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Abstract: Accelerated curing is used for mass production in the precast concrete industry. Autogenous
shrinkage and drying shrinkage occur in concrete, during and after accelerated curing. Thus, thermal
cracks may occur in concrete due to both heating and cement hydration at early age, whereas drying
shrinkage causes cracks after demolding. Ground granulated blast-furnace slag cement (GGBS),
a byproduct in steel manufacture, has been used to improve concrete strength development during
accelerated curing but poses a challenge of increased shrinkage. In this paper, two types of granulated
blast-furnace slag cements were used to study mechanical and shrinkage properties of water cured
and concrete subjected to accelerated curing. Limestone powder and gypsums, with two different
types of fineness, were other additives used. An accelerated one day curing cycle was adopted that
consisted of a 3 h delay period, heating to 65 ◦C, a peak temperature maintained for 3 h, and, finally,
cooling. The results indicated that increment in gypsum fineness increased concrete expansion at one
day for both sealed and accelerated cured concrete. In drying condition, similar shrinkage was observed.
The addition of gypsum provided slightly lower shrinkage, and this may help to reduce cracking of
concrete. Limestone powder improved concrete strength at early age. The difference in blast-furnace
cement fineness did not have significant differences in compressive strengths, especially at 28 days.

Keywords: accelerated curing; ground granulated blast-furnace slag cement; autogenous shrinkage;
drying shrinkage

1. Introduction

Ground granulated blast-furnace slag cement is a supplementary cementitious material (SCM)
that is used in concrete, to reduce ordinary Portland cement (OPC) usage. OPC has a negative
environmental impact during its production [1]. There are different GGBS types for concrete works that
are distinguished either by their activity index or fineness. GGBS with fineness of about 4000 cm2/g has
been used widely in the precast concrete industry. When added to concrete, it improves properties such
as workability, durability, and water tightness. GGBS also improves concrete resistance to salt damage,
restrained alkali–silica reaction, and so on [2,3]. Thus, its usage in concrete is generally dependent on
the size and use for the concrete structure [4].

Steam curing is a widely used accelerated curing method in the precast concrete industry. In this
method, it has been proven that there is a significant increase in early strength of concrete when
GGBS is added [5]. Curing time plays an important role in concrete strength development as it affects
the ultimate strength and other hardened concrete properties. Additionally, mineral additives such
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as limestone powder or gypsum are also incorporated in concrete to improve concrete workability,
strength development, and durability in accelerated cured concrete [6].

During accelerated curing, concrete undergoes volume changes due to external temperature, heat of
cement hydration, and autogenous shrinkage. When GGBS with 4000 cm2/g is used, high shrinkage has
been observed due to its fineness. As reported by Saito et al., autogenous shrinkage of concrete may be
reduced by modifying blast-furnace slag fineness used and the content of gypsum in the binder [7]. Recently,
GGBS with a specific surface area of at least 2750 cm2/g and less than 3500 cm2/g was developed. This has
been used for low heat slag cement as a concrete additive [8]. However, little experimental data are available
on shrinkage during and after accelerated curing using this type of GGBS. Thus, this study focused on
investigating mechanical and shrinkage properties of concrete, at early and later age of the newly developed
GGBS cement. The results were compared with the widely used GGBS cement. The thermal properties of
the new GGBS cement in semi-adiabatic condition and the effect of mineral additives on cement hydration
were evaluated. Autogenous shrinkage and drying shrinkage tests were conducted in order to provide
experimental data sets on concrete crack resistance at early and later age.

2. Materials and Test Methods

2.1. Concrete Materials

Table 1 provides the physical and chemical properties of binder materials used in the study.
The main binders were ordinary Portland cement (“N”, hereinafter) and ground granulated
blast-furnace slag cements (“S”, hereinafter). Commercially produced ordinary Portland cement
conformed to the requirements of the Japanese standard JIS R 5210: 2009 Standard specifications for
Portland cement [9], ASTM C150/C150M-18: 2018 Standard specification for portland cement [10].
Two different types of S cements used were classified as S3000 and S4000 based on their fineness in
accordance with JIS A 6206: 2013 Ground granulated blast-furnace slag for concrete [11] and ASTM
C989-06: 2006 Standard specification for ground granulated blast-furnace slag for use in concrete and
mortars [12]. Limestone powder (“L”, hereinafter) and two different types of anhydrous gypsum
fineness, namely, normal gypsum (“G”, hereinafter) and fine gypsum (“F.G”, hereinafter) were other
additives incorporated in concrete. Six mix proportions for each type of S cement were proposed.
The percentage replacement by mass of N cement and mineral admixtures contents for each concrete
mix proportion are shown in Table 2. Air entraining agent (AE) and air entraining and water reducing
agent (AEWR) were used to produce entrained air and improve workability.

Sandstone and river sand were used as crushed coarse and fine aggregates. Figure 1a,b show
the particle size distribution curves of both coarse and fine aggregates. Coarse aggregates had 20 mm
maximum grain size with 2.64 g/cm3 specific gravity. River sand had 2.59 g/cm3 specific gravity, 2.55%
water absorption, and 2.83 fineness modulus.

2.2. Mix Proportions of Concrete

The general composition of six (6) mix proportions used in the experiments with varying mineral
admixture contents are tabulated in Table 3. Target slump and air content were 12.5 to 17.5 cm and
3.5% to 5.5%, respectively.
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Table 1. Physical and chemical analysis of cementitious materials.

Cementitious
Materials

Density
(g/cm3)

Fineness
(cm2/g)

Chemical Composition (%)

ig-loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O

OPC (N) 3.16 3200 0.94 20.84 5.49 3.07 63.89 1.97 2.4 0.4 0.32
S3000 2.90 3350 0.25 34.01 14.28 0.33 42.61 6.23 - 0.2 0.35
S4000 2.90 4580 0.09 33.90 14.16 0.30 42.92 6.24 - 0.19 0.32

L 2.71 7420 43.40 - 0.08 - 55.3 0.23 0.0 - -
G 2.90 4100 1.10 0.90 0.20 0.10 39.7 0.10 58.0 - -

F. G 2.90 9680 1.10 0.90 0.20 0.10 39.7 0.10 58.0 - -

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F. G: fine gypsum.

Table 2. Binder content percent by mass per cubic meter of concrete.

Proportion
Blending (%) Total (%)

by MassN S L G F. G

NS 75 25.00 - - - 100
NSG 75 23.25 - 1.75 - 100

NSF.G 75 23.25 - - 1.75 100
NSL 75 22.50 2.50 - - 100

NSLG 75 20.75 2.50 1.75 - 100
NSLF.G 75 20.75 2.50 - 1.75 100

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F. G: fine gypsum.
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Figure 1. Particle size distribution curve for (a) coarse and (b) fine aggregates.

Table 3. Concrete mix proportions.

Proportion
W/B
(%)

s/a
(%)

Amounts of Contents (kg/m3) Chemical
Admixture

AEWR (B X %)Water
Binder (B) s g

N S L G F. G

NS 50 47 175 262.5 87.5 - - - 812 933 1.0
NSG 50 47 175 262.5 81.4 - 6.1 - 812 933 1.0

NSF.G 50 47 175 262.5 81.4 - - 6.1 812 933 1.0
NSL 50 47 175 262.5 78.6 8.6 - - 811 933 1.0

NSLG 50 47 175 262.5 72.6 8.6 6.1 - 811 933 1.0
NSLF.G 50 47 175 262.5 72.6 8.6 - 6.1 811 933 1.0

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F. G: fine gypsum; W: water; B: Binder; s: sand; a: aggregates; g: coarse aggregates.
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2.3. Test Methods

A pan type concrete mixer was used for all concrete mix proportions and batching was conducted
according to the mix designs and as specified in JIS A 1119: 2014 Method of test for variability of freshly
mixed concrete by measuring mortar and coarse aggregate contents [13], JIS A 1138: 2005 Method of
making test sample of concrete in the laboratory [14], and ASTM C192/C192M: 2002 Standard practice
for making and curing concrete test specimens in the laboratory [15]. Air entraining agent (AE) and
water reducing agent (AEWR) were used in all the mix proportions. AEWR dosage was kept constant
as recommended by the manufacturer, whereas AE was varied to achieve target concrete air content.
Fresh concrete properties such as slump, air content, and temperature were measured just after casting,
according to JIS or ASTM standards [16–23]. Transducer strain gauges and data logger were used to
measure concrete strain and temperature throughout the study period. The gauges were installed in the
central portion of 100 × 100 × 400 mm beam molds, as shown in Figure 2. Specimens for compressive
strength tests were prepared, according to JIS A 1108: 2006 Method of test for compressive strength of
concrete [24] and ASTM C39/C39M: 2005 Standard test method for compressive strength of cylindrical
concrete specimens [25], using (100 mm diameter and 200 mm height) cylinder molds. Temperature
rise, due to heat of cement hydration, was measured under semi-adiabatic condition in cubic molds
with internal dimensions of 200 mm made of foamed polystyrene of 200 mm thick. Setting time of
concrete was determined according to JIS A 1147: 2007 Method of test for setting time by penetration
resistance [26] and ASTM C403/C403M: 1999 Standard test method for time of setting of concrete
mixtures by penetration resistance [27].

Immediately after casting, all specimens were sealed and stored in a temperature-controlled
room at 20 ◦C and 80% relative humidity (RH) [18]. Some selected beams, together with cylinder
specimens, for 1-, 7-, and 14-day compressive strength tests were then subjected to high temperature
curing, 3 h after casting time. Figure 3 shows the target ambient temperature profile used in the
experiments. This profile was similar to a typical steam curing process in general precast concrete
factories. In this study, steam was not applied. The remaining beam and cylinder molds were kept in
a temperature-controlled room at 20 ◦C and 80% RH; strain and temperature was measured in beam
specimens as well. Accelerated curing was conducted on three mix proportions on the same day. Thus,
twelve (12) mix proportions were cast and cured on four (4) different days.

After 24 h, all specimens were demolded. All the accelerated cured specimens were then subjected
to drying condition in a different temperature-controlled room at 20 ◦C and RH 60%. Drying shrinkage
was measured in beams specimens using data logger. Beam specimens which were stored in the
temperature-controlled room at 20 ◦C were sealed with aluminum adhesive tape for measuring
autogenous shrinkage. The storage condition for both sealed and drying condition of beam specimens
are shown in Figure 4. The cylinder specimens for the 28-day compressive strength test were stored in
water at 20 ◦C.
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3. Results

3.1. Fresh Properties

Table 4 shows the results of the fresh properties for all the mix proportions. Similar results were
obtained in the mix proportions.

Table 4. Fresh concrete properties.

Mix Proportion
Slump (cm) Air Content (%) Temperature (◦C)

S3000 S4000 S3000 S4000 S3000 S4000

NS 19.3 19.2 5.8 5.5 18.5 28.0
NSG 19.0 19.7 5.5 6.4 19.5 28.5

NSF.G 18.2 19.2 5.6 4.8 20.0 28.5
NSL 17.7 20.7 4.4 6.5 19.0 26.5

NSLG 18.5 20.5 4.5 5.4 19.0 26.0
NSLF.G 19.4 20.0 4.6 5.0 20.0 26.0

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F. G: fine gypsum.

3.2. Setting Time

Table 5 provides the results for the concrete setting time test. As reported in previous studies,
when ground granulated blast-furnace slag cement is added to concrete, the setting time of concrete
is generally increased [28]. Furthermore, it has been reported that the extent of concrete setting
time retardation depends on many factors such as fineness, composition, level of replacement of
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supplementary cementitious material used, amount and composition of the Portland cement or blended
cement (particularly its alkali content), water-to-cementitious materials ratio (w/cm), and temperature
of concrete [28,29]. Similarly, the results also showed a trend of longer setting times. In this study,
the observed initial setting time of each mixture was used as the starting point for measuring
autogenous shrinkage.

Table 5. Setting time of concrete.

Mix Proportion
Initial Setting Time

(hours)
Final Setting Time

(hours)

S3000 S4000 S3000 S4000

NS 7.03 5.70 10.42 7.50
NSG 6.83 5.21 9.83 7.25

NSF.G 7.36 5.27 9.90 7.57
NSL 6.38 5.92 9.27 8.65

NSLG 6.93 5.80 9.58 8.25
NSLF.G 6.64 5.60 9.58 8.15

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F.G: fine gypsum.

3.3. Accelerated Temperature History

Figure 5 shows the typical accelerated temperature history observed in all mix proportions with
similar temperature rise of about 20 ◦C/h. Although the heating temperatures were not exactly the same,
all the mix proportions were heated within the temperatures recommended in AC1 51 7.2R-87 [30].
During the constant maximum heating, all the mix proportions reached the target temperature of
65 ◦C. At the start of cooling, all the concrete specimens were kept inside a closed oven to prevent
high-temperature difference in concrete and surrounding that would have led to cracking due to
thermal shock. During this period, there was no automated cooling system installed in the chamber.
Considering this chamber condition, cooling of concrete specimens was still achieved in a similar
temperature decreasing rate of 1.8 ◦C/h on average. This cooling rate was also within the recommended
rate in AC1 51 7.2R-87 [30] of about 2 ◦C/h.
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3.4. Compressive Strength

Compressive strength results for accelerated cured concrete are shown in Figure 6 and water cured
compressive strength at 28 days in Figure 7. Higher one-day compressive strength for accelerated
cured concrete specimens was observed for specimens containing limestone powder. The trend for
strength remained, generally, the same for the 28-days compressive strength of specimens cured under
water. When S3000 was used, strength development after accelerated curing was slower than S4000.
This can be attributed to the difference in cement fineness that affects the rate of cement hydration.
Due to the lower fineness of S3000 cement, the addition of limestone powder in S3000 had a significant
effect as filler in strength improvement. Among the specimens containing limestone powder, similar
strength values from one-day to 14-day results were observed in both S cement types. At 28 days,
mix proportions containing NSLF.G had the highest compressive strength. In this case, fine gypsum
contributed to strength development in concrete at 28 days under water. It was also observed that
an increase of S cement fineness did not have a significant influence on compressive strength, especially
at 28 days. Thus, S4000 may be used if early strength is needed for demolding.Infrastructures 2019, 4, x FOR PEER REVIEW 8 of 14 
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Figure 7. Compressive strength for water cured S3000 and S4000 concrete at 28 days.

3.5. Autogenous and Drying Shrinkage, Sealed and Accelerated Cured Concrete

In the experiments conducted, total strain which is the sum of thermal strain and autogenous
shrinkage strain, was observed. To obtain autogenous shrinkage, the coefficient of heat expansion
of concrete was assumed to be 10 × 10−6/◦C [31]. Thus, autogenous strain was calculated as the
difference between total strain and thermal strain. The observed autogenous shrinkage in sealed
concrete specimens at 20 ◦C containing S3000 and some for S4000 are presented in Figures 8 and 9.
Only mix proportions containing limestone powder for S4000 were prepared for the autogenous
shrinkage measurement. Mix proportions containing gypsum showed higher expansion at early age.
Additionally, increment in gypsum fineness showed more expansion. Similar shrinkage at later age in
all mix proportions was observed. Figures 10 and 11 show autogenous shrinkage and drying shrinkage,
during and after accelerated curing. Mix proportions containing gypsum showed higher expansion
during accelerated curing and slightly lower shrinkage after demolding. The addition of fine gypsum
showed the highest expansion. This trend was also observed in sealed specimens, as shown in Figures 8
and 9. In addition, in sealed condition, all mix proportions showed similar shrinkage values at later
age. Gypsum, in this case, provided the expansive effect on concrete that compensates shrinkage.
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3.6. Heat of Cement Hydration of Concrete, Semi-Adiabatic Condition

Cement hydration in concrete is an exothermic reaction and causes temperature rise in concrete.
This property is responsible for thermal cracking in concrete members and has an influence on shrinkage
properties. Generally, there is a relationship between the extent of rise in temperature on the type
and content of cementitious materials in concrete. To establish the general behavior of this concrete
property, temperature rise, due to cement hydration in semi-adiabatic condition, was conducted on NS
and NSLF.G containing S3000. This also enabled a check of the effect of adding limestone powder and
fine gypsum on rise in concrete temperature. The results are shown in Figure 4a,b. The results were,
then, used to predict adiabatic temperature rise of concrete using Equation (1). This equation is based
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on a simple thermal insulation test on the relationship between semi-adiabatic temperature rise and
adiabatic temperature rise, proposed from previous research [32].

ρCVT′ − Shθ = ρCVθ′ (1)

where ρ is the density of the sample specimen (kg/m3), C is the specific heat capacity of concrete taken
as (1.05 KJ/kg ◦C), V is the volume of the sample specimen (m3), S is the surface area of the sample
specimen (m2), h is the heat transfer coefficient (W/m2 ◦C), T is the temperature gradient existing
between the sample specimen and ambient room temperature, and θ is the adiabatic temperature state.

Predicted parameters using experimental data from Equation (1) were then used to generate
constants in the JCI model Equation (2), shown below, and graphs obtained are also presented in
Figures 12 and 13 [31]. The derived constants from Equation (2) are given in Table 6. Test results
indicated that the addition of limestone powder and fine gypsum contributed to faster and higher
predicted adiabatic temperature rise and ultimate temperature rise [3,33].

Q(t) = Q∞
[
1− exp

{
−rAT

(
t− t0,Q

)
)SAT

}]
(2)

where t is age in days, Q(t) is adiabatic temperature rise at t (◦C), Q∞ is ultimate adiabatic temperature
rise (◦C), rAT, SAT are parameters representing rate of adiabatic temperature rise, and t0,Q is age at
starting of temperature rise.Infrastructures 2019, 4, x FOR PEER REVIEW 11 of 14 
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Figure 12. Observed semi-adiabatic and predicated adiabatic temperature rise in S3000 containing NS.
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Figure 13. Observed semi-adiabatic and predicated adiabatic temperature rise in S3000 containing
NSLF.G. NSLF.G—N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L:
limestone powder; G: normal gypsum; F.G: fine gypsum.
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Table 6. Adiabatic temperature rise properties of S3000 concrete.

Mix Proportion W/B (%) Q∞ (◦C) rAT SAT t0,Q

NS 50 42.14 1.179 1.0 0.183
NSLF.G 50 45.14 1.378 1.0 0.177

N: ordinary Portland cement; S: ground granulated blast-furnace slag cement; L: limestone powder; G: normal
gypsum; F.G: fine gypsum.

4. Discussions

Fresh concrete properties, such as slump, play various roles in precast concrete just like in
other types of concrete. The slump values obtained, in this case, provided increased workability.
This would make it easier to place, consolidate, and finish precast concrete units. Additionally,
the setting time of concrete has been used in precast concrete to determine the start time for accelerated
curing, although, generally, the delay period of two to five hours has been employed in many precast
companies [34]. In this study, the setting time was used as the starting point for measuring autogenous
shrinkage [31]. Three hours of preheating period were adopted, despite longer setting times observed
in mix proportions. A curing cycle of one day was adopted, as it is generally effective for curing of
civil engineering precast concrete products.

The main aim of accelerated curing of concrete, as mentioned earlier, is to enhance early strength.
In all the mix proportions, higher concrete strength was produced at demolding time. This satisfied
the minimum required strength, as recommended in published document [4,35]. On the other hand,
the influence of introducing other additives, such as limestone powder, showed more effect on strength
gain, especially with a decrease in blast-furnace slag cement, as observed at seven and 14 days. This may
also help to have good concrete strength for dispatching of precast concrete units from precast yard to
installation site that generally takes place 14 days after demolding.

During accelerated curing, more expansion was observed in the mix proportions containing
limestone powder and gypsum. The increment in fineness of gypsum showed increase expansion
even more. Thus, this combination may be helpful by acting as expansive agents for such mix
proportions, because this effect showed a slight reduction in the drying shrinkage at later age. It was
also observed that the increase in fineness of blast-furnace slag cement showed a slight reduction in the
drying shrinkage which may help in cracking resistance when a concrete unit is in service, although,
the difference of about 200 µm in drying shrinkage was not so significant to show major cracking
tendency between the two types of cements.

Adiabatic temperature rise in concrete has been used to assess the rate of cement hydration for
some purpose related to cracking. Generally, the addition of supplementary cementitious materials,
such as blast-furnace slag cement, has been used to reduce rise in temperature in concrete. In this
study, the rise in temperature was used to check the effect of using additives such as limestone powder
and fine gypsum. The results showed a slight increased rate and rise in temperature when the two
additives were used. The difference observed and other concrete properties obtained may be used in
three-dimensional (3D) finite element analysis method to check the cracking tendency at early age.

5. Conclusions

This study investigated the fresh, mechanical, and shrinkage properties of concrete made with
S3000 and S4000 cement as main mineral admixtures and subjected to accelerated curing by heating.
On the basis of the results from the laboratory tests, conclusions were drawn and summarized
as follows:

1. Fine gypsum contributed to higher expansion at early age in sealed and accelerated cured concrete.
A combination of limestone powder and fine gypsum had the highest expansion in concrete;

2. Limestone powder contributed to compressive strength of concrete at early age whereas gypsum
addition showed significant influence on concrete strength at 28 days;
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3. There was an insignificant difference in compressive strength, especially at 28 days, between two
types of slag cements even when additives such as limestone powder and gypsum were used;

4. Similar drying shrinkage was observed at later age. Concrete containing fine gypsum showed
slightly lower shrinkage which may help in cracking resistance.
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