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Abstract: Reinforced concrete bridge columns often endure significant damages during earthquakes
due to the inherent deficiencies of conventional materials. Superior properties of the new materials
such as shape memory alloy (SMA) and ultra-high-performance concrete (UHPC), compared to the
reinforcing steel and the normal concrete, respectively, are needed to build a new generation of
seismic resistant columns. Application of SMA or UHPC in columns has been separately studied,
but this paper aims to combine the superelastic behavior of NiTi SMA and the high strength of UHPC,
in order to produce a column design with minimum permanent deformation and high load tolerance
subjected to strong ground motions. Additionally, the excellent corrosion resistance of NiTi SMA and
the dense and impermeable microstructure of UHPC ensure the long-term durability of the proposed
earthquake resistant column design. The seismic performance of four columns, defined as steel
reinforced concrete (S-C), SMA reinforced concrete (SMA-C), SMA reinforced UHPC (SMA-UHPC),
and reduced SMA reinforced UHPC (R-SMA-UHPC) is analyzed through a loading protocol with up
to 4% drift cycles. The use of NiTi SMA bars for the SMA reinforced columns is limited to the plastic
hinge region where permanent deformations happen. All the columns have 2.0% reinforcement
ratio, except the R-SMA-UHPC column that has a 1.33% reinforcement ratio to optimize the use
of SMA bars. Unlike the S-C column that showed up to 68% residual deformation compared to
peak displacement during the last loading cycle the SMA reinforced columns did not experience
permanent deformation. The SMA-C and R-SMA-UHPC columns showed similar strengths to the
S-C column, but with about 5.0- and 6.5-times larger ductility, respectively. The SMA-UHPC column
showed 30% higher strength and 7.5 times larger ductility compared to the S-C column.
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1. Introduction

Besides durability issues involved with normal concrete and reinforcing steel these conventional
materials provide insufficient seismic capacity for the bridge columns. Development of new materials,
such as shape memory alloy (SMA) and ultra-high-performance concrete (UHPC), with excellent
durability and mechanical properties provides the opportunity to improve the performance of
bridge columns against strong earthquakes. Accordingly, SMA and UHPC have been evaluated and
implemented through various designs for improving the seismic performance of structures [1–3].

Different types of SMA such as NiTi SMA [4], Cu-based SMA [5], and Fe-based SMA [6] have been
investigated for their mechanical and durability properties. One of the unique properties of SMAs,
especially NiTi and Cu-based types, is the superelastic behavior that allows the material to retain its
original shape after unloading, and dissipate energy through cycles of flag-shaped hysteretic loops [7,8].
SMAs have been used through different techniques to mitigate the earthquake effects on structures.
For example, SMA dampers are utilized in bridges [9] and buildings [10] to improve the damping
and frequency response of these structure; SMA braces are proposed to retrofit bridges [11,12] and
buildings [13] against seismic excitations; and SMA restrainers are used in bridges to control the relative
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movements of superstructure and the response of piers [14–17]. Moreover, base isolation systems are
equipped with the SMAs to mitigate the seismic actions on bridges and buildings [5,18]. Applications
of SMAs also include reinforced concrete elements [19], steel beam-column connections [20], and even
marine structures [21–23].

UHPC is distinguished among cement-based materials including normal concrete due to its
excellent compressive strength and dense microstructure. While normal structural concrete has a
28 days compressive strength of about 35 MPa the compressive strength of UHPC is at least 145 MPa at
this age [24]. UHPC has been used in construction of several bridges worldwide such as the Mars
Hill bridge in the U.S., the Cat Point Creek bridge in the U.S., the Jakway Park bridge in the U.S.,
the Sherbrooke overpass in Canada, the Peace bridge in South Korea, the Wild bridge in Austria,
the GSE bridge in Japan, the Kampung Linsum bridge in Malaysia, the Celakovice Pedestrian bridge
in Czech Republic, the Luan Bai Dried-Canal Railway bridge in China, and the Yuan Jiahe bridge
in China [25]. Outstanding workability and long-term durability of UHPC also make it an ideal
material for prefabrication of bridge elements and accelerated construction industry [26]. The unique
compressive strength of UHPC along with its proper integrity under tensile loads prevent column
failure subjected to major earthquakes with vertical acceleration component, during which significant
axial load variations and large moment demands affect the column [27]. Additionally, the dense
microstructure of UHPC [28] makes it impermeable to moisture and adverse chemicals, and prevents
aging reactions that often affect normal concrete [29].

Several studies have implemented NiTi SMA or UHPC to advance the seismic design of columns.
Varela and Saiidi [30] evaluated a plastic hinge rubber element with NiTi SMA bars in a quarter-scale
column subjected to strong earthquake motions on a shake table. The use of this new concept limited
the column residual deformation to less than 0.5% after experiencing up to 7.0% drifts. Billah and
Alam [31] performed an analytical study to address the lack of corrosion resistance and significant
permanent deformation of regular steel reinforcements in reinforced concrete columns. They presented
three concrete columns in which NiTi SMA or stainless steel bars were used in the plastic hinge
region. Two columns with NiTi SMA bars in the plastic hinge region had either stainless steel or
fiber reinforced polymer bars above the hinge region and one column with stainless steel bars in the
plastic hinge region had fiber reinforced polymer bars above the hinge region. The bars of these hybrid
reinforced concrete columns were connected with couplers above the plastic hinge region. Accordingly,
they ensured the entire height of columns was reinforced with corrosion resistant reinforcing materials.
They analyzed the columns under seismic loading and found the residual deformation of the columns
with NiTi SMA bars to be 87% less compared to the column with stainless steel bars in the plastic
hinge region. Mohebbi et al. [32] presented a posttensioned precast bridge column with plastic hinge
region made of UHPC material, which was connected to the foundation with a pocket connection.
They used unbonded carbon fiber reinforced polymer posttensioning tendons inside the column to
minimize the permanent drifts and tested this technique on shake table through the Northridge-Rinaldi
earthquake record. Results showed that the posttensioning approach for the column with UHPC in the
plastic hinge region was effective in eliminating permanent deformations and increasing displacement
ductility to 13.8 at maximum drift ratio of 6.9%. Farzad et al. [33] proposed a retrofitting technique for
reinforced concrete columns using UHPC. They built eleven quarter-scale columns and intentionally
damaged them with spalling concrete to implement their strengthening technique. They sandblasted
the damaged part of columns and repaired seven columns with UHPC containing 2% and 4% steel
fibers, one column with normal concrete, and left the rest unrepaired to be considered as reference.
According to the column tests under constant axial load and cyclic lateral load repairing the damaged
columns with UHPC shell increased the strength of columns without changing their size. Moreover,
different fiber contents of UHPC resulted in similar strength gain in the columns.

Unlike previous studies on the application of NiTi SMA or UHPC in bridge columns, this paper
presents a column design with a combination of NiTi SMA reinforcements and UHPC at the same
time to take advantage of both materials’ excellent properties against earthquake. The reduced ratio
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of SMA reinforcement is also evaluated in the column design with UHPC and SMA. Results of the
two UHPC columns, with full and reduced ratios of NiTi SMA reinforcement, are compared with two
concrete columns with SMA and steel reinforcements. In this study, the NiTi type of SMA is used, since
it benefits from larger and more stable flag shaped hysteretic loops of superelastic behavior compared
to the other SMA types, in order to minimize residual deformation and raise energy dissipation [34].
The NiTi SMA has a high corrosion resistance as well [35].

2. Finite Element Models

Four column sections are considered in this study, as shown in Figure 1. The columns are modeled
in OpenSees program [36]. All the columns are 3.6 m high and have a diameter of 0.8 m. The steel
reinforced concrete (S-C), SMA reinforced concrete (SMA-C), and SMA reinforced UHPC (SMA-UHPC)
column sections are reinforced with 2.0% of steel or NiTi SMA bars, but the reduced SMA reinforced
UHPC (R-SMA-UHPC) section has a reinforcement ratio of 1.33% to optimize the use of SMA bars.
The SMA reinforcements are only provided at the bottom quarter of the column height, as the plastic
hinge region and the top three quarters of the height is reinforced with steel bars. The SMA and steel
reinforcements are connected with mechanical couplers above the plastic hinge region. Geometry and
material configurations of the columns are presented in Table 1.
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Figure 1. Column sections.

Table 1. Geometry and material configurations of columns.

Column ID Height
(m)

Diameter
(m)

Aspect
Ratio Material Reinforcement

Ratio Section Height
Range (m)

Reinforcement
Material

Steel
Reinforced
Concrete

S-C 3.6 0.8 4.5 Concrete 2.0%
Plastic 0–0.8 Steel

Elastic 0.8–3.6 Steel

SMA
Reinforced
Concrete

SMA-C 3.6 0.8 4.5 Concrete 2.0%
Plastic 0–0.8 NiTi SMA

Elastic 0.8–3.6 Steel

SMA
Reinforced

UHPC

SMA-UHPC 3.6 0.8 4.5 UHPC 2.0%
Plastic 0–0.8 NiTi SMA

Elastic 0.8–3.6 Steel

Reduced SMA
Reinforced

UHPC

R-SMA-UHPC 3.6 0.8 4.5 UHPC 1.33%
Plastic 0–0.8 NiTi SMA

Elastic 0.8–3.6 Steel
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As shown in Figure 2, each column model consists of four equal-length elements along the height
from which the bottom one is a distributed plasticity element, with a fiber section representing the
plastic hinge region, and the top three elements are elastic. Seven equally distanced integration points
are used along the distributed plasticity element with fiber section, which are not shown in Figure 2 for
simplicity. According to Figure 2, the column mass is concentrated at five points along the height from
which the three middle points hold the summation of mass from half of two elements below and above
them, while the top and bottom points only hold the mass from half of their adjacent elements at the
top and bottom, respectively. Therefore, the concentrated mass at the top and bottom points is half of
the concentrated mass at the middle points.
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Figure 2. Column model in OpenSees.

The Concrete02, ReinforcingSteel, and SelfCentering models are used for concrete, steel, and SMA
materials, respectively. The Concrete02 model properly captures the post-peak behavior of concrete
during loading and unloading cycles and the ReinforcingSteel model accurately follows the linear
elastic, yield plateau, and strain hardening portions of reinforcing steel behavior in concrete in
opposition to the common bilinear steel models. The SelfCentering model constructs the flag-shaped
and energy dissipative SMA material hysteresis behavior in uniaxial direction under tension and
compression cycles [36]. The unconfined concrete has a compressive strength of 34.5 MPa, and peak
and ultimate strains of 0.0022 and 0.005, respectively. The Mander model [37] is used to obtain the
properties of the confined concrete. Accordingly, the confined concrete has a compressive strength
of 44.1 MPa, and peak and ultimate strains of 0.0054 and 0.0128, respectively. The properties of
unconfined UHPC are obtained from [24], for the case of using 6 mm straight steel fibers with 2%
volumetric content in mixture. Accordingly, the unconfined UHPC has a compressive strength of
145.8 MPa, and peak and ultimate strains of 0.0044 and 0.0146, respectively. The confined UHPC has a
compressive strength of 154.8 MPa, and peak and ultimate strains of 0.0137 and 0.0289, respectively.
The tensile strengths of concrete and UHPC are conservatively overlooked. The stress strain behavior
of confined concrete and UHPC are plotted in Figure 3. The steel reinforcement is Grade 60 with
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ultimate strain of 0.09, and yield and ultimate tensile strengths of 414 MPa and 621 MPa, respectively.
The superelastic behavior of NiTi SMA is implemented based on [12,34], as shown in Figure 4.
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An eigenvalue analysis is performed to obtain and compare the natural periods of the columns.
Then, a loading protocol consisting of a constant axial load and lateral cycles of displacement control
drifts is applied to the columns as shown in Figure 5. A constant vertical load of 1735 kN is applied to
the columns as the service load, which is equivalent to 10% of the compression capacity of the S-C
column. The columns are also subjected to eight displacement control lateral drift cycles at the top,
including two cycles of 0.5%, two cycles of 1.0%, two cycles of 2.0%, and two cycles of 4.0% drifts,
while their base is assumed as fixed support. Accordingly, the capacity of columns to respond a seismic
action is analyzed and compared through this loading protocol.
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3. Results of Analysis

According to the eigenvalue analysis the natural periods of the S-C, SMA-C, SMA-UHPC,
and R-SMA-UHPC columns are 0.038, 0.040, 0.034, and 0.035 second, respectively. Based on Equation (1)
and assuming mass, m, as a constant the columns with lower natural period, T, have higher initial
stiffness, K. Most importantly, the columns are analyzed subjected to the lateral cyclic loading protocol
and constant axial load, as explained in the previous section, to compare their seismic capacity.
The base shear versus drift diagrams are shown in Figure 6 for all the columns. The essential seismic
parameters to compare between different columns are the strength, residual deformation, drift ductility,
and energy dissipation. The obvious difference between the behavior of the S-C column and the
rest of columns with SMA reinforcement is the amount of residual deformation. During the 2.0%
and 4.0% drift cycles the residual deformation of S-C column at zero load is equivalent to 0.9% and
2.7% drifts, respectively. This means that during 2.0% and 4.0% drift cycles, there is 45% and 68%
residual deformation, respectively, in the S-C column, after unloading to zero load compared to the
peak displacement. On the other hand, replacing the steel reinforcement with the SMA reinforcement
in the plastic hinge region leads to zero residual deformation in all the SMA reinforced columns during
different drift cycles. This means that the S-C column cannot be serviceable after the earthquake, but the
SMA reinforced columns retain their serviceability. The S-C column shows more energy dissipation
through different loading cycles compared to the other columns but, since the energy is dissipated after
large permanent deformations, it would not benefit the column. In other words, the larger inside area
of base shear-drift cycles diagram of the S-C column is due to the significant residual deformations
and damages after returning to zero load during different drift cycles. Between the SMA reinforced
columns, the SMA-C column showed slightly more energy dissipation compared to the SMA-UHPC
and R-SMA-UHPC columns, especially during the initial drift cycles up to 2%.

T = 2π

√
m
K

(1)
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(d) R-SMA-UHPC.

In order to compare the performance of different columns in terms of strength all the base shear
versus drift diagrams are plotted in Figure 7 at the same time. The SMA-UHPC, R-SMA-UHPC, S-C,
and SMA-C columns have shown the highest to the lowest strengths of 619 kN, 495 kN, 476 kN,
and 441 kN, respectively. Therefore, the SMA-UHPC column design provides 30% higher strength
compared to the S-C column, and removes the residual deformation. The R-SMA-UHPC column
provides just about 4% higher strength compared to the S-C column. Accordingly, when UHPC is used
along with the SMA reinforcement, reducing the reinforcement ratio by one third results in getting a
similar strength to the S-C column, and still being able to remove the residual deformation. Moreover,
results show that using SMA reinforcement in the plastic hinge region of the SMA-C column does
not compromise the strength by more than 7% compared to the S-C column, while it prevents the
permanent deformation.
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Figure 7. Base shear versus drift diagrams of the columns.
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It is important to note that the UHPC columns with full and reduced ratios of SMA reinforcement
reach their maximum strength at about 4.0% drift, while the concrete columns with SMA and steel
reinforcements reach their peak strength at about 3.0% and 1.2% drifts, respectively. The column
drift ductility, µD, is defined in Equation (2) as the drift at peak strength, Dpeak, divided by the drift
at yield point, Dyeild. Accordingly, the SMA-UHPC, R-SMA-UHPC, and SMA-C columns have a
ductility of about 22, 20, and 15, respectively, while the ductility of S-C column is 3. Therefore, the SMA
reinforced columns, with UHPC or concrete, provide much larger ductility than the S-C column.
The R-SMA-UHPC and SMA-C columns provide similar strength to the S-C column, but their ductility
is about seven and five times that of the S-C column, respectively. As summarized in Table 2, results
show that the SMA-UHPC, R-SMA-UHPC, and SMA-C columns have superior seismic performance
compared to the S-C column in terms of ductility and residual deformation. The SMA-UHPC column
shows the best seismic performance among all the columns, given its highest strength and ductility.
Due to the high corrosion resistant of NiTi SMA bars used in the plastic hinge region, and the dense
and impermeable microstructure of UHPC over the entire column height, the proposed SMA-UHPC
column has excellent long-term durability in addition to its extraordinary seismic performance.

µD =
Dpeak

Dyeild
(2)

Table 2. Summary of the results.

Column Strength (kN) µD Residual Deformation

S-C 476 3 68%

SMA-C 441 15 0%

SMA-UHPC 619 22 0%

R-SMA-UHPC 495 20 0%

As presented in Table 2, the S-C column suffered from 68% residual deformation after unloading
to zero load during the last drift cycle. Figure 8 shows the distribution of corresponding residual
curvature, rotation, and deflection at the plastic hinge region of S-C column in the positive and
negative directions.
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Figure 8. Residual deformation at the plastic hinge region of S-C column: (a) curvature, (b) rotation,
(c) deflection.

Assuming linear behavior above the plastic hinge region, the residual deflection along the height
of S-C column is shown in Figure 9, in comparison with its peak deflection. Elimination of this
significant residual deflection as accomplished in the other columns by using the NiTi SMA bars in the
plastic hinge region is crucial for immediate serviceability of the bridge after earthquake.
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4. Summary and Conclusions

NiTi SMA bars are suitable alternatives for steel reinforcement of concrete elements in
seismic regions, due to their self-centering and energy dissipative properties. On the other hand,
UHPC properties in terms of strength and integrity significantly outweigh the concrete properties.
Among previous studies on the application of new materials in bridge columns, some have replaced
the steel reinforcement with NiTi SMA bars and others utilized UHPC instead of normal concrete.
Replacing steel reinforcement with NiTi SMA bars resulted in minimum permanent deformation for
columns but with no strength advantage over conventional columns. On the other hand, replacing
concrete with UHPC only increased the column strength, and did not reduce the residual deformations
in the absence of a secondary measure. In order to take advantage of the excellent properties of both
NiTi SMA and UHPC materials in the column, this study proposed and evaluated a column design
made of UHPC with full and reduced ratio of NiTi SMA bars in the plastic hinge region, and compared
its performance with existing designs. Four columns with 3.6 m height and 0.8 m diameter were
modeled in the OpenSees finite element program. Each column model consisted of four equal-height
elements from which the bottom element was nonlinearly modeled using fiber section and the top
three elements were elastic. The first model was the conventional S-C column. The second model was
the SMA-C column, which was similar to the first model but with NiTi SMA bars in the plastic hinge
region, instead of longitudinal steel reinforcement. The third model was the SMA-UHPC column,
in which the column was made of UHPC, and NiTi SMA bars were used in the plastic hinge region.
The fourth model was the R-SMA-UHPC column, which was similar to the third model, but with
reduced reinforcement ratio to optimize the use of SMA bars. Except for the R-SMA-UHPC column,
which had 1.33% reinforcement ratio, the rest of the columns had 2.0% reinforcement. The columns
were analyzed under constant axial load and lateral cyclic loading up to 4.0% drift. The main findings
of the study are summarized here:

• Unlike the S-C column, which experienced 68% residual deformation the columns with NiTi SMA
reinforcement did not suffer from permanent deformation.

• The strength of SMA-UHPC column, 619 kN, was about 30% higher compared to the S-C column,
476 kN.

• The strengths of SMA-C and R-SMA-UHPC columns were similar to the S-C column.
• The SMA-UHPC, R-SMA-UHPC, and SMA-C columns showed 7.5, 6.5, and 5 times larger ductility,

compared to the S-C column.

Accordingly, the SMA-UHPC column showed the best seismic performance compared to the
other columns in terms of strength, ductility, and residual deformation. It is also important to note
that the columns made of UHPC benefit from its dense microstructure and impermeability. Moreover,
the NiTi SMA bars are proven to have excellent corrosion resistance. Therefore, the SMA-UHPC and
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R-SMA-UHPC designs ensure long-term durability for columns, in addition to providing excellent
resilience against earthquakes.
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