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Abstract: Obtaining pedestrian trajectories by a vision-based methodology is receiving increasing
attention in the literature over recent decades. Within the field of study of human-induced vibrations
on footbridges, practical challenges arise when collecting the trajectories of high-density crowds
during measurement campaigns. A cheap and robust methodology tackling these issues is presented
and applied on a case study consisting of a real-life footbridge occupied with many pedestrians.
A static camera setup consisting of low-cost action cameras with limited installation height is used.
In addition, a drone camera was employed to collect a limited amount of footage. Pedestrians
are equipped with colored hats and detected using a straightforward color-segmenting approach.
The measurements are subjected to both systematic and random measurement errors. The influence
of the former is theoretically investigated and is found to be of limited importance. The effect of the
latter is minimized using a Kalman filter and smoother. A thorough assessment of the accuracy results
reveals that the remaining uncertainty is in the order of magnitude of 2 to 3 cm, which is largely
sufficient for the envisaged purpose. Although the methodology is applied on a specific case study
in the present work, the conclusions regarding the obtained accuracy and employability are generic
since the measurement setup can be extended to a footbridge with virtually any length. Moreover,
the empirically obtained results of the presented case study should find use in the calibration of
pedestrian dynamic models that describe the flow of high-density crowds on footbridges and the
further development of load models describing crowd-induced loading.

Keywords: empirical identification pedestrian trajectories; crowd-induced vibrations; footbridges

1. Introduction

Pedestrian detection is a research field that has known a growing importance over recent time [1].
In particular, the rise of vision-based security applications and the development of driverless cars has
stimulated the research effort in this domain e.g., [2–6]. In the field of human-induced vibrations on
civil engineering structures, in particular footbridges, an actual need exists for a robust and generic
strategy to collect the trajectories of pedestrians in a high-density crowd [7]. Today, state-of-the-art load
models describing the complex phenomenon of human-induced loading are developed on laboratory
scale [8,9]. Further refinement, validation and calibration of the models is prevented mainly because
of the absence of full-scale operational loading data [10,11]. This is in turn a result of the inability
to simultaneously collect the induced forces and location of the participants on such a large scale.
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Besides the further development of the human-induced load models, also the models describing the
pedestrian dynamics require validation for the specific case of flows on footbridges [12].

Without influences from the environment, a pedestrian is expected to walk in a straight line in his
desired direction. However, the trajectory deviates from a straight line as the result of interaction with
other pedestrians (human-human interaction). This phenomenon is shown to have a non-negligible
impact on the structural response [12,13]. Several models exist describing these pedestrian dynamics
and depending on the situation (uni- versus bi-directional traffic, 1D versus 2D traffic, type of activity,
possible presence of obstacles, . . . ), one model provides more realistic flows than the other. Helbing [14]
developed a framework describing qualitatively the dynamics of pedestrian flows by a set of coupled
differential equations with application-specific parameters. For instance, Refs. [15,16] propose Helbing’s
model for evacuation scenarios and validate these based on empirical data. Karamouzas et al. [17]
developed a predictive collision avoidance model for the simulation of pedestrian flows. The approach
consists of the prediction of future possible collisions with other pedestrians and makes an efficient
move to avoid them. van den Berg et al. developed an n-body collision avoidance model that is
developed to study the flow of multiple robots avoiding collision among each other [18]. Reynolds [19]
developed a framework describing the interaction among individual agents in a group. The original
scope of application was to model the flocking behavior of bird-like creatures in animations and gaming
applications. A validation of existing pedestrian dynamic models for crowd flows on footbridges is today
absent. Only validated pedestrian dynamic models allow the further investigation and development of
equivalent, easy-to-use load models for daily engineering practice. Given that the radius of the human
body is approximately 30 cm [20], the desired accuracy of the empirical obtained trajectories is set to
half of the human body radius (15 cm).

1.1. Related Work

Several attempts so far were made to collect the trajectories during loading of a crowd on
footbridges using vision-based methodologies [11,21–24]. Although general conclusions could be
drawn from the collected data, the obtained results are unsatisfying for the actual challenges as not
all the pedestrians’ trajectories were captured, the trajectories were swapped, not the entire bridge
was covered, the pedestrian density was captured on macro scale, the total duration of observation
was too short, the pedestrian density was too low or an extensive manual revision and correction was
required. Another practical difficulty often encountered in case of recording footbridges is a suitable
setup point of the cameras. High buildings or aerial platforms near the bridge abutments could be
used but, keeping in mind that the span of a bridge easily exceeds 50 m, this setup results in a low
ground sampling distance and an oblique view at midspan. Therefore, a setup of cameras mounted
onto the structure itself using trusses would be a possible solution. The related drawbacks are that
the installation height is limited for obvious practical and safety reasons, say, 5 m. Moreover, a large
number of cameras will be required given the typical shape of a bridge deck (width in the order of
magnitude 2–5 m and total span 20–200 m). To limit the required number of cameras, action cameras
can be used as they have a large viewing angle although they possess severe radial distortion.

Successful capturing the motion of pedestrians on small-scale laboratory footbridges is established
by tracking visual markers applied on the participants using a commercial motion capture
system [25–29]. While the accuracy and the robustness of this system is outstanding, it is not scalable to
full-scale outdoor applications because of economical and practical reasons e.g., due to occlusion of the
markers in case of high-density crowds. Inspired by these limitations, other approaches were explored
such as dead reckoning using inertial sensors [30,31]. Accurate results were obtained, and the scalability
seems at first not to be restrained by occlusion. However, the methodology becomes cumbersome
for large groups since prior knowledge of the trajectory is required e.g., the entire traveled distance
and the principal direction of movement. Localization using dead reckoning can also be performed
by smartphones, e.g., [32,33]. Their scope of application lies in the indoor localization in absence
of GPS signals. While suited for their intended scope of application, their systematic measurement
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errors cumulate to errors which are beyond the predefined threshold of 15 cm. The cumulative errors
encountered by dead reckoning can be reduced by sensor fusing techniques. Force instance, in [34],
a hybrid approach for the indoor localization is proposed which combines the data from the inertial
measurement unit with the smartphone camera for the optimal estimation of the location. In [35],
the trajectory of a micro aerial vehicle is established combining the inertial measurement unit with a
camera that registers markers. While the final accuracy is within the predefined bounds (14 cm), it is
impractical for the envisaged scope of application. As the pedestrian would have to walk with their
smartphone camera filming their trajectory, it might influence his representative walking behavior.
Besides, given the envisaged time duration of the experiments (several hours), the battery life might
be a limiting factor.

An alternative approach [36] localizes pedestrians purely based on structural accelerations measured
by a network of sensors using wave propagation durations. Despite the fact that the method is
advantageous because no additional measurement equipment such as inertial sensors or video cameras
are required, the method is inadequate in terms of accuracy (>1 m) and scalability, as footfalls of different
pedestrians should not occur simultaneously. The open-source software PeTrack [37] is dedicated to
the detection and tracking of pedestrians, both with and without markers. It is successfully used in
several pedestrian dynamics calibration applications e.g., [15,38–41]. The software uses top-view footage
of cameras with low to mild radial distortion and detects pedestrians by searching for isolines of the
brightness which are nearly ellipsoid. The latter implicit assumption is no longer valid in case of
cameras with severe radial distortion e.g., action cameras. Moreover, the developers recognize some
robustness issues in case of varying lightning conditions and emphasized the need for a manual revision
of the obtained trajectories as some trajectories might be swapped. Given the constraints of the envisaged
approach i.e., low camera installation height and as a result a large amount of cameras, outdoor application
thus varying lightning conditions, action cameras and thus severe radial distortion and an extreme
required robustness given the high number of cameras and test duration, it was opted not to use the
PeTrack software but instead develop a custom approach more suited for the application at hand.

1.2. Contribution of the Present Study

This paper starts by presenting a case study of a large-scale measurement campaign where the
primary goal was to study the effect of vibrations induced by a high-density crowd on a real-world
footbridge. Both walking and jogging activities are considered with a total duration of more than 2 h.
A cheap and robust methodology for characterizing the flow of the case study at hand is presented and
applied. A static multi-camera setup, using off-the-shelf commercial low-cost cameras, is employed
to record the entire bridge deck. The proposed procedure detects pedestrians in the consecutive
images independently. Given the artificial circumstances in which the methodology is envisaged to be
applied, it is chosen to equip all participants with a colored hat allowing an easy detection using color
segmentation while little a priori knowledge of the scene is required. Image-plane measurements are
converted to corresponding world coordinates considering both mono and stereo-view setups. Finally,
the detections are assigned to their corresponding trajectories while the influence of the inevitable
random measurement noise is mitigated using a Kalman filter. Since the results are processed offline,
the state uncertainty is further reduced by applying a smoother. Besides the random noise, there is
also a systematic source of error as a result deformation of the non-spherical shape of the hat in case of
projection and the vertical sway of the head during the locomotion of the participant. The accuracy of
obtained trajectories is investigated and assessed with respect to the predefined threshold of 15 cm.
Besides the static camera setup, a limited amount of footage was collected using a drone. While the
data is insufficient to reconstruct the trajectories on the entire bridge deck, it allows an assessment
of the accuracy. Given their ease of use, short setup time and flexibility, drones have the potential to
become the preferred data acquisition system when applied within the context of structural dynamic
measurement campaigns involving the registration of the participants’ trajectories. The results of this
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case study should find use in (1) the calibration of pedestrian dynamic models for flows on footbridges
and (2) the further development of load models that describe crowd-induced loading on footbridges.

The authors published a previous study [42] dealing with the characterization of a high-density
flow based on the footage recorded during a large-scale measurement campaign (142 participants,
1.0 pers./m2). While the present study is founded on the same philosophy, it contains some major
improvements and novel contributions which are summarized as follows:

• A computationally efficient approach to detect the pedestrians is proposed employing image
indexing by a limited number of colors. A detection map for the colors corresponding to the
detection is only initialized a single time using a vector quantization algorithm which greatly
enhances the processing speed.

• An approach is proposed to minimize the influence of the random measurement noise. To this
extent, a Kalman filter and smoother are applied thereby maximally exploiting the fact that the
results are processed offline instead of online. Its optimal characteristics are determined using an
expectation maximizing algorithm. The methodology in [42] only used a Kalman filter where its
parameters were chosen using engineering judgment.

• An overview of the present systematic measurement errors in the envisaged scope of applications
is presented and its effect on the obtained trajectories is evaluated.

• The methodology is applied on a benchmark data set yielding the time-variant positions of all the
participants which constitutes an indispensable quantity for the benchmark data set. Moreover,
the time duration is now much longer (>2 h instead of 10 min).

• The considered activities now comprise both walking and jogging events instead of only
walking events.

• Besides a static camera setup, additional footage captured by a drone is now considered as well.

The remainder of the paper is organized as follows. A description of the measurement campaign
(Section 2) is followed by the detection methodology (Section 3). Next, the mono and stereo camera
setups and their respective conversion of coordinates from the image plane to world space, including
an assessment of the related accuracy is presented (Section 4). The results are shown and discussed in
Section 5 and followed by summarizing the most important conclusions (Section 6).

2. Large-Scale Measurement Campaign

A large-scale measurement campaign was performed involving several types of human loading
(walking and jogging, Table 1). The considered footbridge consists of one main (arc-shaped) and
two side (straight) spans and has a total length of 96 m and a width of 3 m. A more comprehensive
description of the architecture and the dynamical characteristics is found in [43]. An impression of the
structure during the large-scale measurement campaign is shown in Figure 1. Different pedestrian
densities were considered, with a total of 148 persons corresponding to a density of 0.50 pers./m2.
All tests were approved by the ethical committee of KU Leuven and all participants signed an informed
consent prior to the measurement campaign. One of the principal objectives was to obtain the
trajectories of every single pedestrian. Besides the trajectories, the structural accelerations are measured
at 15 locations along the bridge deck using triaxial wireless Geosig recorders. The 3D body motion of
all 148 persons was captured using an individual inertial motion sensor during the entire campaign.
The combined in-field motion information (2D trajectories and 3D body motion) can be used to
characterize the forces induced by the crowd [43]. The simultaneous registration of the input (induced
forces) and output (accelerations) provides a unique state-of-the-art benchmark data set within the
field of human-induced vibrations on footbridges. Every participant is given a participant number
which is used for the coupling with the registered body motion and anonymized in the further process.
The bridge was closed the entire day to the public and as such no coincidental passers-by are recorded
by the camera network thereby avoiding potential privacy issues.
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Table 1. Overview of events: name, activity, number of participants, duration and number of video
frames recorded by the static camera setup.

Test Number Activity Number of Participants [-] Duration [s] No. of Frames [K]

1 Jogging 15 800 504
2 Jogging 15 900 567
3 Jogging 15 300 189
4 Walking 73 720 454
5 Walking 73 315 199
6 Walking 73 660 416
7 Walking 73 649 409
8 Walking 72 1860 1172
9 Walking 148 1200 756
10 Walking 148 1200 756
11 Walking 148 950 599
12 Walking 148 300 189
13 Jogging 74 400 252

(a) (b) (c)

Figure 1. Impressions of the Eeklo footbridge during the large-scale measurement campaign: (a) top,
(b) side and (c) below view.

2.1. Camera Setup

Twenty-one static cameras (GoPro, Hero Session, 1080p, 30 fps) were used to register the entire
bridge deck. The devices were mounted on aluminum trusses which were firmly fixed to the parapet
the bridge deck. The position of the static cameras and the global axes considered in the present study
are shown in Figure 2. The cameras were synchronized offline, using a common occurrence in the
different cameras, i.e., a car driving with a speed of approximately 120 km/h crossing a reference
point. As the car speed is high compared to the walking speed of the pedestrians (≈5 km/h) and the
given frame rate, the synchronization of the frames is more than sufficient. Figure 3 shows an example
of 3 synchronized images. The duration and number of video frames as recored by the static camera
setup for each test is listed in Table 1.

Figure 2. Plan view with indication of the position of the static cameras (blue dots), the highway
(hatched areas) and orientation of the global axes (red arrows).

Additionally to the static camera setup a drone (DJI, Phantom 3, 2.7K, 30 fps) was used. Due to
the higher resolution and the unconstrained location of the camera, the drone has the major advantage
that fewer cameras are needed to record the entire bridge deck and that the setup time is much lower.
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In the current campaign, however, only a single drone partially registering the bridge deck was used
as a proof of concept. Both the static camera setup and drone are shown in Figure 4.

The camera locations are the result of an economical-practical constrained optimization problem.
Pedestrians’ hats should not be occluded while the average ground sampling distance should be
sufficiently high for the hats to be detectable. In case of the static cameras, the installation position
cannot be too high due to practical installation constraints. The field of view (FOV) for both camera
setups is calculated assuming a rectangular grid of pedestrians with a minimal distance of 75 cm
(i.e., 2.5 times the body radius). The pedestrian’s height is assigned a uniformly distributed random
value between 1.6 m and 2.0 m while the colored hat is represented by a hemisphere with a radius
of 10 cm [20]. It is opted to place a static camera at every transverse stiffener of the bridge deck
(interdistance of 4.5 m or 4.2 m). The cameras are mounted at a height of 5 m and a view direction of
170 degrees with the vertical axis. The drone’s 3D location is chosen at a quarter of the bridge deck
length in X direction, half a bridge deck in the Y direction, a height of 18 m and a view direction
that coincides with the downward vertical direction. The simulated situation is shown in Figure 5a.
The calculated FOV of a static camera and the drone (Figure 5b,c) indicate that this setup leads to
an unoccluded view of the hats for the given assumptions. The average ground sampling distance
at the bridge deck is in the order of magnitude of 6 mm/pix and 3 mm/pix for the static and drone
camera, respectively. Given that the radius of the colored hat is approximately 10 cm, the ground
sampling distance is sufficient to allow a detection of the hats in the image planes. The exact location
and orientation during the measurement campaign of the recording devices is obtained by a calibration
procedure (Section 4.1.2). Strictly speaking, one only needs 10 cameras (corresponding to the odd
numbers in Figure 5a) to capture the entire bridge deck since the FOV is wide enough. In the present
study, 21 cameras are used, however. The additional cameras serve as a redundant measure in case
one of the cameras would drop out as a result of power loss. Moreover, the current camera setup
corresponds to a situation where every point on the bridge deck is recorded by two devices, hence
allowing a stereo vision which is more accurate than mono-vision. The availability of stereo vision
allows assessment of the accuracy of the tracks that are obtained by the mono-vision setup.

Figure 3. Example of offline synchronization of the static camera setup based on the white van passing
the white road marking: static camera 9 (left), 10 (middle) and 11 (right).

(a) (b)

Figure 4. Recording the pedestrians during the measurement campaign: (a) static camera setup and
(b) pilot controlling drone during takeoff. The cameras are indicated with a red circle.
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(a)

(b) (c)

Figure 5. Results of the preliminary study of the location and orientation of the static (blue) and drone
(green) camera setup: (a) half a bridge deck with simulated grid of pedestrians with a red hat and a
uniformly distributed random height between 1.6 m and 2.0 m. FOV of (b) static camera 3 and (c) the
drone camera.

2.2. Calibration Points

All cameras are calibrated using a set of 2D-3D correspondences [44]. To this end, ×-shaped
symbols were indicated with a paint marker (standard deviation signal marker location: 2 mm) on
the bridge deck (Figure 6), making them easily recognizable and uniquely identifiable in the images.
Their world position was measured using a total station (standard deviation measurement error:
1 mm). The collection of 331 calibration points comprises 176 marks on the bridge deck, 23 on the
transverse stiffeners, 44 on the web plate of the parapet and 88 points on top of the parapet.

Figure 6. Calibration points (width approximately 10 cm) on the bridge deck used to calibrate
the cameras.

2.3. Colored Hats

All pedestrians were equipped with colored hats to easily detect them using a color-segmentation
algorithm (Section 3). The trajectory of every single pedestrian is to be coupled with a corresponding
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inertial sensor unit measurement and therefore every pedestrian was assigned a start and stop zone.
To facilitate the association procedure, the number of pedestrians in each start and stop zone was
limited to four, all with a different color such that the pedestrians are clearly distinguishable.

In the present work, all color-related analyses are done in the CIELAB color space [45].
The conversion is non-linear but reversible and is designed to be independent of the device. The RGB
value of a pixel (as recorded by the camera) is decoupled into the triplet (L, a∗, b∗), where L represents
the illumination while a∗ and b∗ are the green-red and blue-yellow color information. The illumination
L is disregarded in the further analysis.

To select four optimal hat colors available from the supplier, a preliminary study was performed.
Pictures were made of the candidate hat colors (light green, dark green, light blue, dark blue, yellow,
purple, magenta, orange and red) and the background. Their corresponding (a∗,b∗) coordinates are
plotted in Figure 7. Based on the latter representation, it was opted to use the red, orange, dark blue
and magenta colors in the measurement campaign. The distance in the (a∗,b∗)-plane is maximal to the
background while their interdistance is sufficient to be distinguishable.

(a)

(b)

(c)

Figure 7. Results of the preliminary study to select four hat colors: (a) snapshot of the candidate hats
(b) one of the many snapshots of the background and (c) representation of the (a∗,b∗) coordinates of
the colored hats (corresponding colors) and the background (black) by a heat map and 95% confidence
regions (lines) and indication of the minimal distance between the 95% confidence regions of the
selected hat colors to the background (dashed lines).

3. Pedestrian Detection

The use of colored hats facilitates a straightforward detection by color segmentation of the images,
resulting in 4 binary images with values 1 (detection) and 0 (background), one for each of the chosen
colors. The procedures described in Sections 3 and 4 employ various functions of the Computer Vision
Toolbox of Matlab R2016b [46].

Every pixel consists of three unsigned bytes (value range: 0–255) yielding 2563 (16,777,216)
possible values. Since the purpose is to segment the images, such degree of detail of color information
is not required and results in computational-costly operations. Therefore, the images are converted to
indexed images, only retaining a certain number of colors ncolor, stored in a color map CRGB. The image
is encoded such that every pixel is assigned one color of CRGB. This procedure is a form of vector
quantization compression and speeds up the performance of the image processing while saving
computer memory. First, a set of 50 training frames is selected, involving all cameras and varying
illumination conditions. The pixels of all training frames are stored in the vector xRGB. Next, a color
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map CRGB is defined using a minimum variance quantization method, as proposed in [47] (function
rgb2ind). The method accounts for the actual input, xRGB, and allocates the elements of the color
map CRGB according to the spatial distribution of the elements in xRGB. The procedure is illustrated
for an image in Figure 8 where only a fraction of the 2563 colors is retained. In the further analysis,
the number of elements in the color map is set to 1000 as the experiments showed that this number
retains sufficient color information to perform a color-segmentation process yet greatly increases the
processing speed.

(a) (b) (c)

Figure 8. Part of a snapshot reduced to a different amount of colors: (a) original frame, 2563 colors,
(b) 1000 colors, and (c) 10 colors.

Next, both the pixel vector xRGB and corresponding color map CRGB are converted to the (L)AB
space yielding the quantities xAB and CAB. To determine which elements of CAB belong to the
background or a detected color, the vector is segmented into k clusters using k-means clustering [48].
This algorithm assigns every element of CAB into one of the k sets S = (S1, S2, . . . , Sk) such that the
within-cluster sum of squares is minimized:

arg min
S

k

∑
i=1

∑
xAB,j∈Si

||xAB,j − µi||2 (1)

where µi is the mean of the points in subset Si (function kmeans).
The present work uses 10 clusters to segment the colors. The clusters matching the colors of the

hat are selected, thereby defining the corresponding regions in the (a∗, b∗) space. As the mapping of the
RGB to the CIELAB color space is one-to-one, each component of CRGB can thus, via the corresponding
component in the vector CAB, be related to a binary value. Because four hat colors are used, the final
result is four binary maps Bred, Borange, Bblue and Bmagenta, which are practically combined to a single
binary map B. Figure 9 shows the results of the applied procedure.

The process of converting a RGB image to a binary image now boils down to converting the RGB
frame to an indexed image using the standard reduced RGB color map CRGB and reconverting it to a
binary image using the binary map B.

The remaining spurious pixels in the obtained binary images are removed by consecutively
applying several morphological operations. An image erosion with a disk of radius 5 pixels is followed
by a flood-fill operation. Next, the frame is dilated using a disk with radius 5 pixels followed by
a morphological opening (i.e., dilation followed by an erosion) of the binary image with the same
structural element as the first time. Practically, the functions imerode, imfill, imdilate and imopen
are used. A blob analysis (function blobAnalyzer) is applied on the binary image, resulting in a
selection of the center of gravity of the blobs whose area exceeds a user-defined threshold (30 pixels,
corresponding with a ground area of approximately 11 cm2, Section 2.1). Figure 10 shows an example
of the color segmentation, the morphological operations and object detection procedure. The order of
operations and morphological parameters were chosen by trial-and-error such that the recall is 100%
(i.e., there are no false negatives), even if the consequence is that the precision is lower than 100% (i.e.,
there might be false positives). If closely investigated, one can observe that the final results indeed
yield some misdetections (Figure 10a). These false positives typically occur when participants wear
clothes which have the same color as the predefined hats. Also, some fixed objects visible in the frames
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give rise to false detections e.g., the red ribbon which is used to fix the truss to the bridge. The incorrect
detections are removed in the data association step (Section 4).

Figure 9. k-means clustering procedure to distinguish detections from background shown in in the
a*-b* plane of the CIELAB color space. The values of the pixels of the training frames (gray-shaded heat
map), the a∗ and b∗ components of the (L)AB color map CAB (dots) indicating the values of the color
map which correspond to a detection of a colored hat (corresponding colors) and background (black).

(a) (b) (c)

Figure 10. Example of the color segmentation and detection algorithm: (a) original frame with
indication of the true detected objects (white squares) and false detected objects (cyan squares),
(b) binary mask before applying the morphological operations and (c) final binary image with indication
of the detected color.

One important drawback of the color-segmentation algorithm is that two adjacent blob regions of
the same color can be incorrectly joined (Figure 11a,b). This occurs most often at the outer sides of
the FOV of the cameras because of the increased obliqueness and for two pedestrians with a small
interdistance (<75 cm) and a large difference in height. To overcome this issue, a watershed analysis
(function watershed) is performed. This transform is often used in the field of image processing for
segmentation purposes and defined on a grayscale image [49]. When the gray value is thought of as a
topographic quantity, the watershed returns the lines which correspond with the ridges of this quantity.
In the present case, the binary distance (function bwdist) of a pixel is considered to be the relevant
property, defined as the maximum horizontal or vertical distance of a certain pixel to the nearest pixel
which has the value zero [50]. As the detection of a hat is typically nearly discoid, two adjacent circles
possess a local ridge in the binary distance. As such, a watershed transform allows segmentation of
these bounded regions into two disjoint ones. An illustration of the use of the watershed process to
segment two adjacent blobs initially detected as one is shown in Figure 11.

The detection algorithm is performed on a desktop computer with an Intel Xeon E5-2630 @ 2.4 GHz
quad core processor using Windows 10 Enterprise x64 with 144 GB of RAM. The process is computed in
parallel on 12 subgroups. Every image is processed offline and independently. The required wall-clock
time of each frame is approximately 200 ms, with relative time durations of 1% to read the frame, 1%
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to index it, 3% to create the binary mask, 78% for the denoising operations, 16% for the application of
the watershed analysis and 1% for the blob analysis.

(a) (b) (c) (d)

Figure 11. Example of segmenting two adjacent detections (blue hats) employing the watershed
transform: (a) original frame, (b) original binary mask, (c) binary distance with indication of watershed
line and (d) binary mask after application of watershed segmentation.

The pedestrian detection using color segmentation is summarized in a flow chart (Figure 12).
1

Collect training frames
and construct pixel vector

xRGB = [xRGB,1,xRGB,2, . . .]
T

Construct color map CRGB

and convert each compo-
nent to (L)AB space → CAB

Convert pixel vector xRGB

to (L)AB color space →
xAB = [xAB,1,xAB,2, . . .]

T

Segment xAB in k sets
{S1, S2, . . . , Sk} us-

ing k-mean clustering

Assign each component of CAB to
cluster, select relevant cluster(s)

and construct binary map B

Read frame

Convert to indexed figure
using color map CRGB

Convert to binary image
using the binary map B

Denoise binary image and
apply watershed transform

Apply blob analyser
to detect objects

Initialization/training Detection

Performed once Performed for every image independently

Figure 12. Flow chart for the detection of the pedestrians.

4. Pedestrian Trajectory Reconstruction

Once the pedestrians are detected in the different frames independently, the challenge lies
in reconstructing the trajectory of a certain pedestrian across the different recording devices and
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consecutive frames. Furthermore, the obtained detections must be converted to world coordinates.
Moreover, misdetections are present and can lead to erroneous results when wrongly assigned.
In addition, even if a correct assignment is made, the measurement is subject to an error, both random
and systematic. An overview of the methods employed to convert the obtained image detections to
corresponding world coordinates is presented. The effect of the random and systematic measurement
error is evaluated and a Kalman filter and smoother are implemented to minimize the effect of the
random measurement error.

4.1. Transformation of 2D Image Coordinates to 3D World Coordinates

4.1.1. Camera Model

The standard pinhole camera model [51] relates a world point M = [X, Y, Z, W]T to a
corresponding image point m = [x, y, w]T, both expressed in homogeneous coordinates. In the
case of Euclidean coordinates, the last component i.e., W or w equals 1. The projection is described by
Equation (3) where 'means “equal up to a non-zero scale factor”:

m ' PM (2)

m ' K[RT | −RTt]M (3)

with P the projection matrix and K the matrix describing the intrinsic parameters of the camera:

K =

αx s ux

0 αy uy

0 0 1

 (4)

with αx and αy the focal length, expressed in pixels, s the skew and ux and uy the location of the
principal point, expressed in pixel coordinates. As digital cameras do not possess any skew, it holds
that s = 0.

R and t = [tX , tY, tZ]
T are a 3 × 3 matrix and 3 × 1 vector respectively, describing the orientation

and position of the camera in world coordinates. While the rotation matrix R is a 3 × 3 matrix,
it has only three degrees of freedom and can expressed in terms of its Euler angles: [θX, θY, θZ]

T.
The projection matrix P is 3 × 4.

Equation (3) is a linear equation and is an idealization of the actual projection mechanism of
real-life cameras. The linear model does not capture radial or tangential distortion effects, typically
present in such cameras. As the influence of tangential distortion is usually much smaller than radial
distortion, only the latter effect is taken into account. The effect is modeled by a function describing the
relation of the distorted and undistorted coordinates in the focal plane. The function is a polynomial
where the first constant is zero (i.e., there is no constant term in the relation) and the three consecutive
coefficients denoted as [κ1, κ2, κ3]. Consequently, the relation between the image point m and the world
point M becomes non-linear and is denoted by the vector function F:

m = F(xcam, M) (5)

with xcam = [αx, αy, ux, uy, tX, tY, tZ, θX, θY, θZ, κ1, κ2, κ3]
T being the camera parameter vector containing

all relevant parameters of the camera model.

4.1.2. Camera Calibration

To obtain the camera parameter vector xcam of the cameras a calibration is performed using a
set of 3D-2D correspondences. This set contains the easy-recognizable markers (Section 2.2). The ncal
points, denoted as Mc = [Mc,1, . . . , Mc,ncal ]

T, are the world calibration points on the bridge deck that
are within the FOV of the considered camera. The corresponding image calibration points are denoted
by mc. The calibration points cover the part of the image where the pedestrians walk. Other regions,
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e.g., the road deck or grass field, are not covered by the calibration points. These areas will therefore be
less accurately described by Equation (5), which is not of any concern as no pedestrians are detected in
that area. For a certain camera parameter vector x̃cam the reprojected points m̃c and reprojection error
ε = m̃c−mc are obtained using Equation (5). An optimal set of camera parameters xcam,opt is searched
for such that the squared sum of reprojection errors εTε is minimized [44]. Given the non-linear nature
of the optimization problem, the Levenberg-Marquardt algorithm is employed, using the lsqnonlin
solver of Matlab R2016b. The initial value of x̃cam highly influences the speed of convergence and
the chance of obtaining the right local minimum. Therefore, the camera projection matrix P̃init is
initially estimated using the direct linear transform [52]. This method neglects the non-linear relation
between image and world points, thus not yielding exact results. Initial values for K, Θ and t are easily
obtained by applying a QR-factorization on P̃init. After optimization, the calibration process results in
an average absolute reprojection error in the order of magnitude of 1 pixel, which is largely sufficient
for the envisaged purpose. Figures 13 and 14 respectively show an example of the calibration of the
static and drone camera.

(a) (b)

Figure 13. Calibration of the static camera setup: (a) calibration frame of static camera 3 with
indication of image correspondence points (4) and the reprojected world correspondence points
(�) and (b) average reprojection error of the 21 calibrated static cameras.

(a) (b)

Figure 14. Calibration of the drone camera: (a) initial frame with indication of image correspondence
points (4) and the reprojected world correspondence points (�) and (b) indication of the drone’s initial
position relative to the bridge deck (red dot) and initial FOV (gray-shaded area).

4.1.3. Position and Orientation Estimation of the Drone

In contrast to the static cameras, where no relative movement occurs because of the firm fixation to
the aluminum trusses, the drone is subjected to non-negligible changes in position and orientation due
to wind loading. This poses a problem since the calibration is only performed on the initial frame. It is
observed that the intrinsic camera parameters, K, and radial distortion coefficients, [κ1, κ2, κ3], do not
change, and therefore it is only needed to compute the position t and orientation Θ of the drone of each
frame. The calibration points (×-shaped marks on the bridge deck) are tracked among the different
frames using the Kanade–Lucas–Tomasi (KLT) tracking algorithm [53,54] (function PointTracker).
The latter is particularly suited for tracking objects that do not change shape and possess a visual
texture. The tracker is configured using 3 image pyramid levels, a rectangular neighborhood block
size of 51 pixels and a maximum forward-backward error threshold of 10 pixels. A reliability score for
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each tracker point is computed accounting for the singularity of the spatial gradient and verifies if the
maximum reprojection error does not exceed the user-defined value. Tracked points with a reliability
less than 0.95 are excluded from further analysis. The retained tracked points are used to estimate
the pose using the 3D-2D correspondences using the same procedure as in Section 4.1.2 but with the
internal parameters [αx, αy, ux, uy] and radial distortion coefficients [κ1,κ2,κ3] already known.

An example of the pose estimation algorithm is shown in Figure 15, where the calibration points
on the initial frame (Figure 15a) are tracked on the 600th frame (Figure 15b). One can notice that not all
calibration points are found on the 600th frame, as only the points are retained of which the reliability
score is sufficiently high. The relative movements (Figure 16) show that the change in pose is primarily
dominated by translational changes and, to a lesser degree, some rotational changes.

(a) (b)

Figure 15. Example of the pose estimation algorithm using a KLT tracker: (a) initial frame with
indication of calibration points (dots) and (b) 600th frame with retained calibration points using the
KLT tracker.

(a) (b)

Figure 16. Relative movements of the drone to the original position and orientation as obtained from
the position and orientation estimation algorithm: (a) translations along and (b) rotation around the X
(dashed), Y (dotted) and Z (solid) axis.

4.1.4. Retrieving the 3D Position Using Stereo-View Geometry: Triangulation

If a point (or hat) is visible in two (or more) cameras A and B with camera projection matrices PA

and PB and with the undistorted image coordinates mu,A and mu,B, its 3D location can be obtained
using triangulation (Figure 17a). The 3D location is found for the point M for which the following holds:

{
mu,A = PAM
mu,B = PBM

(6)

Due to the presence of measurement errors, no exact solution exists. In [51] an iterative procedure
is proposed which obtains M by minimizing the reprojection error.
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4.1.5. Retrieving the 3D Position Using Mono-View Geometry: Homography

In general, one needs stereo vision to retrieve the 3D location of an object. If, however, additional
information is available it might be possible to retrieve the world coordinates based on a single 2D
image. In our case, the height of every pedestrian is known. One can therefore define a plane π,
parallel to the bridge deck with a distance equal to the participant’s height. The detection should
lie on this plane and thus a planar homography can be used to relate a measured image coordinate
to a corresponding world location (Figure 17b). Hartley and Zisserman developed a methodology
to obtain a homography between the image plane and plane π if 4 correspondence points on the
plane are known [52]. While easy to use since the projection matrix P of the camera is not required,
an important drawback is that for every pedestrian (which has his own height) 4 calibration points are
needed. Theoretically this would require 148 × 4 points per camera. To overcome this cumbersome
procedure, the homography is instead directly calculated using the projection matrix P of the camera
and the pedestrian’s height, as described in Appendix A. The latter procedure is possible since the
projection matrix P of each camera is known in the present study.

The relation between the undistorted homogeneous image and world point is described by a
planar homography in case of mono-vision geometry:

mu =

xu

yu

wu

 ' Hπ

X
Y
W

 . (7)

When expressed in Euclidean coordinates the relation between the world location and detection
on the image plane becomes non-linear:

[
xu/wu

yu/wu

]
=

Hπ1 [X,Y,1]T

Hπ3 [X,Y,1]T

Hπ2 [X,Y,1]T

Hπ3 [X,Y,1]T

 (8)

with Hπ,j the jth row of the homography Hπ .

4.2. Trajectory Reconstruction Using a Kalman Filter

Multiple pedestrians and the occasional occurrence of misdetections (precision ≤ 100%, Section 3)
result in a multi-object data association problem. In addition, the measurements are subject to
measurement errors. To ensure a reliable and robust data association, a Kalman filter (KF) [55]
is used as a motion-based estimator of a pedestrian’s position in consecutive frames.

The KF is configured with a state-space matrix using the constant-velocity assumption. This choice
is motivated given the higher frame rate of the cameras (30 fps, Section 2.1). The frame rate is high
relative to the expected walking speed (≈5 km/h) and the body movement (average step frequency
1.8 Hz = 0.56 1

s ).
Given the employed state-space model, the state vector contains the position and velocity of

the pedestrian. In case the observations are made in stereo view, the X, Y and Z coordinate are
considered. In the mono-view case, the vertical Z coordinate is dropped as it is predefined by the
plane π (Section 4.1.5).

To establish the measurement vector of a pedestrian, its a priori estimate of the location is projected
onto the image plane(s) of the closest camera(s) (Equation (5)). The detection whose distance is minimal.
A maximal distance threshold of 20 pixels (≈120 mm ground distance ≈1 radius of a pedestrian’s hat,
Section 2.1) is defined. If no detections are found within this distance, there is no measurement for that
time step.

The observation matrix relates the measurement and state vector. Both vectors are expressed in
world coordinates. Although the velocity is not directly measured, it is obtained as a result of the
Kalman filter process by applying the state transition matrix.
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Random errors are present in the measurements. A partial detection and the application of
morphological operations (Figure 10) on the raw detection mask result in a deviation of the detected
centroid with respect to the true one. The random measurement error in the image plane is modeled
using a bivariate normal distribution with no correlation between the horizontal and vertical direction
and between different frames. The variance in both directions is assumed identical in the image plane.
Hence, the covariance matrix describing the measurement error in the image plane is a diagonal matrix
and the 95% confidence region of the detections in the image plane are described by circles. It is
observed that for the static cameras the blob sizes are bigger in the center compared to the ones at
the sides of the image. For the drone, the blob size is nearly constant over the entire image width.
Therefore, the variance in case of the static camera setup is assigned a value of 122 pixels2 in the middle
of the image, linearly decreasing to a value of 52 pixels2 at the vertical sides of the image plane. For the
drone, a constant value of 52 pixels2 is adopted. The values are chosen empirically as it is observed
that their corresponding 95% confidence regions include the hat of the pedestrians for all possible
locations on the image (Figure 18).

The probability density function (PDF) of the random measurement noise of the detection is
defined in the image plane. The measurements are, on the other hand, expressed in the world space
coordinates. A conversion of the PDF defined on the image plane(s) to the corresponding world space
is required. In case of mono conversion, change of stochastic variables is employed to obtain the PDF
of the measurement in world coordinates [56]. For the stereo case, the mapping is no longer one-to-one
and therefore the PDF is calculated numerically. Each location on the bridge deck is projected onto
the two corresponding images. Next, a grid on both images is defined covering the 95% confidence
domain. Every possible combination of the gridpoints on both planes is considered, its corresponding
3D world location is calculated (Section 4.1.4) and the corresponding probability is assigned to that
point. Finally, a trivariate normal distribution is fitted on the obtained point cloud where each point
has a certain probability which allows the obtaining of the covariance matrix of the measurement of
the stereo case in world coordinates. The 95% confidence intervals indicate that the measurement noise
in world coordinates is no longer uncorrelated among the different directions (Figure 19). To compare
both error covariance matrices, the stereo error is projected onto the horizontal plane. In addition,
the major axis of the 95% of the (horizontally projected) uncertainty ellipse is calculated (Figure 20).
In the case of the mono-vision setup, the maximum horizontal random measurement error varies
between 15 cm and 25 cm and increases with the distance from the camera. For the stereo vision setup,
the maximum horizontal random measurement error is in the order of magnitude of 10 cm and is
nearly constant over the bridge deck. The comparison illustrates that the uncertainty related to the
random measurement error is larger in case of mono-vision. Figures 21 and 22 show the confidence
regions and corresponding maximal horizontal random measurement error of the mono conversion
for the drone. The maximum horizontal random measurement error is nearly constant over the bridge
deck (within the FOV) and in the same order of magnitude as for the mono-vision setup of the static
cameras This is a logical consequence of the fact that the 95% confidence region was defined to capture
a pedestrian’s hat in the image plane for both camera setups.
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Figure 17. Conceptual illustration of the propagation of random measurement noise: an error in the
image-plane results in an error in world coordinates for (left) mono and (right) stereo conversion.
The PDF of the detections is represented by the shaded area on the image planes while the PDF of the
obtained world coordinate is given by the shaded area on the plane π. In case of the stereo conversion,
the PDF is projected onto the plane π as to only retain the horizontal uncertainty.

Figure 18. Random measurement error of the detection in the image plane: (left) snapshot of the drone
camera with the white dashed line indicating the (right) corresponding zoom with indication of the
95% confidence regions of the detections considering measurement noise (green lines) and the true
detection of the pedestrians (green dots).

Figure 19. Representation of the (horizontally projected) random measurement error covariance matrix
of the static camera setup for a quarter of the bridge deck for (top) mono and (bottom) stereo vision:
95% confidence regions (lines) for different locations on the bridge deck (dots). The confidence regions
are rescaled with a factor 3 around the true locations for illustration purposes.

0

0.3

0

0.3

Figure 20. Maximum horizontal random measurement error of the static camera setup for (top) mono
and (bottom) stereo setup for a quarter of the bridge deck. Colorbar expressed in meters.

Figure 21. Representation of the random measurement error covariance matrix of the drone camera for
a quarter of the bridge deck: 95% confidence regions (lines) for different locations on the bridge deck
(dots). The confidence regions are rescaled with a factor 3 around the true locations for illustration
purposes. The hatched area represents the part of the bridge deck that is outside the FOV of the camera.
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0

0.3

Figure 22. Maximum horizontal random measurement error of the drone camera. The red dot is the
initial position of the drone. The hatched area represents the part of the bridge deck that is outside the
FOV of the camera. Colorbar expressed in meters.

Besides the random measurement errors, ystematic errors (i.e., errors which are correlated
over consecutive time steps) are also present by the fact that the pedestrian’s hat (represented by a
hemisphere) is not projection invariant. Therefore, the center of mass of the head does not coincide
with the centroid of the projected hemisphere (Figure 23 left). In case of mono-view, an additional
systematic error is induced by the vertical sway of the head as a result of the walking locomotion.
As such, the homography which assumes that the center of mass lies on the plane defined by the
homography (Section 4.1.5) is an approximation of the real situation (Figure 23 right). Because the
aforementioned sources of error are systematic instead of random, they are not removed by the
Kalman filter and smoother. Their influence on the result is investigated in Section 5.1. A third cause
of systematic measurement error are the imperfect calibration of the cameras. However, given the low
reprojection error obtained after calibration (Section 4.1.2) it is assumed that this source of systematic
error is negligible compared to the other ones.

Figure 23. Conceptual illustration of the systematically induced measurement errors: (left) the colored
hat (blue hemisphere) is not projection invariant when projected onto the image plane (blue ellipsoid)
and its centroid (blue dot) does not coincide with the projected center of mass of the sphere (red dot).
(right) In case of mono-view, the vertical sway of the pedestrian’s head around the plane π induces an
error as it does not coincide with the plane π.

It is not straightforward to define the process noise matrix. To avoid an arbitrarily assignment
of its value, the expectation maximum algorithm [57] is employed. The method uses the entire set
of smoothed observations and measurements. The optimal process noise matrix is found for which
the likelihood of occurrence of the measurement vector is maximized. A closed-form expression is
provided in [57].

The process is executed using an initial estimate of the process noise covariance with a variance
of (0.10 m)2 and (0.05 m/s)2 for the locations and velocities and zero covariance among the variables is.
The online KF and RTS smoother yield the smoothed results. Then, an optimal process noise matrix is
estimated. The process is repeated until convergence is attained.

5. Results and Discussion

5.1. Theoretical Example to Evaluate the Effect of the Systematic Measurement Errors

Besides the random measurement noise, systematic errors in the obtained trajectories are present
(Figure 23). To evaluate their effect, a theoretical example is first considered. A camera setup identical
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to the one of the large-scale measurement campaign is used (Section 2.1). The theoretical trajectory
consists of a walking pedestrian along a quarter bridge deck and turning around at static camera 1
with a lateral position of 0.4 m and 2.6 m (Figure 24a). The Z-coordinate of the pedestrian’s head is
assumed to be 1.7 m above the bridge deck. Along its trajectory, the pedestrian is visible in multiple
cameras depending on the considered setup (mono or stereo vision, Figure 24b,c). As this is a purely
theoretical situation, no random measurement error is present and hence the only discrepancy between
true and estimated trajectory stems from the modeled systematic errors: the projection-variant shape
of the shape of the hat (Section 5.1.1) and the vertical sway of the pedestrian’s head during the walking
(Section 5.1.2).

(a) X
Y

(b)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

(c)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

Figure 24. True trajectory of the theoretical example: (a) top view of the trajectory (line) and speed
vector every 0.5 s (arrows) and indication of the position of the static cameras (white-filled dots)
and drone (red-filled dot), (b) longitudinal and (c) lateral position over time with indication of the
mono-vision static camera setup (blue), stereo vision static camera setup (red) and mono-vision drone
camera setup (green).

5.1.1. Effect of the Shape of the Hat

The effect of the shape is investigated by modeling the colored hat as hemisphere with radius
r = 0.10 m (Section 2.1). The centroid of the deformed projection is obtained using a blob analyzer
(Section 3) while the corresponding (world) trajectory is determined employing the presented either
triangulation (stereo vision, Section 4.1.4) or a homography (mono-vision, Section 4.1.5). The difference
between the true trajectory and the measured trajectory (including the systematic error) is calculated.
In addition the difference between the trajectories obtained by the static and drone camera is
determined. The results (Figure 25) show that the maximum induced error is 4 cm for all measurement
setups and depends on the location of the pedestrian and increases with the obliqueness of the viewing
angle (Figure 25a–c). The maximum relative difference of between the trajectories obtained by the
static and drone camera setup are respectively 6 cm in case of the mono-setup and 4 cm in case of the
stereo vision setup (Figure 25d).
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(a)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

(b)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

(c)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

(d)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5

drone

Figure 25. Overview of the systematic error induced by the projection of the hemisphere-shaped
pedestrian’s hat for the mono-vision static camera setup (blue), stereo vision static camera setup (red)
and mono-vision drone camera setup (green): (a) longitudinal and (b) lateral error relative to the true
trajectory, (c) absolute error relative to the true trajectory and (d) absolute difference of the trajectory
obtained by the static camera setup relative to the drone camera setup.

5.1.2. Effect of the Vertical Sway of the Head

The evaluate the vertical sway of the head, a vertical sinusoidal movement with an amplitude of
2 cm and a frequency of 2 Hz is superimposed on the vertical Z-coordinate of the trajectory. To exclude
of the influence of the shape of the hat, it is now modeled with a point instead of a hemisphere.
The point is projected onto the image planes (Equation (5)) and its (horizontal) world position is
calculated. The results (Figure 26a–c) show that the maximum error between the true trajectory and
the trajectory identified by the camera system is 2 cm for the measurement setups involving a single
camera and no error is introduced in case of the stereo vision setup. Indeed, the vertical sway of
the head does not introduce a horizontal error in case of stereo vision since no prior assumption is
made with respect to a predefined plane on which the detection should lie (Section 4.1.5). When the
results of the static setup are compared to the trajectories of obtained by the drone setup (Figure 26d),
an absolute difference in the order of magnitude of 2 cm is observed.
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(a)
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(b)
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drone

(c)

5 4 3 2 1 2 3 4 5
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5 4 3 2 3 4 5
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(d)

5 4 3 2 1 2 3 4 5

4 3 2 1 2 3 4
5 4 3 2 3 4 5
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Figure 26. Overview of the systematic error induced by the vertical sway of the pedestrian’s head for the
mono-vision static camera setup (blue), stereo vision static camera setup (red) and mono-vision drone
camera setup (green): (a) longitudinal and (b) lateral error relative to the true trajectory, (c) absolute
error relative to the true trajectory and (d) absolute difference of the trajectory obtained by the static
camera setup relative to the drone camera setup.

5.2. Experimental Results

5.2.1. Obtained Trajectories

Figure 27a,b show a heat map of the trajectory for the case of walking (test 9, 0.50 pers./m2,
Table 1) of a single participant and the whole group, respectively. In Figure 27b a certain degree
of lane formation can be noticed. Although the authors recognize that the considered test setup is
artificial, lane formation in the flow of a high-density crowd is a phenomenon that has been predicted
by numerical calculations using theoretical social force models describing pedestrian dynamics [20].

(a) (b)

Figure 27. Heat map of the position for the case of walking for half a bridge deck during the test setup
W148_free1: (a) a single pedestrian and (b) the entire crowd.

5.2.2. Uncertainty of the Obtained Trajectories by the Static Camera Setup

Figure 28 depicts the maximum horizontal uncertainty of the estimated state (location) for both
the case of walking and jogging. The uncertainty is calculated as the major axis of the 95% confidence
ellipse, related to the covariance of the smoothed state, ΣΣΣk|N . This Figure shows that after application
of the Kalman smoothing a similar horizontal uncertainty is found for both measurement methods
(stereo and mono) and is nearly constant over the bridge deck, as opposed to the maximum random
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measurement error. Furthermore, it is noticed that the uncertainty is somewhat higher for jogging
(order of magnitude of 3–4 cm) than walking (order of magnitude 2–3 cm) as a result of the higher
speed. The frame rate is the same, but the jogging speed is higher resulting in a larger movement
between frames. The prescribed constant motion model slightly deviates from the true trajectory,
resulting in a larger measurement residual and thus higher uncertainty of the optimal estimated state.

Figure 29 shows an example of the application of the pedestrian trajectory reconstruction
procedure (Section 4.2) where it is clearly illustrated that the initial state uncertainty, as obtained
by the measurement, is drastically reduced after applying the Kalman filtering and smoothing.

(a) (b)

(c) (d)

(e) (f)

Figure 28. Uncertainty of the trajectories obtained by the static camera setup by representation of the
(horizontally projected) time and pedestrian-averaged smoothed state uncertainty matrix ΣΣΣk|N : 95%
distance of the uncertainty in the horizontal direction of the estimated state (depicted for half a bridge
deck): walking in case of (a) stereo, (b) mono and (c) mono using the EKF conversion, jogging in case of
(d) stereo, (e) mono and (f) mono using the EKF conversion. The corresponding color bar is expressed
in meters. The white space corresponds to places where no operational data is available.

(a) (b)

Figure 29. Example of the use of the Kalman filter and smoother in case of walking using the static
camera setup to obtain an optimal estimate of a pedestrian’s trajectory (dashed line): the optimal
location with a time-interval of 1 s (dot), the 95% confidence region of the measurement including a
random measurement error (dotted line) and of the 95% region of the final state uncertainty (solid line)
for the case of (a) stereo vision and (b) mono-vision.

5.2.3. Uncertainty of the Obtained Trajectories with the Drone

The maximum horizontal uncertainty of the trajectories obtained with the drone is in the order of
magnitude of 2 cm, nearly constant over the bridge deck and similar for mono and EKF conversion
(Figure 30). This uncertainty is also in the same order of magnitude as obtained for the static camera
setup (Section 5.2.2).

(a) (b)

Figure 30. Uncertainty of the trajectories obtained by the drone by representation of the time and
pedestrian-averaged smoothed state uncertainty matrix ΣΣΣk|N : 95% distance of the uncertainty in the
horizontal direction of the estimated state (depicted for half a bridge deck): walking in case of (a) mono,
(b) mono using the EKF with the corresponding color scale expressed in meters. The white space
corresponds to places where no operational data is available.
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5.2.4. Comparison of the Different Camera Setups

The trajectories obtained by the different camera setups (static versus drone and static stereo
versus static mono-vision) are compared by calculating the Root Mean Squared Differences (RMSD)
(Figure 31), which is a combination of the average random and systematic error. The comparison of
the static mono and static stereo setup (Figure 31a) reveals that the majority of the tracks deviate less
than 7.5 cm. Comparing the obtained trajectories of the static setup with the drone setup (Figure 31b)
shows that the difference is less than 15 cm for all the obtained trajectories, for both the mono and
stereo setup. The difference for the stereo setup is somewhat higher than for the mono setup. Since the
comparison is a combination of both the systematic and random errors, the differences are higher than
those given by the uncertainty of the smoothed state (Sections 5.2.2 and 5.2.3).

(a) (b)

Figure 31. Histogram of the RMSD of the trajectories of the different camera setups: (a) static mono
versus static stereo camera setup and (b) drone versus static mono (blue) and stereo (red) camera setup.

6. Conclusions

The ambition of this study is to develop a measurement setup allowing accurate and robust
obtaining of the trajectories of a high-density crowd on footbridges. A case study of a large-scale
measurement campaign is presented, involving pedestrian densities up to 0.50 pers/m2 and
considering both walking and jogging events. The setup consisted of 21 static cameras with sufficient
overlap to allow mono and stereo vision. The related measurement accuracy of both methods is
assessed and revealed that the accuracy of the stereo vision is higher compared to the mono-view
setup. To minimize the effect of the random measurement error a Kalman filter and smoother are
implemented. As a result, the uncertainty of the final trajectories is reduced to a fraction of the
measurement uncertainty, yielding similar results for both conversions in case of walking (2–3 cm)
and jogging (4–5 cm). Also, the systematic error introduced by the shape of the hat and the walking
locomotion of the participants is investigated and is observed to be less than 6 cm. Besides the static
camera setup, a drone was used to additionally record a part of the bridge deck during operation.
Similar observations with respect to the uncertainty as the static camera setup are found. The different
measurement methods (mono/stereo static setup and mono-drone setup) are compared by calculating
the Root Mean Squared Differences (RMSD). This quantity comprises both systematic and random
errors and is found to be less than 15 cm for all collected trajectories. Therefore, it is concluded that the
envisaged accuracy for structural dynamics purposes (15 cm) is largely attained.

Although the methodology is applied on a specific case study, the camera setup, measurement
methodology and post-processing strategy are generic since an extension to a bridge with virtually
any length is possible. The collected empirical trajectories allow a calibration of the parameters of the
pedestrian dynamics model for the specific situation of crowd flows on footbridges. Moreover, together
with the other collected quantities (3D body motion and structural accelerations), a benchmark data
set is obtained which should find use in the further development and calibration of load models that
describe human-induced loading on footbridges.
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EKF Extended Kalman Filter
RMSD Root Mean Squared Difference

Appendix A. Derivation of the Homography Based on Plane Equation and Camera
Projection Matrix

A homography describes the mapping of two points in different planes. In this case, the first
plane is the (undistorted) image plane while the second plane π is a plane in the world space parallel
to the bridge deck at the location of the considered camera and has a distance to the bridge surface
which equals the pedestrian’s height.

The plane π has the following equation expressed in homogeneous coordinates:

AX + BY + CZ + DW = 0. (A1)

The homography Hπ is defined as the relationship between the image coordinates [x, y, w]T and
the world coordinates [X, Y, W]T:

m

x
y
w

 ' Hπ

X
Y
W

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


X

Y
W

 (A2)

The relationship between image coordinates and world coordinates is also described by
Equation (2). It is assumed that each detection lies on the plane π and thus holds that Z =

−(AX + BY + D)/C (not valid when C = 0 i.e., the plane π is parallel to the Z axis). The Z coordinate
is eliminated as the plane π is nearly parallel to the XY plane and thus for the envisaged application
in the current work the plane π will never be parallel to the Z axis. Substituting this relation in
Equation (2) and combining it with relation (A2) yields the components of the homography matrix Hπ :

h11 = p11 − A
C p13 h31 = p31 − A

C p33

h12 = p12 − B
C p13 h32 = p32 − B

C p33

h13 = p14 − D
C p13 h33 = p34 − D

C p34

(A3)

With pij the component on the ith row and jth column of the camera projection matrix P.
Elements h21, h22 and h23 are calculated analogously as h11, h12 and h13.
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27. Dang, H.V.; Živanović, S. Influence of Low-Frequency Vertical Vibration on Walking Locomotion.
J. Struct. Eng. 2016, 142. [CrossRef]

28. Racic, V.; Brownjohn, J.; Pavic, A. Reproduction and application of human bouncing and jumping forces
from visual marker data. J. Sound Vib. 2010, 329, 3397–3416. [CrossRef]

29. Carroll, S.; Owen, J.; Hussein, M. Reproduction of lateral ground reaction forces from visual marker data and
analysis of balance response while walking on a laterally oscillating deck. Eng. Struct. 2013, 49, 1034–1047.
[CrossRef]

30. Bocian, M.; Brownjohn, J.; Racic, V.; Hester, D.; Quattrone, A.; Monnickendam, R. A framework for
experimental determination of localised vertical pedestrian forces on full-scale structures using wireless
attitude and heading reference systems. J. Sound Vib. 2016, 376, 217–243. [CrossRef]

31. Neges, M.; Koch, C.; König, M.; Abramovici, M. Combining visual natural markers and IMU for improved
AR based indoor navigation. Adv. Eng. Inform. 2017, 31, 18–31. [CrossRef]

32. Kang, W.; Han, Y. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization.
IEEE Sens. J. 2015, 15, 2906–2916. [CrossRef]

33. Tian, Q.; Salcic, Z.; Wang, K.I.; Pan, Y. A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using
Smartphones. IEEE Sens. J. 2016, 16, 2079–2093. [CrossRef]

34. Poulose, A.; Han, D.S. Hybrid indoor localization using IMU sensors and smartphone camera. Sensors 2019,
19, 5084. [CrossRef]

35. Xing, B.; Zhu, Q.; Pan, F.; Feng, X. Marker-based multi-sensor fusion indoor localization system for micro air
vehicles. Sensors 2018, 18, 1706. [CrossRef]

36. Mirshekari, M.; Pan, S.; Fagert, J.; Schooler, E.M.; Zhang, P.; Noh, H.Y. Occupant localization using
footstep-induced structural vibration. Mech. Syst. Signal Process. 2018, 112, 77–97. [CrossRef]

37. Boltes, M.; Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 2013, 100, 127–133. [CrossRef]
38. Haghani, M.; Sarvi, M. Herding in direction choice-making during collective escape of crowds: How likely

is it and what moderates it? Saf. Sci. 2019, 115, 362–375. [CrossRef]
39. Shahhoseini, Z.; Sarvi, M. Pedestrian crowd flows in shared spaces: Investigating the impact of geometry

based on micro and macro scale measures. Transp. Res. Part B Methodol. 2019, 122, 57–87. [CrossRef]
40. Feliciani, C.; Nishinari, K. Measurement of congestion and intrinsic risk in pedestrian crowds. Transp. Res.

Part C Emerg. Technol. 2018, 91, 124–155. [CrossRef]
41. Shi, X.; Ye, Z.; Shiwakoti, N.; Tang, D.; Lin, J. Examining effect of architectural adjustment on pedestrian

crowd flow at bottleneck. Phys. A Stat. Mech. Its Appl. 2019, 522, 350–364. [CrossRef]
42. Van Hauwermeiren, J.; Van den Broeck, P.; Van Nimmen, K.; Vergauwen, M. Vision-based methodology

for characterizing the flow of a high-density crowd. In Proceedings of the 9th International Conference on
Bridge Maintenance, Safety and Management, Melbourne, Australia, 9–13 July 2018; Taylor and Francis
Group, CRC Press: Melbourne, Australia, 2018.

43. Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P. Characterisation of walking
loads by 3D inertial motion tracking. J. Sound Vib. 2014, 333, 5212–5226. [CrossRef]

44. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment: A Modern Synthesis.
In Proceedings of the ICCV 99 Proceedings of the International Workshop on Vision Algorithms: Theory and
Practice, Corfu, Greece, 21–22 September 1999.

45. Berns, R.; Billmeyer, F.; Saltzman, M. Billmeyer and Saltzman’s Principles of Color Technology; Wiley-Interscience,
Wiley: Hoboken, NJ, USA, 2000; ISBN 9780471194590.

46. MATLAB version 9.1.0.441655 (R2016b); The Mathworks, Inc.: Natick, MA, USA, 2017.
47. Thomas, S.W. Efficient inverse color map computation. Graph. Gems II 1991, 116–125. [CrossRef]
48. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
49. Meyer, F. Topographic distance and watershed lines. Signal Process. 1994, 38, 113–125. [CrossRef]
50. Maurer, C.R., Jr.; Qi, R.; Raghavan, V. A Linear Time Algorithm for Computing Exact Euclidean Distance

Transforms of Binary Images in Arbitrary Dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 2003,
25, 265–270. [CrossRef]

51. Moons, T.; Gool, L.J.V.; Vergauwen, M. 3D Reconstruction from Multiple Images: Part 1—Principles.
Found. Trends Comput. Graph. Vis. 2009, 4, 287–404. [CrossRef]

52. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge Books Online; Cambridge
University Press: Cambridge, UK, 2003; ISBN 9780521540513.

http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001599
http://dx.doi.org/10.1016/j.jsv.2010.02.021
http://dx.doi.org/10.1016/j.engstruct.2012.12.028
http://dx.doi.org/10.1016/j.jsv.2016.05.010
http://dx.doi.org/10.1016/j.aei.2015.10.005
http://dx.doi.org/10.1109/JSEN.2014.2382568
http://dx.doi.org/10.1109/JSEN.2015.2510364
http://dx.doi.org/10.3390/s19235084
http://dx.doi.org/10.3390/s18061706
http://dx.doi.org/10.1016/j.ymssp.2018.04.026
http://dx.doi.org/10.1016/j.neucom.2012.01.036
http://dx.doi.org/10.1016/j.ssci.2019.02.034
http://dx.doi.org/10.1016/j.trb.2019.01.019
http://dx.doi.org/10.1016/j.trc.2018.03.027
http://dx.doi.org/10.1016/j.physa.2019.01.086
http://dx.doi.org/10.1016/j.jsv.2014.05.022
http://dx.doi.org/10.1016/B978-0-08-050754-5.50034-7
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1109/TPAMI.2003.1177156
http://dx.doi.org/10.1561/0600000007


Infrastructures 2020, 5, 51 27 of 27

53. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision.
In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada,
24–28 August 1981.

54. Shi, J.; Tomasi, C. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 21–23 June 1994. [CrossRef]

55. Kalman, R.E. A New Approach to Linear Filtering And Prediction Problems. ASME J. Basic Eng. 1960,
82, 35–45. [CrossRef]

56. Bertsekas, D.; Tsitsiklis, J. Introduction to Probability; Athena Scientific Books; Athena Scientific: Nashua, NH,
USA, 2002; ISBN 9781886529403.

57. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. Ser. B 1977, 39, 1–38.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1115/1.3662552
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contribution of the Present Study

	Large-Scale Measurement Campaign
	Camera Setup
	Calibration Points
	Colored Hats

	Pedestrian Detection
	Pedestrian Trajectory Reconstruction
	Transformation of 2D Image Coordinates to 3D World Coordinates
	Camera Model
	Camera Calibration
	Position and Orientation Estimation of the Drone
	Retrieving the 3D Position Using Stereo-View Geometry: Triangulation
	Retrieving the 3D Position Using Mono-View Geometry: Homography

	Trajectory Reconstruction Using a Kalman Filter

	Results and Discussion
	Theoretical Example to Evaluate the Effect of the Systematic Measurement Errors
	Effect of the Shape of the Hat
	Effect of the Vertical Sway of the Head

	Experimental Results
	Obtained Trajectories
	Uncertainty of the Obtained Trajectories by the Static Camera Setup
	Uncertainty of the Obtained Trajectories with the Drone
	Comparison of the Different Camera Setups


	Conclusions
	Derivation of the Homography Based on Plane Equation and Camera Projection Matrix
	References

