU sensor configuration.

Parameter Value

Accelerometer data rate 1 Hz
Accelerometer, full-scale 2 g

Gyroscope data rate 12.5 Hz
Gyroscope, full-scale 250 dps

Table 2. GNSS sensor configuration.

Parameter Value

Data rate 10 Hz
GNSS constellations GPS, Galileo, GLONASS, and Beidou

The Nvidia Jetson Nano 2GB Development Kit was used as the application processor.
This embedded computer includes an Nvidia GPU with 128 CUDA cores, which is a
good platform to run small-to-medium-complexity computational tasks. The drive behind
this choice was two-fold: in the short-run, the processor is able to provide an effective
sensor interface; while in the long-run, it may facilitate the processing of data through an
edge computing framework (local computation). We used a WiFi USB dongle for Internet
connectivity during the experimental project, and we noticed that Nvidia sells this PC
under two different part numbers and one of them does not include the WiFi dongle.

Upon selecting the required hardware, a service daemon, GPSd, which is capable of
parsing National Marine Electronics Association (NMEA) sentences and controls a multitude
of Global Navigation Satellite System (GNSS) receivers, was configured to gather data from
the GNSS receiver and expose a TCP API. Thus, it became possible to quickly implement the
acquisition of global positioning and clock information. Acceleration and slope data were
retrieved using the I2C communication protocol with the configurations listed in Table 1.

Sensor acquisition was implemented using Python, where the use of threads allowed
code and execution modularity. By assigning a thread to each task, upon sensor’s failure
to emit a response or a crash of a task, the other tasks can continue running with small
degradation, resulting in a fault-tolerant system. In order to run the code automatically
upon the system’s boot, systemd services were designed, which allowed starting each
process in the desired order.

As a parallel experiment, the installation of a distance sensor that could infer the
load weight of the truck was considered. Coupling this sensor to the truck’s suspension
system or equivalent would allow for the measurement of the suspension’s contraction.
With proper calibration, it would then be possible to infer the real cargo’s weight in real
time, without the need to weigh the truck itself. However, this method turned out to be
unsuccessful since the reliable installation of the sensor proved infeasible on the truck
used in this experiment. Yet, from the observations gathered in the field, a wire-wound
encoder-based sensor could be an alternative solution, as it was observed that some truck
manufacturers have been adopting it in brake systems with a similar purpose.

3.2. Data Storage and Communications

Other than the low-pass filters that the sensors already include (which were configured
according to Tables 1 and 2), there was no data processing performed by the acquisition
device installed on the truck. This was an intentional choice to avoid further compressing
of data and to facilitate the thorough experimentation of the data, since the amount of
generated data did not impose high-bandwidth or high-data-volume requirements on the
server communication. Data were stored inn Comma-Separated Value (CSV) files and sent
to an on-premises server when a preconfigured WiFi network was in range. The process
is automatic and uses the Secure Copy Protocol (SCP), a protocol that uses Secure Shell
(SSH) as a network protocol to transfer files in which the authentication was configured to
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use symmetric key authentication. This authentication method is a strong cybersecurity
measure against exterior attacks.

Since the truck’s load is already weighed before each trip and fuel consumption could
only be obtained by accessing the vehicle’s CAN bus, which usually is restricted or only
available on modern vehicles, both of these parameters were recorded manually by the
driver during the experimental project in which phase a ground truth was needed to train
the machine learning algorithms. This information was recorded in a form sheet (see
Figure 4) in order to avoid issues with the mobile devices’ Internet connectivity and the
potential data losses that a digital recording method would incur, if not addressed correctly.
Regarding fuel consumption, the precision and reliability of this measurement have a
strong impact on the prediction model’s performance. Thus, third party systems were
avoided, so as to prevent measurement errors or malfunctions. For this reason, the driver
accepted the responsibility to start every trip with a full fuel reservoir, filling it back up at
the end of each trip, while registering the amount of fuel used in each trip.

1 
 

 

Figure 4. One of the form sheets.

After having implemented the software for the prototype, the system was thoroughly
tested in the lab, stressing that the prototype has several vectors. However, to further
prevent any possible issues, an Over-The-Air (OTA) mechanism was developed to allow
remote software reprogramming of the acquisition device. This mechanism relies on
the least possible amount of subsystems and is subsequently able to work even when
the majority of subsystems are failing. Since the code is hosted on a GitHub repository,
the system periodically pulls the repository and, upon changes to a specific git branch,
downloads the latest version, updates itself (including the updater script), and restarts the
application. This process is completely seamless for the operator since this is only allowed
to occur when the device is idle. The unavailability of the system during the update, which
is usually short (within a second), does not the compromise usability because, during load
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weighing, the vehicle has a strong WiFi signal for which it needs to remain still for around
half a minute.

3.3. Experimental Setup

Following the stabilization of the hardware of the prototype, the latter was mounted
in a specific box produced in a 3D printer. Because it was installed in the vehicle’s cabin, the
housing was designed to protect the embedded computer, as well as the sensors included
from damage from other objects. This placement (see the previous Figure 3a) allowed the
operator to interact with the prototype by pressing a button to signal the beginning and
end of each run and check the system status via an RGB LED. With the prototype in the
cabin, special attention was given to the GNSS receiver’s antenna, which was routed to
the exterior of the vehicle and attached magnetically to the outer side of the vehicle (see
Figure 5) to improve reception.

(a) Overview (b) GNSS antenna installation

Figure 5. Volvo truck used in the field experiments.

After installing the prototype on the vehicle, a dry run was performed to ensure the
instructions gave to the driver were clear and to establish a brief ground truth for early
data validation. At the same time, the complete data path was tested by carrying out a
full trip and accessing the server to check the presence of a CSV file. At this point, the
acceleration sensor was only capable of being read at a maximum frequency of 1 Hz. This
issue was tracked back to a bottleneck related to the I2C communication protocol, as well
as a bug in the implementation of the data synchronization mechanism. The latter affected
the GNSS receiver and gyroscope data as well, although with smaller effective data loss, as
these were able to maintain the average sample rates of 10Hz for the GNSS sensor data and
12.5 Hz for the gyroscope. Nevertheless, these sample rate values were deemed acceptable
for the goals of the experiment at issue at this stage.

4. Results and Discussion
4.1. Raw Data and Data Preparation

As previously mentioned, data are the foundation of ML models. Yet, the fact that
these predictive algorithms depend so strongly on the availability of data simultaneously
represents their greatest potential and their greatest limitation. Indeed, the predictive
capability of an ML model depends both on the amount and the quality of the available
data. In other words, to achieve a perfect prediction of the behavior of a target variable,
the model must not only be fed enough data, but these data must also encompass all the
independent variables that may have some level of influence on said behavior. Moreover,
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the variability of the data must be consistent enough to allow the ML algorithms to gather
knowledge and insight on how much each independent variable affects the target variable,
as well as how the independent variables connect to and affect each other.

In this context, one can easily find several preprocessed datasets associated with
different fields, which can result in near-perfect models (i.e., with prediction accuracy
close to 100% in the case of classification models or very low error margins in the case
of regression models), depending on the adopted ML technique, as is the case of the
well-known VGG-16 [28] or the ResNet50 [29] databases in the image classification field.
However, this level of accuracy/error is not always possible when dealing with real-world
data, since the latter tend to be noisy and afflicted by higher levels of unreliability or
missing data. While there are a number of actions that can be taken to deal with these
issues during the data cleaning and processing phase (which will be discussed in the
ensuing subsection), typical real-world-based models can only very rarely achieve perfect
fits to the data, and subsequently perfect predictive capabilities.

Bearing these considerations in mind, the data used in this work stemmed from a real-
world setting consisting of a road construction site in Portugal. The raw data concerned
the activities of the sensorized construction material transportation truck, featuring around
25 trips through different routes and pavement surfaces (i.e., construction site, national
road, and highway), while transporting different materials, among which the most common
was a bituminous mix from an asphalt plant to a road construction site. Besides cargo and
pavement surfaces, the trips also present some variation regarding total distance, ranging
from 20–70 km. The main measured parameters included time, location/GPS data, altitude,
speed, and the three-axis inclination of the truck, as exemplified in Table 3.

Table 3. Example of values extracted from the raw database.

Inclination X
(Degrees)

Inclination Y
(Degrees)

Inclination Z
(Degrees)

Latitude
(Degrees)

Longitude
(Degrees)

Altitude
(m)

Speed
(m/s)

Clock
(yyyy-MM-ddTHH:mm:ssZ in UTC)

0.778198 −0.29755 −1.31226 39.4447 −7.47812 447 0.043 2021-07-22T12:42:36.100Z
0.778198 −0.29755 −1.31226 39.4447 −7.47812 447 0.038 2021-07-22T12:42:36.400Z
0.839233 −0.30518 −0.03052 39.4447 −7.47812 447 0.038 2021-07-22T12:42:36.700Z
0.839233 −0.30518 −0.03052 39.4447 −7.47812 447 0.013 2021-07-22T12:42:36.800Z
0.839233 −0.30518 −0.03052 39.4447 −7.47812 447 0.014 2021-07-22T12:42:37.100Z
0.839233 −0.30518 −0.03052 39.4447 −7.47812 447 0.044 2021-07-22T12:42:37.500Z
0.923157 −0.28992 −1.95313 39.4447 −7.47812 447 0.004 2021-07-22T12:42:37.900Z
0.923157 −0.28992 −1.95313 39.4447 −7.47812 447 0.036 2021-07-22T12:42:38.200Z

As one can easily infer, the refresh rate associated with the IoT framework collects
data several times per second, ultimately generating very large databases in the form of
CSV files, each one corresponding to one trip of the truck. Since, as mentioned, these trips
can be as long as nearly 70 km, the associated data files also increase proportionally to
around 12,500 entries in those cases. Figure 6 depicts one of the most typical altimetric
profiles through which the truck traveled. These were extrapolated by integrating the
speed data over time and validated by resorting to the inclinometer data. From this point
on, a 10 m sliding window methodology was adopted to adjust the fit lines throughout the
altimetric profile, allowing for the determination of the slope of each 10 m section. Through
this methodology, each trip was translated into the accumulated distance that the truck
spent in each type of slope, according to the considerations described in Table 4:
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Figure 6. Example of the altimetric profile of a trip as measured by the sensorized truck.

Table 4. Considered slope ranges and description.

Slope Description Range Feature Designation

Flat surface −1% < Slope ≤ +1% AD_0.01n_0.01
Light upwards slope +1% < Slope ≤ +5% AD_0.01_0.05

Moderate upwards slope +5% < Slope ≤ +10% AD_0.05_0.1
Steep upwards slope Slope ≥ +10% AD_0.1

Light downwards slope −5% < Slope ≤ −1% AD_0.01_0.05n
Moderate and steep downwards slope Slope ≤ −5% AD_0.05n

Moderate and steep downwards slopes were grouped since we obtained more accurate
prediction results while doing this, which seems reasonable given the fact that trucks can
rapidly develop speed without any throttle, resulting in no fuel consumption on any of
these road slopes.

Ultimately, this conversion consisted of determining the percentage of the total route
distance that the truck spent on each type of inclination throughout each trip, resulting
in the bulk of the training and testing database. The latter were complemented with the
data on total trip distance (TDistance, meters), average speed (AvSp, meters per second),
cargo weight (Cargo, tons), and fuel consumption (FConsumption, liters, target variable).
The latter two features were manually inserted into the database, as they originated from
the manual records taken by the truck driver in between trips and during each refueling
action. Table 5 depicts the processed database that supported the final machine learning
algorithms.

Table 5. Example of the values extracted from the training and testing database.

AD_0.01n_0.01
(% TDistance)

AD_0.01_0.05
(% TDistance)

AD_0.05_0.1
(% TDistance)

AD_0.1
(% TDistance)

AD_0.01_0.05n
(% TDistance)

AD_0.05n
(% TDistance)

TDistance
(m)

AvSp
(m/s)

Cargo
(ton)

FConsumption
(L)

0.32 0.25 0.01 0 0.36 0.06 66,341.91 18.48 29.48 30
0.4 0.33 0.05 0 0.21 0.02 65,704.09 20.52 0 23
0.2 0.33 0.13 0.01 0.23 0.11 52,992.28 12.39 0 20.5
0.2 0.25 0.08 0.01 0.28 0.17 35,887.31 9.15 33 25.5
0.19 0.25 0.1 0.01 0.28 0.17 36,563.17 8.52 32.68 25
0.37 0.23 0.01 0 0.35 0.05 62,786.77 17.4 33.76 26.5
0.43 0.3 0.05 0 0.21 0.01 62,282.68 20.79 0 23.5
0.38 0.22 0.01 0 0.33 0.05 62,786.77 18.91 32.46 26
0.41 0.31 0.05 0 0.22 0.01 62,606.6 19.16 0 23

4.2. Estimation Performance

The results were obtained by resorting to the package rminer [30] for R [31]. Using this
tool, several models were trained and tested on the processed database, namely Random
Forests (RFs), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs).
In addition, a simple statistical model in the form of a Multiple Regression (MR) was also
provided for comparison purposes. Since the generalization capacity is a key concern
for future implementation, as well as for the assessment of the models, a 10-run cross-
validation approach was adopted. A k-fold value of three was used to account for the
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relatively small size of the data. This means that the data were evaluated across the entire
training set by dividing the latter into three folds. The model was then trained three times
while reserving a different fold as a testing dataset each time, thus using the available data
to their full potential [26]. Figure 7 shows a comparison between the REC curves of the
three models. The analysis of this figure suggests that the random forests seemed to slightly
outperform the other two models, which is consistent with the findings obtained in the
literature concerning the prediction of heavy vehicle fuel consumption [17].

Figure 7. REC curve comparison of different models.

In fact, the RF model exhibited a slightly lower error, with an MAE of 1.723915
(corresponding to a percentual error of around 7.6%), an RMSE of 2.127431, and a slightly
better R2 fit to the data, with a value of 61.4%. Although this value is expected to improve
as more data become available, it was still deemed a reasonable value when taking into
account that the model was based entirely on real-world data. This hypothesis is supported
by the value of the Pearson’s correlation coefficient, R, which was at 78.4% for the RF model,
denoting a very good interdependence of the independent variables and the target variable.

Figure 8a shows how the predicted values fit the observed values in the testing dataset
for all 10 runs, each corresponding to a k-fold training and testing methodology with a k
value of three. As one can easily infer, the closer the points are to the diagonal line, the
better the fit and, subsequently, the better the value of R2. Analyzing the figure reveals that
the model seemed to be able to reproduce the behavior of the target variable especially
well in the values in the middle range (i.e., fuel consumption values from 20–27 L), though
the values closer to the lower and upper extremity were slightly overestimated and under-
estimated, respectively. As can be expected, this was due to the fact that there was a much
lower amount of records in the database that fell within these extremity ranges, which is
also expected to improve with the expansion of the database over time.

Another noteworthy aspect for analysis is the relative importance of the variables for
the RF model, depicted in Figure 8b. The figure conveys the Increase in the Mean Squared
Error (%IncMSE) as a result of the corresponding variable being permuted. In other words,
the higher the value of %IncMSE, the more important the corresponding variable for
the predictive capability of the model is. In this context, it is interesting to observe that
the weight of the cargo transported by the truck is considered by the model as its most
important variable, followed by the predominance of light and moderate upwards slopes,
as well as moderate downward slopes. Intuitively, it is easy to infer how these aspects are
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valid, as the higher the weight and the upward slopes, the higher the consumption of the
fuel, while downward slopes imply a nearly null value of fuel consumption. Conversely,
the variable corresponding to steep upwards slopes is considered the least relevant for
the model. This makes sense, as there are very few sections throughout the routes of the
truck that display this kind of inclination, and as such, the model identifies the associated
variable as having very low importance. However, the removal of this variable from the
training dataset still had a negative impact on the predictive capability of the final model,
even if to a low degree, and as such, it was kept in the training dataset at this stage.

(a) Observed vs. predicted values for the RF model (b) Feature relative importance

Figure 8. Prediction model results.

5. Conclusions and Future Work

This work proposed a scenario-based fuel consumption prediction model that can be
used within a tool for project planning and budget analysis. The novelty of the project is
the integration of an IoT framework for data gathering and transmission into the database
that comprises the training and testing data for the predictive models. The results showed
that fuel consumption has a strong correlation with cargo, route inclination, and total
distance, thus proving to be key input parameters to achieve accurate and reliable fuel
consumption predictions. These results are particularly interesting for engineering planners
and designers, since this information is easily accessible to them from existing GIS systems
(e.g., route inclination and total distance) and the construction project plans or BIM models
themselves (e.g., cargo).

Although the output machine learning models obviously lack the necessary amount of
data at this stage to be considered generalizable, and thus to be implemented in practice, the
project’s premise has potential, and the results show promise. Above all, the methodology
is a relevant contribution to the state of knowledge in the sense that it provides an initial
step towards a real-world implementation of a digital twin, as well as of a self-learning
machine learning system in an Internet of Things framework, thus following the current
trends in automation, digitalization, and Industry/Construction 4.0.

One of the limitations of the current model is that the analyst is required to estimate
average speed over the entire route, which can comprise a significant obstacle. However,
this issue can potentially be mitigated by the introduction of the data streaming from the
accelerometers. As a matter of fact, leveraging the vertical axis of the accelerometers to infer a
rough classification of each type of surface through which the truck circulates (e.g., compacted
dirt road, regular road, highway) can provide insight into the behavior of the truck in different
environments (e.g., average speed, average number of full stops, traffic conditions, among
others). Subsequently, this type of information may even be valuable enough to the model for
it to eventually even replace the need for the user to estimate the speed, who instead may only
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have to estimate the percentage of each type of surface in relation to the trip’s total distance,
similar to the road inclination features already present in the model.

In addition to this, other future work directions should naturally include expanding
the study to encompass a higher amount of vehicles, routes, and carried loads, so as to pro-
duce a robust and generalizable prediction model. Then, as previously mentioned, one of
the outputs of the project will be translated into the development of a web API, which will
be made available online to support decision-making or any third-party software tools that
may benefit from an accurate and parametric fuel estimation. Furthermore, the achieved re-
sults motivate the development of a real-time sensing acquisition system capable of dealing
with the current sensor sampling frequency bottlenecks, thus supporting the continuous
and automatic training and testing process of the prediction models, ultimately improving
their accuracy and reliability by increasing the amount of information retrieved from the
sensors. Concurrently, this development should be accompanied by a more robust data-
processing workflow, which should be capable of automatically addressing common issues
found in real-world data, such as missing or partial data. This would be a relevant step
to achieve a truly automatic, self-learning, and self-feeding prediction system, capable of
gathering data from several simultaneous heavy machines working at different work fronts
and sites, processing it as additions to the previous database, and automatically updating
the predictive models to constantly improve their effectiveness, robustness, and efficiency,
as they constantly learn and accumulate experience from ongoing construction sites.
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ML Machine Learning
MR Multiple Regression
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SCP Secure Copy Protocol
SSH Secure Shell
SVM Support Vector Machine
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