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Abstract: For dynamic analysis in seismic design, selection of input ground motions is of huge
importance. In the presented scheme, complex Continuous Wavelet Transform (CWT) is utilized to
simulate stochastic ground motions from historical records of earthquakes with phase disturbance
arbitrarily localized in time-frequency domain. The complex arguments of wavelet coefficients are de-
termined as phase spectrum and an innovative formulation is constructed to improve computational
efficiency of inverse wavelet transform with a pair of random complex arguments introduced and
make more candidate wavelets available in the article. The proposed methodology is evaluated by
numerical simulations on a two-degree-of-freedom system including spectral analysis and dynamic
analysis with Shannon wavelet basis and Gabor wavelet basis. The result shows that the presented
scheme enables time-frequency range of disturbance in time-frequency domain arbitrarily oriented
and complex Shannon wavelet basis is verified as the optimal candidate mother wavelet for the
procedure in case of frequency information maintenance with phase perturbation.

Keywords: structural seismic design; dynamic analysis; input ground motion; wavelet transform;
uncertainty

1. Introduction

In performance-based earthquake engineering, dynamic analysis is often utilized
to evaluate seismic performance of target structures. As a slight fluctuation of input
ground motion in time-history analysis results in huge difference of nonlinear structural
response [1], uncertainty of design input ground motions should be considered, which
raises a significant challenge [2,3].

Conventionally, input ground motions for seismic design are accessible from history
records of previous earthquakes and artificial ground motion simulation technique by
empirical relationships on fault models [4,5]. Numerical and empirical simulations generate
design ground motions based on considered fault parameters, although specific parameters
required for prediction cannot be determined accurately [6]. Meanwhile, due to the
complexity of physical models for earthquake phenomenon, there is not a perfect empirical
relationship to reproduce the exact ground motion.

Indices (intensity measures) based procedures assume that a ground motion which
is large enough in terms of indices is supposed to be ‘tough’ for structures. Peak ground
motion acceleration (PGA) is commonly used as an index to quantify the effectiveness
of ground motions from past seismic records, however, considering the fact that the
number of previous earthquake records by simple amplification cannot meet the request of
diversity for input ground motions in seismic design, and it is hardly possible that the same
earthquake could just happen twice at the particular target site, using ground motion from
historical records as design ground motion is restrained. Response spectrum is another
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index utilized for evaluation of input ground motion [7–10]. In current seismic design
codes, acceleration response spectra-compatible ground motion is required for dynamic
analysis, although it is not entirely suitable for situations for which nonlinear performance
of the structures is dominant because dynamic behavior of nonlinear structures is more
sensitive and complicated than it is described by response spectra in frequency domain.

As intensity measures cannot fully evaluate the complexity of nonlinear structural
performance, another methodology is proposed to fluctuate phase spectrum of an original
ground motion and generate artificial ground motions by Fourier Transform (FT), which
is called stochastic method [11]. Discrete Wavelet Transform (DWT) is also adopted for
time-frequency analysis in similar pattern for the purpose of synthesis of stochastic ground
motions [12,13].

The objective of the present paper is to introduce a novel scheme to have time-
frequency characteristics of an original signal fluctuated with arbitrary orientation of
wavelet phase by using complex continuous wavelet transform and to compare candidates
of mother wavelets for optimization of the scheme. Such a design input motion generated
for dynamic analysis for seismic design could be considered highly stochastic and uncer-
tainty compensated. With the higher diversity and the more information within input
ground motions group in dynamic analysis, it is believed a better infrastructure could be
built for seismic engineering.

2. Stochastic Method

Stochastic method utilizes FT to fluctuate the original ground motion’s Fourier am-
plitude spectrum with a random phase spectrum disturbance. Modified ground motion
retains some of the parametric and functional descriptions in frequency domain, which is
still related to the earthquake magnitude and to the distance from the source.

2.1. Conventional Fourier Analysis

The scheme uses sinusoidal function eiωt, basis of Fourier transform, that has shift-
invariance and orthogonal properties. The first step of the procedure is to decompose
a signal into amplitude spectrum and phase spectrum in frequency domain by discrete
Fourier transform, which is given as:

F( fk) =
N−1

∑
n=0

signal(tn)e−i fktn ∆t = |F( fk)|e−iθ( fk) (1)

where tn denotes sampling points of the signal in time domain with sampling duration
∆t while fk denotes sampling points in frequency domain, and |F( fk)| denotes amplitude
spectrum with θ( fk) as phase spectrum of the original signal. After phase spectrum altered,
inverse Fourier transform is conducted as:

θ′( fk) = θ( fk) + σ( fk) (2)

signal′(tn) =
K−1

∑
k=0
|F( fk)|e−iθ′( fk)ei fktn ∆ f (3)

where σ( fk) denotes artificial phase spectrum aiming at fluctuating the original phase
spectrum θ( fk). Stochastic method based on discrete Fourier transform has been consid-
ered as the most common methodology to generate artificial earthquakes with random
phase spectrum.

Nevertheless, there is a major demerit of this methodology that the phase distur-
bance cannot be localized in time domain as Fourier coefficients could only contain the
information of the frequency from the original signal.
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2.2. Modification Using DWT

Wavelet transform aims to decompose a signal into a set of basis functions consisting
of contractions, expansions, and translations of a mother function Ψ(τ, s) [14]. Due to
its characteristics of revealing both time and frequency information, wavelet transform
has been utilized recently as an alternative to Fourier transform in the process of artificial
ground motion simulation. In usual cases, the concept of phase is not rigorously deter-
mined [15]. In the scheme, complex arguments of wavelet coefficients are regarded as
phase spectrum, and decomposition of the signal by discrete wavelet transform is given as:

W(j, k) =
N−1

∑
n=0

signal(tn)
1√
2j

Ψ
(

tn − k2j

2j

)
∆t = |W(j, k)|eiθ(j,k) (4)

where j represents scale (frequency domain) and k represents transition (time domain), as
scale samples of wavelet transforms following a geometric sequence of ratio 2 in dyadic
wavelet analysis. Sharing similar manner to Equation (2), phase spectrum in wavelet
analysis is altered as:

θ′(j, k) = θ(j, k) + σ(j, k) (5)

where σ(j, k) denotes disturbance phase spectrum. The artificial signal is reconstructed by
inverse wavelet transform as:

CΨ =
N−1

∑
n=0

∣∣Ψ̂(ωn)
∣∣2

|ωn|
∆ω (6)

signal′(tn) = C−1
Ψ ∆ ∑

j
∑
k
|W(j, k)|eiθ′(j,k) 1√

2j
Ψ
(

tn − k2j

2j

)
∆
(

k2j
)∆
(
2j)

4j (7)

where Ψ̂(ωn) denotes Fourier transform of wavelet basis Ψ(tn), and CΨ denotes the opera-
tor for inverse process of continuous wavelet transform.

Analytical discrete wavelet transform enables localized disturbances at desired time
intervals, by maintaining shift-invariance and orthogonality as Stochastic Method and
allows conducting ground motion simulation considering uncertainties in wavelet phase,
although time-frequency localization is not arbitrarily oriented due to the characteristics
of dyadic distribution of both transition and scale, and the uncertainty principle of time-
frequency resolution.

3. Modified Inverse CWT

Continuous wavelet transform manages to randomize phase spectrum at any desired
area in time-frequency domain, which cannot be realized by discrete wavelet transform as
described in Section 2.2. Inverse wavelet transform is well defined by a double integral or
sum in transition and scale domain as Equation (7). However, as processing of the method
for continuous wavelets requires extremely high performance of the computer and the
result precision relies on the certain distribution of sampling scales and shifts, application
of the method is often beyond engineers’ capability. Moreover, orthogonality property
of wavelet basis is prescribed in conventionally defined inverse transform, so that some
wavelet bases with some useful properties like highly compressed product of standard
deviations but without orthogonality are unavailable in this research. Considering such
problems, we proposed a scheme, by which inverse wavelet transform could be efficiently
conducted after phase randomly altering. First, the signal is decomposed continuously in a
desired time-frequency domain, which is represented as:
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W(s, τ) =
∫

signal(t)
1√

s
Ψ
(

t− τ

s

)
∆t (8)

where s represents scale (frequency domain) and τ represents transition (time domain).
Then, the original wavelet coefficients in the certain domain are replaced with coefficients
fluctuated by random phase spectrum θ(s, τ) based on Mersenne Twister. Assuming
disturbance as the difference between two sets of wavelet coefficients, it is given as:

dis′s,τ(tn) = −W(s, τ)
1√

s
Ψ
(

tn − τ

s

)
c + W(s, τ)eiθ(s,τ) 1√

s
Ψ
(

tn − τ

s

)
c (9)

where dis′s,τ(tn) denotes a single fluctuation on the original signal corresponding to the
certain scale and transition (s, τ), and c represents a constant coefficient influencing how
much this disturbance is amplified. Requirement of computational high performance is
avoided by the equation. Equation (9) is derived from:

dis′s,τ(tn) = signal(tn)− signal′(tn) (10)

considering for the fluctuation at the certain pair of scale and transition (s, τ) in time-
frequency domain, from Equation (10) and Equation (7) by decomposing both signal(tn)
and signal′(tn) into the sum of wavelet coefficients, we get Equation (9).

Since the diversity of total power distribution of the generated signal needs to be
enhanced for higher randomness, an extra complex argument is introduced as a modifica-
tion to Equation (9), and the artificial ground motion generated from the original signal is
given as:

signal′(tn) = signal(tn)−∑ s ∑ τW(s, τ)
1√

s
Ψ
(

tn − τ

s

)[
eiθ1(s,τ) − eiθ2(s,τ)

]
c (11)

where θ1(s, τ) and θ2(s, τ) represent two random phase spectra (sets of complex arguments).
Equation (11) could be understood as a process that phase spectrum of the original signal is
reduced by phase spectrum θ1(s, τ) and then increased with phase spectrum θ2(s, τ). The
procedure is not linear, so that the pair of random phase spectra in Equation (11) cannot be
replaced by single phase spectrum.

Shannon wavelet and Gabor wavelet are selected as candidates of mother wavelet
in the article due to appropriate qualities for this research. Complex Shannon wavelet is
an analytic hardy wavelet with sinc function as its real and imaginary part which has no
negative frequency component, so that total power of the signal is maintained in the scheme
based on complex Shannon wavelet. Its real and imaginary parts are shown in Figure 1a
and the same parts in frequency domain is shown in Figure 1b. Gabor wavelet minimizes
the product of its standard deviations in the time and frequency domain, meaning that
the uncertainty in information carried by this wavelet is minimized, although total power
of the signal may not be maintained in the scheme based on Gabor wavelet. Real and
imaginary parts of Gabor wavelet is shown in Figure 2a and the same parts in frequency
domain is shown in Figure 2b.
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4. Numerical Simulation
4.1. Spectral Analysis

The EW component of a strong ground motion data of 2000 Tottori Earthquake
(Mw 6.7) observed from KYT001 station of online database Kiban-Kyoshin-net [16] is se-
lected for numerical simulation in the article as it is considered a typical urban earthquake.
Amplitude spectra of the time series by Shannon wavelet transform and Gabor wavelet
transform are shown in Figure 3.

In case of Figure 3, it is verified that both amplitude spectra share similar dominant
range for contributing the most of total power of the signal in time-frequency domain (the
scale is amplified according to the center frequency of mother wavelets, so that the scale in
Shannon wavelet amplitude spectrum is four times the scale in Gabor wavelet amplitude
spectrum). Based on the distribution of dominant range of wavelet amplitude spectra, in
the article, 15 to 45 s transition and 0 to 3 scale in Shannon wavelet spectrum are selected as
the target domain, while 15 to 45 s transition and 0 to 0.75 scale in Gabor wavelet spectrum
are selected as the target domain. 10,000 wavelet coefficients in the target domain are
chosen randomly to be disturbed by uncertainties of two sets of phase spectra θ1(s, τ) and
θ2(s, τ) from 0 to π in Equation (10). The disturbances generated by two wavelets based
on Equation (9) with the certain set of phase spectra are shown in Figure 4, and response
spectra of two artificial ground motions compared to original signal are shown in Figure 5.
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by (a) Shannon wavelets and (b) Gabor wavelets.

It can be seen from Figure 4 that the disturbances generated by both wavelet bases
are restrained in the certain time domain (15 to 45 s) as we designed. In contrast, Gabor
wavelet provides higher performance of filtering noise in the domain aside from dominant
time range due to the property of minimization the product of its standard deviations.
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However, in case of Figure 5, it can be seen that only complex Shannon wavelet out of
two candidates relatively manages to maintain the shape of response spectrum and power
distribution of the ground motion in frequency domain, since it is an analytic wavelet. As
it is in stochastic method, the amplitude information in frequency domain is considerably
preserved by Shannon wavelet, while modification in the time domain of acceleration
series and phase information in frequency domain leads to the diversity enhancement of
the seismic responses to the certain ground motion set.

To distinctly illustrate the improvement by the proposed scheme compared to stochas-
tic method in Section 2, the certain disturbance and artificial ground motion time series
modified by stochastic method are shown in Figure 6. Contrast to Figure 4, the disturbance
in Figure 6a by stochastic method is not restrained in the dominant time domain. The
fluctuation in whole time domain cannot be averted by traditional stochastic method.
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4.2. Dynamic Analysis

Based on the above, complex Shannon wavelet is considered the optimal mother
wavelet out of two candidates due to its power maintenance with phase perturbation.
Dynamic analysis is to be conducted with complex Shannon wavelet in this section.

An idealized 2-story shear-frame-model is used here as the target structure. The
building is simulated by a 2-degree-of-freedom model in which nonlinear behavior of
springs is expressed by tri-linear Clough model, modified following a case in Architectural
Institute of Japan [17] as shown in Figure 7. The seismic response of the structure is
simulated in software Open System for Earthquake Engineering Simulation [18] by utilizing
time domain Newmark-β method.

Infrastructures 2021, 6, x FOR PEER REVIEW 7 of 10 
 

  

(a) (b) 

Figure 6. A case of artificial ground motion simulation by Stochastic Method: (a) Random disturbance; (b) Original and 

artificial time series. 

4.2. Dynamic Analysis 

Based on the above, complex Shannon wavelet is considered the optimal mother 

wavelet out of two candidates due to its power maintenance with phase perturbation. 

Dynamic analysis is to be conducted with complex Shannon wavelet in this section. 

An idealized 2-story shear-frame-model is used here as the target structure. The 

building is simulated by a 2-degree-of-freedom model in which nonlinear behavior of 

springs is expressed by tri-linear Clough model, modified following a case in Architec-

tural Institute of Japan [17] as shown in Figure 7. The seismic response of the structure is 

simulated in software Open System for Earthquake Engineering Simulation [18] by utiliz-

ing time domain Newmark-β method. 

 

Figure 7. Target structure and analysis model corresponded 

Through modal analysis (initial stiffness is considered), modal frequencies and peri-

ods are obtained as shown in Table 1, according to which, 15 to 45 s and 0.4 to 0.6 Hertz 

in Shannon wavelet spectrum are selected as the target domain to disturb the certain 

phase spectrum of 1000 random wavelet coefficients. In a particular case, the acceleration 

time series of original signal and artificial signal are shown in Figure 8, and the vertical 

seismic deformation responses of the target structure are shown in Figure 9. 

Table 1. Modal frequencies and periods of the analysis model 

 Frequency (Hz) Period (s) 

1st Mode 0.39 2.57 

2nd Mode 0.78 1.29 

Nonlinear Spring 2

Nonlinear Spring 1

Mass 1

Mass 2

Figure 7. Target structure and analysis model corresponded.



Infrastructures 2021, 6, 144 8 of 10

Through modal analysis (initial stiffness is considered), modal frequencies and periods
are obtained as shown in Table 1, according to which, 15 to 45 s and 0.4 to 0.6 Hertz in
Shannon wavelet spectrum are selected as the target domain to disturb the certain phase
spectrum of 1000 random wavelet coefficients. In a particular case, the acceleration time
series of original signal and artificial signal are shown in Figure 8, and the vertical seismic
deformation responses of the target structure are shown in Figure 9.

Table 1. Modal frequencies and periods of the analysis model.

Frequency (Hz) Period (s)

1st Mode 0.39 2.57
2nd Mode 0.78 1.29Infrastructures 2021, 6, x FOR PEER REVIEW 8 of 10 
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Figure 9. Vertical seismic responses of deformation of the target structure.

In case of Figures 8 and 9, it could be found that artificial ground motion generated by
the proposed methodology excites completely different deformative response of the target
structure, due to the random phase spectrum in the structural dominant time-frequency range.

Besides the certain case above, 50 sets of random phase spectra are generated to disturb
the original signal by continuous wavelet transform. The same process is carried out by
discrete wavelet transform as the baseline. Since CWT arbitrarily orients phase disturbance
in frequency domain, the frequencies selected with CWT could be more corelated to modal
frequencies of the target structure, and thus enables the methodology to be more efficient
because artificial ground motion synthesized by the scheme is supposed to excite more
variant seismic response of the target structure due to resonance. Maximum displacement
of the target structure is selected as the intensity measure to evaluate seismic performance.
The result shows that the mean square error of maximum displacements by DWT scheme is
1.97, while the mean square error of maximum displacements by CWT scheme is only 0.489.
Figure 10 shows the distribution of two sets of maximum displacements responded to
artificial ground motions representatively disturbed by CWT and DWT. As CWT explicitly
amplifies the variance of seismic responses, it is considered that the diversity of input
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ground motions is enhanced and the uncertainty in seismic design by dynamic analysis is
decreased with the proposed method.
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5. Conclusions

For the synthesis of input artificial ground motions for seismic design, there are
numerous methodologies based on different theories. In Stochastic Method, Fourier Trans-
form is utilized to disturb the Fourier phase spectrum randomly while the information
in frequency domain and the total power of ground motions are maintained. However,
localized disturbances at desired time intervals are not available since sinusoidal base
function extends in the whole time-domain. By defining complex arguments of the wavelet
coefficients as the conception of phase, discrete wavelet transform is introduced to fix such
problem, although localized disturbances cannot be arbitrarily oriented due to the property
of dyadic distribution of both transition and scale coefficients.

In the article, a new methodology based on continuous complex wavelet transform
is proposed, by which localization of phase disturbance in time-frequency domain with
arbitrary orientation is realized. Moreover, the computational performance is required at a
lower rate and more candidate wavelets, which is not analytic, bases become available in
the scheme, enabled by the modified algorithm of inverse wavelet transform. Results of
numerical simulation indicate that by utilizing the methodology, random phase disturbance
could be precisely localized in the desired time-frequency domain, while variability and
diversity of input ground motions are considerably enhanced. For the selection of wavelet
candidates, complex Shannon wavelet is evaluated as a better choice for the methodology
since the total power and frequency characteristics are highly maintained with random
phase perturbation.

For future research, more case studies are supposed to be conducted in order to
evaluate the proposed scheme explicitly referring to engineering practice.

Author Contributions: Conceptualization, R.H. and H.X.; methodology, H.X. and R.H.; validation,
H.X.; formal analysis, H.X.; investigation, H.X.; data curation, H.X.; writing—original draft prepara-
tion, H.X.; writing—review and editing, H.X.; visualization, H.X.; supervision, R.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by “Major Program of National Natural Science Foundation of
China, grant number 12032008” and “National Key Research and Development Program in China,
grant number 2017YFC0806009”.

Data Availability Statement: Some or all data, models, or code generated or used during the study
are available from the corresponding author by request.

Conflicts of Interest: The authors declare no conflict of interest.



Infrastructures 2021, 6, 144 10 of 10

References
1. Ma, H.; Zhuo, W.; Lavorato, D.; Nuti, C.; Fiorentino, G.; Marano, G.C.; Greco, R.; Briseghella, B. Probabilistic seismic response

and uncertainty analysis of continuous bridges under near-fault ground motions. Front. Struct. Civ. Eng. 2019, 13, 1510–1519.
[CrossRef]

2. Honda, R. Study for implementation of anti-catastrophe-oriented seismic design. J. Jpn. Assoc. Earthq. Eng. 2018, 37, 1077–1086.
(In Japanese) [CrossRef]

3. Jeong, K.H.; Lee, H.S. Ground-motion prediction equation for South Korea based on recent earthquake records. Earthq. Struct.
2018, 15, 29–44.

4. Atkinson, G.M. The interface between empirical and simulation-based ground-motion models. Pure Appl. Geophys. 2018, 177,
2069–2081. [CrossRef] [PubMed]

5. Atkinson, G.M.; Bommer, J.; Abrahamson, N. Alternative approaches to modeling epistemic uncertainty in ground motions in
probabilistic seismic hazard analysis. Seismol. Res. Lett. 2014, 85, 1141–1144. [CrossRef]

6. Hikita, T.; Koketsu, K.; Miyake, H. Variability of ground motion simulation due to aleatory uncertainty of source parameters. J.
Jpn. Assoc. Earthq. Eng. 2020, 20, 21–34. [CrossRef]

7. Yang, L.; Xie, W.; Xu, W.; Ly, B.L. Generating drift-free, consistent, and perfectly spectrum-compatible time histories. Bull. Seismol.
Soc. Am. 2019, 109, 1674–1690. [CrossRef]

8. Jayaram, N.; Lin, T.; Baker, J.W. A computationally efficient ground-motion selection algorithm for matching a target response
spectrum mean and variance. Earthq. Spectra 2011, 27, 797–815. [CrossRef]

9. Cecini, D.; Palmeri, A. Spectrum-compatible accelerograms with harmonic wavelets. Comput. Struct. 2015, 147, 26–35. [CrossRef]
10. Zacchei, E.; Molina, J.L. Application of artificial accelerograms to estimating damage to dams using failure criteria. Int. J. Sci.

Technol. 2020, 27, 2740–2751.
11. Boore, D.M. Simulation of ground motion using the Stochastic Method. Pure Appl. Geophys. 2003, 160, 635–676. [CrossRef]
12. Honda, R.; Ahmed, T. Design input motion synthesis considering the effect of uncertainty in structural and seismic parameters

by feature indexes. J. Struct. Eng. 2011, 137, 391–400. [CrossRef]
13. Honda, R.; Khatri, P.P. Discrete analytic signal wavelet decomposition for phase localized in time-frequency domain for generation

of stochastic signal with phase uncertainty. In Proceedings of the 15th Conference on Earthquake Engineering, Lisbon, Portugal,
24–28 September 2012.

14. Daubechies, I. Ten Lectures on Wavelets; Rutgers University and AT&T Bell Laboratories: Murray Hill, NJ, USA, 1992.
15. Fugal, D.L. Conceptual Wavelets in Digital Signal Processing; Space & Signals Technologies LLC: Spring Valley, CA, USA, 2009.
16. Kiban Kyoshin Net (KIK-NET). Available online: http://www.kik.bosai.go.jp (accessed on 14 September 2021).
17. Architectural Institute of Japan. Seismic Response Analysis and Design of Buildings Considering Dynamic Soil-Structure Interaction;

Architectural Institute of Japan: Tokyo, Japan, 2006. (In Japanese)
18. The Open System for Earthquake Engineering Simulation. Available online: http://opensees.berkeley.edu (accessed on 14

September 2021).

http://doi.org/10.1007/s11709-019-0577-8
http://doi.org/10.2208/jscejseee.74.I_1078
http://doi.org/10.1007/s00024-018-2044-1
http://www.ncbi.nlm.nih.gov/pubmed/32647389
http://doi.org/10.1785/0220140120
http://doi.org/10.5610/jaee.20.3_21
http://doi.org/10.1785/0120190005
http://doi.org/10.1193/1.3608002
http://doi.org/10.1016/j.compstruc.2014.10.013
http://doi.org/10.1007/PL00012553
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000085
http://www.kik.bosai.go.jp
http://opensees.berkeley.edu

	Introduction 
	Stochastic Method 
	Conventional Fourier Analysis 
	Modification Using DWT 

	Modified Inverse CWT 
	Numerical Simulation 
	Spectral Analysis 
	Dynamic Analysis 

	Conclusions 
	References

