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Abstract: Improving the resilience of infrastructures is key to reduce their risk vulnerability and
mitigate impact from hazards at different levels (e.g., from increasing extreme events, driven by
climate change); or from human-made events such as: accidents, vandalism or terrorist actions.
One of the most relevant aspects of resilience is preparation. This is directly related to: (i) the risk
prediction capability; (ii) the infrastructure monitoring; and (iii) the systems contributing to anticipate,
prevent and prepare the infrastructure for potential damage. This work focuses on those methods and
technologies that contribute to more efficient and automated infrastructure monitoring. Therefore,
a review that summarizes the state of the art of LiDAR (Light Detection And Ranging)-based data
processing is presented, giving a special emphasis to road and railway infrastructure. The most
relevant applications related to monitoring and inventory transport infrastructures are discussed.
Furthermore, different commercial LiDAR-based terrestrial systems are described and compared to
offer a broad scope of the available sensors and tools to remote monitoring infrastructures based on
terrestrial systems.

Keywords: mobile laser scanners; road monitoring; railway monitoring; point cloud processing;
infrastructure asset inventory

1. Introduction

Transport infrastructures are one of the most important assets for the global economy, as they
support market growth while connecting and enabling social and economic cohesion across different
territories. According to the European Commission, the transport and storage services sector accounts,
in 2016, for about 5% of total gross value added (GVA) in the EU–28, employs around 11.5 million
persons (i.e., 5.2% of the total workforce), and comprises about 13% of the total household expenditure
(i.e., including vehicle purchase and usage, and transport services) [1].

Goods transport activities are estimated to amount to 3661 billion tonne-kilometre and passenger
transport activities to 6802 billion passenger-kilometre in 2016, with road transport the most common
transportation mode [1]. To ensure that the infrastructure supporting these figures keeps its efficiency,
reliability and accessibility for all its users, the EU addresses several horizontal challenges in a
recent report [2], which can be grouped as: (i) market functioning; (ii) negative externalities; and (iii)
infrastructure. Regarding the first challenge, it is pointed out that the quality and potential of transport
services are limited by the fragmentation of the transport market in terms of divergent national
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legislations and practices. This is of special relevance for rail transport, which lacks an effective
competition. To address the negative externalities of transport is also necessary. Although the energy
consumption in transport has decreased in the last decade, it accounts for about 24% of greenhouse
gas emissions in the EU. Pollution, congestion, accidents or noise are other external costs that must
be addressed.

The most relevant challenge is the one related to the assessment of infrastructure deficiencies,
in the context of this publication. Currently, the effects of the economic crisis in the late 2000s still are
the main reason for the low levels of investment in transport infrastructure, both at European and
National levels, which are at their lowest level in the last 20 years in the EU [2]. This situation is related
directly to a reduced investment in maintenance of the infrastructure, which accelerates its degradation,
generating higher risks and reducing its quality and availability. A report from the European Road
Federation emphasized the need to develop new methods and to employ new technologies to provide
decision makers with the right tools for a more efficient and sustainable management of roads [3].
Asset management is defined in that report as a permanent and circular process that starts with
establishing a complete inventory of all networks. Then, a clear picture of its current condition should
be provided to predict the future demand, maintenance needs and costs of the infrastructure. Finally,
a strategy that prioritizes the maintenance objectives (asset management plant) should be implemented.
Therefore, finding the appropriate tools and technologies to tackle infrastructure maintenance needs,
in the current low investment context, is essential to stop the negative impact it has on infrastructure
availability and safety, among other indicators.

The European Commission has taken several initiatives in this context, under the Horizon 2020
Framework Programme, to foster research and development of new systems and decision tools that
improve the maintainability of transportation networks. Some illustrative examples are: tCat [4],
which develops a rail trolley with two laser distance meters, among other sensors, to automatically
detect overhead lines and track geometry, allegedly reducing costs up to 80%; AutoScan [5] that
developed an autonomous robotic evaluation system for the inspection of railway tracks, reducing
inspection costs by at least 15%; and NeTIRail-INFRA [6], whose concept revolves around the design of
infrastructure and monitoring, optimized for particular routes and track types, developing a decision
support software for rail operators, and ensuring cost effective and sustainable solutions for different
line types.

The usage of new technologies for data acquisition, and tools that improve the decision making
use of those data, are key elements for the development of a more efficient monitoring and maintenance
of infrastructures. One of the most promising technologies that is being developed is LiDAR (Light
Detection And Ranging)-based mapping systems. In Figure 1 it can be appreciated that the research
related to the usage of LiDAR technology for infrastructure management applications has been growing
during the last decade. This technology is able to collect dense three-dimensional representations of
the environment, making it relevant for several fields besides infrastructure management (e.g., cultural
heritage [7], environmental monitoring [8]).

The recent advancements in LiDAR technology and applications in different fields have been
reviewed in various works. Puente et al. [9] offer a review of land-based mobile laser scanning
(MLS) systems, including an overview of the positioning, scanning and imaging devices integrated in
them. The performance of MLS is analysed, comparing specifications of various commercial models.
Williams et al. [10] focused on the applications of MLS in the transportation industry. Hardware and
software components are detailed. The advantages, especially in terms of efficiency and safety, offered
by these systems are emphasised, establishing a comparison with static and aerial systems. It is included
as well in an overview of guidelines and quality control procedures for geospatial data. Addressing
the challenges the industry is facing, an extensive documentation and dissemination process for future
projects is suggested to improve the knowledge on the topic. Guan et al. [11] present an in-depth
description of road information inventory: detection and extraction of road surfaces; small structures;
and pole-like objects. The advancements in this area are highlighted, remarking how mobile LiDAR
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constitutes an efficient, safer and cost-effective solution. Gargoum and El–Basyouny [12] analyse the
extraction of information from LiDAR images (on-road and roadside information, highway assessment,
etc.), reviewing previous attempts and research on applications and algorithms for the extraction.
Challenges and future research needs are underlined, including suggestions as to which aspects to
investigate. Ma’s et al. [13] review of MLS literature includes an overview of commercial systems and
an analysis of inventory methods, namely detection and extraction algorithms for on-road/off-road
objects. The main contribution of the paper is stated to be the demonstration of the suitability of MLS
for road asset inventories, ITS (Intelligent Transportation Systems) applications or high definition
maps. Wang et al. [14] classify urban reconstruction algorithms used in photogrammetry, computer
graphics and computer vision. The different categories are based on the object-type of the target:
building roofs and façades; vegetation; urban utilities; and free-form urban objects. Future directions
of research are suggested, like the development of more flexible reconstruction methods capable
of offering better quality models or crowdsourcing solutions. Che et al. [15] summarise MLS data
processing strategies for extraction, segmentation and object recognition and classification, as well
as the available benchmark datasets. According to this work, future trends and opportunities in the
field comprise the design of processing frameworks for specific applications, frameworks combining
algorithms with user interaction and fusion of data from various sensors.

To put that research in perspective, this work aims to review LiDAR (Light detection and
Ranging)-based monitoring systems and the most relevant applications toward the automation of
infrastructure data processing and management, focusing on both road and railway transportation
networks. Applications involving assets whose monitoring at a network level are not feasible with
MLS, such as bridge health monitoring, are out of the scope of this review. Thus, the contributions of
this review can be listed as follows:

(1) An extensive literature review that describes different methods and applications for the monitoring
of terrestrial transportation networks using data collected from Mobile Mapping Systems equipped
with LiDAR sensors, with a focus on infrastructure assets whose analysis is relevant in the context
of transport network resilience.

(2) A descriptive summary of different laser scanner systems and their components, together with a
comparison of commercial systems.

(3) A special focus on railway network monitoring, which in this work is classified based on the
application and extensively reviewed.

(4) A remark on the most recent trends regarding methods and algorithms, with a focus on supervised
learning and its most recent trend, deep learning.

(5) A discussion on the main challenges and future trends for laser scanner technologies.

This work is structured as follows: Section 2 reviews different LiDAR-based technologies, focusing
on those terrestrial systems that allow the most relevant applications. Then, Section 3 reviews the
state-of-the-art on LiDAR-based monitoring systems for transport infrastructures. This section focuses
on technologies that are best suited for road and railway networks and defines a wide range of data
processing applications with an impact on the automatic monitoring of the infrastructure. Finally,
Section 4 outlines the main conclusions that can be extracted from the review.
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Figure 1. Number of publications per year related with LiDAR technology and infrastructure
management applications. The legend shows the keywords used for the publication search. Only seven
months of year 2019 are considered in the search [16].

2. Laser Scanner Technology

A laser scanner is a survey and monitoring technology based on obtaining measurements of
distance between a LiDAR sensor and its surroundings, that is, every object detected by the laser
beams emitted by the sensor. The result of this process is a dataset in the form of a point cloud
containing the position of every detection point on those objects relative to the sensor. To further
reference point positions in a global frame, other positioning sensors can be included into the laser
scanner platform, whether it is static or mobile. The contribution of each component of the platform to
the data acquisition process is explained in this section.

2.1. Laser Scanner System Components

To determine the position of the points acquired with a laser scanner at a global level, it is necessary
to reference them within an appropriate coordinate system. First, the points are referenced to the local
coordinate system of the LiDAR. Then, the location of the platform in a global coordinate system,
for instance WGS84, is determined using navigation and positioning systems [17]. Finally, the relative
position and orientation of the LiDAR in the platform, regarding the navigation and positioning system,
is determined for the correct geo-referencing of the point cloud. This distance, between the centre of
the navigation system and the centre of other systems, is known as a lever arm or offset.

2.1.1. LiDAR

LiDAR technology is based on illuminating points of objects surrounding the scanner with
a laser beam. The backscattered laser light is collected with a receiver and the distance to the
point is then calculated either by time-of-flight (ToF) or continuous wave modulation (CW) range
measurement techniques.

Regarding ToF (or pulse ranging) systems, the distance between the laser emitter and the scanned
object is calculated based on the time that it takes the laser beam to travel since it is emitted until the
backscattered pulse is received. Concerning a CW scanner (also known as phase difference ranging),
a continuous signal is emitted and its travel time can be inferred considering the phase difference
between the emitted and the received signal and the period of that signal. The range resolution in
this case is directly proportional to the phase difference resolution. It also depends on the signal’s
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frequency; an increasing frequency reduces the minimum range interval that can be measured, so the
resolution is higher. The maximum range (maximum measurable range [18]) is determined by the
maximum measurable phase difference, equal to 360◦ (2π radians).

Laser scanners can provide further information in addition to geometric measurements of a
scene. Intensity data of the backscattered light, for instance, provides information about the surface of
scanned objects [19]. This is calculated based on the amplitude of the returned signal and depends
primarily on the superficial properties of the object that reflects the laser pulse. The main superficial
properties affecting how the laser pulse is backscattered are reflectance and roughness. A method
for the detection of damage on the surface of historical buildings (e.g., superficial detachment and
black crust development) can based on intensity data provided by laser scanners is presented by
Armesto-González et al. [20], for instance.

Some laser scanner systems can record several echoes produced by the same emitted laser pulse
when its path is interrupted by more than one target. According to Wagner et al., the number and timing
of the recorded trigger-pulses are critically dependent on the employed detection algorithms [21].
Thus, the optimal solution would be to record the full-waveform, since it is formed by the sum of all
echoes produced by distinct targets within the path of the laser pulse [22].

2.1.2. Positioning and Navigation Systems

The components or subsystems of the positioning and navigation system can be classified into
two different groups. The first group is for systems with exteroceptive perception, meaning that they
provide position and orientation with respect to a reference frame [23]. GNSS (global navigation
satellite system) belongs to this group. The second one is for those systems having proprioceptive
perception and providing time-derivative information of the position and orientation of the mobile.
An initial state of the system must be defined in this case, and subsequent states are calculated upon it.
This group includes INS (inertial navigation system) and DMI (distance measurement unit).

A combination of GNSS long-term accuracy and INS (as well as DMI) short-term accuracy makes
it possible to improve position and velocity estimations. To integrate the data gathered by these
components and estimate position and attitude of the system, a Kalman filter is applied. This filter
consists of a set of mathematical equations and provides an efficient computational (recursive) solution
of a least-square method to the discrete-data linear filtering problem [24].

2.2. Performance Of Laser Scanning Systems

There are various factors regarding the quality of the point cloud data acquired by a laser scanner.
A methodology for establishing comparative analysis was developed by Yoo et al. in [25], being valid
for both static and mobile systems. The factors evaluated according to this methodology are accuracy
(and precision), resolution and completeness of the data.

Additional factors related to laser scanner performance are reflectivity, which can lead to
measurement errors on objects with reflective surfaces, and scanner warm-up, which is a necessary step
before starting data collection or drifting out of calibration [26]. Correct positioning and geo-referencing
of points is influenced as well by the accuracy achieved by the navigation system and by the accuracy
of the lever arm measurements.

Comparison of Monitoring Technologies

Laser scanning technology has certain characteristics that make it more suitable for some tasks
than other MMS (mobile mapping system) technology. Regarding defect detection or alignment
tasks [27], more accurate measurements are possible with a laser scanner compared to image-based
solutions, for instance. It also has been proven to be suitable for 3D displacement measurements of
particular points of a structure and to obtain its static deformed shape better than with linear variable
displacement gauges (LVDTs), electric strain gauges and optic fibre sensors [28]. Moreover, it has the
advantage that no direct contact is needed.
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Although the mentioned MMS technologies have certain advantages over a laser scanner,
image-based 3D reconstruction equipment has a lower cost, a higher portability and allows a faster
data acquisition process. Image-based 3D reconstruction is based on triangulation by which “a target
point in space is reconstructed from two mathematically converging lines from 2D locations of the
target point in different images” [29]. Thus, it is necessary to take images from different perspectives of
the object. This could be considered a drawback when comparing with laser scanning, as the later
obtains directly a 3D point cloud with one single setup [30], but there are already existing systems,
such as the Biris camera, which are capable of simultaneously obtaining two images on the same
CCD (Charged-Coupled Device) camera [31]. Another advantage of images is the “visual value in
understanding large amounts of information” [32]. During the cited study, daily progress images of a
construction site are used to produce a 3D geometric representation of the site over time (“4D model”).

Nevertheless, and in addition to the aforementioned higher accuracy reached by laser scanners,
these systems are not dependent on the illumination, as it is the case for cameras. However, image-based
and laser scanning technologies can be combined to obtain a richly detailed representation of a scene
by fusion of the acquired datasets. In Zhu et al. [33], MLS point clouds were used for geometric
reconstruction of buildings and classification of the scanned points, while images of the buildings
served for photorealistic texture mapping, for example.

2.3. Types of Laser Scanner Systems

There are, basically, three types of laser scanner system arrangements, namely TLS (terrestrial
laser scanner), ALS (aerial laser scanner) and MLS (mobile laser scanner). This classification is based on
the platform-type that is employed to install the system. Each type of laser scanner is further detailed
in this section.

TLS are stationary systems, typically consisting of a LiDAR device mounted on a tripod or other
type of stand, capable of obtaining high-resolution scans of complex environments, but with data
acquisition times in the order of minutes for a single scan [34]. Regarding ALS, the laser scanner
is installed on an aircraft (typically an airplane) combining the periodical oscillation of the laser
emitting direction with the forward movement of the aircraft to obtain a dense point cloud. Due to
the small scanning footprint achieved by the laser, spatial resolution is higher than that provided
by radar [35]. ALS is employed, for instance, to obtain virtual city models or digital terrain models
(DTM). Finally, an MLS is defined as a “vehicle-mounted mobile mapping system that is integrated
with multiple on-board sensors, including LiDAR sensors” [13]. MLS allows for safer inspection
routines, as operators can execute their job from the interior of the vehicle, rather than manually
moving and placing the equipment, as in the TLS case. This translates to a faster and safer data
acquisition process. Concurrently, MLS still allows for production of dense point clouds. However,
data processing methods used in stationary terrestrial or airborne laser scanning cannot be applied
directly, in some cases, to MLS due to differences in how the data are acquired, mainly the geometry of
the scanning and point density [36]. Another benefit of MLS is the capability to capture discrete objects
from various angles, or to be merged with images of the same scene to add more information to the
data [9]. The combination of laser scanner and image-based data is discussed later in this document.

A Mobile Laser Scanner system can be adapted to various configurations, depending on the
specific requirements of a certain survey process, or where the scanning is going to take place. The most
usual configurations for MLS (in this particular case, for a ROAMER single-scanner Mobile Mapping
System using a FARO Photon 120 scanner) are detailed in Kukko et al. [37]. The most broadly used is
the vehicle configuration. This offers a fast surveying method, making it possible to scan urban areas
at normal traffic speed. To obtain road surface points the scanner is adapted to a tilted position, which
also produces scans that provide more information about the objects along the track direction than
vertical scanning [37] since narrow structures along the survey path are hit multiple times by sequential
scans, and vertical and horizontal edges are captured with equal angular resolution. Automated
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procedures for structure recognition can be applied to MLS point clouds, such as those introduced in
Pu et al. [38] for ground and scene objects segmentation.

Another option is to install the equipment on top of a trolley for applications that are not suitable
for a vehicle. Looking at the ROAMER case [37], this configuration was adopted to obtain a pedestrian
point-of-view and point cloud data detailed enough to be used for personal navigation applications.
When a certain scenario restricts the use of other solutions due to irregular terrain, difficult access etc.,
a valid alternative is to use a backpack configuration, like the Akhka solution introduced by Kukko et
al. in [37]. This solution was proved to be a low-cost, compact and versatile alternative for Mobile
Mapping Systems by Ellum and El-Sheimy [39], although, in this case, the employed mapping sensor
was a megapixel digital camera rather than a laser scanner. Kukko et al. [37] also presented a MLS
installed on a boat to obtain river topographical data.

2.4. Comparison of Commercial Laser Scanners

There are numerous laser scanners currently available on the market, offering different
characteristics in terms of performance and possible applications. Regarding MLS, the most notable
features to establish a comparison between models are the maximum acquisition range, accuracy
and data acquisition rate. As an example, some models of LIDAR sensors from industry leading
manufacturers are depicted in Figure 2. The specifications of these sensors are detailed in Table 1.
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Table 1. Comparison of different commercial laser scanners.

Manufacturer RIEGL Teledyne
Optech FARO Velodyne SICK Hexagon-Leica

LiDAR Model VUX-1HA Lynx HS300 Focus 350 Alpha Puck LMS511 ScanStation P50

Measurement
principle ToF ToF Phase

difference ToF ToF Phase difference

Minimum range 1.2 m 0.6 m 0.4 m

Maximum range 420 m
@ 300 kHz 250 m 350 m 300 m 80 m >1 km

Range accuracy 5 mm 0.30 mm
@ 25 m Up to 3 cm 1.2 mm

Range precision 3 mm 5 mm

PRF (pulse repetition
frequency)

300–1000
kHz 75–800 kHz 122–976 kHz 2400 kHz Up to 1000 kHz

Scan frequency 10–250 Hz 300 Hz 97 Hz (V) 25–100 Hz

Laser wavelength Near
infrared 1550 nm 903 nm 905 nm 1550 nm

Field of View 360◦ 360◦ 300◦ (V)
360◦ (H)

40◦ (V)
360◦ (H) 190◦ 290◦ (V)

360◦ (H)

Angular resolution 0.001◦ 0.01◦ 0.11◦ (V)
0.1–0.4◦ (H) 0.167◦ 0.002◦ (V)

0.002◦ (H)

Data Sources [40] [41] [42] [43] [44] [45]

3. State-of-the-Art regarding LiDAR-Based Monitoring of Transport Infrastructures

Even though LiDAR technology popularity has increased significantly during this decade, it has
been in development since the second half of the past century. Its development started in the 1960s
with several applications in geosciences. Years later, land surveying applications appeared in the
picture thanks to the use of airborne profilometers. This equipment resulted in being useful for
deriving vegetation height by evaluating the returned signal [46]. During the 1980s and 1990s, the use
of laser scanning for environmental and land surveying applications increased. Civil engineering
related applications started to arise in the second part of the 1990s, but it was not until the last part of
the century and the beginning of the new one when the first terrestrial devices for 3D digitalization
performance appeared. Numerous applications for different fields quickly arose from this point [47],
and Terrestrial Laser Scanning (TLS) proved to be the appropriate technology to use when detailed
3D models were required. The resolution and quality of data given by laser scanning devices have
improved with the evolution of technology. Consequently, recently, mobile mapping systems are
beginning to perform high resolution surveys of large infrastructures (tunnels, roads, urban modelling
etc.) in a short period of time.

Nowadays, the main bottleneck for LiDAR technology is processing the large amount of data
acquired with laser scanning devices. Throughout the years, many tools have been developed for
point cloud data processing. Most of these depend on manual or semi-automatic operations that must
be performed by a specialist in the field of geomatics. The current challenge is to develop tools for an
efficient automation of data processing using information provided by ALS, MLS or TLS.

Many companies and research groups investing in this technology have allowed for its fast
development. The tedious and difficult processing tasks tend to have disappeared or be minimized
with the appearance of machine learning algorithms. These tools allow for not only the development
of advanced, efficient and intelligent processing but, also, the interpretation of data. One of the main
objectives exploited is obtaining inventories for road, railway or urban management. Now, this has
evolved, and the trend is to obtain spatial models of infrastructures based on the fusion of geometric
and radiometric data and monitoring the infrastructure behaviour and changes through the years.
These models have a notorious potential for BIM (building information modelling) and AIM (asset
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information modelling) applications, allowing to have not only as-design representations of the asset,
but also as-built and as-operate models, which can be updated over time.

Throughout this section, the state-of-the-art regarding the monitoring of both road and railway
networks using LiDAR-based technologies is described, focusing on the most recent trends, applications,
and processing methodologies.

3.1. Road Network Monitoring

The successful integration of laser scanners, navigation sensors and imagery acquisition sensors
on mobile platforms has led to the commercialization of Mobile Laser Scanning systems meant to be
mounted on vehicles, such as regular vans or passenger cars, as seen in Section 2.2. Since these vehicles
naturally operate along the road network, a large part of the existing research regarding the processing
and understanding of the data collected by these systems has revolved around applications related to
the monitoring of the road network.

This section of the review will focus on those applications, which will be divided into two main
groups, Road surface monitoring and off-road surface monitoring. This conceptual division, which is
considered by similar reviews in the field [11,13], will allow the reader to focus separately on different
elements and features of the road network.

3.1.1. Road Surface Monitoring

The automatic definition of the ground has been one of the most common processes that is carried
out using data from LiDAR-based sources. Although this application has been in the literature since
the beginning of the century [48,49], there continuously has been research and improvement motivated
by two main factors: The remarkable improvement of the LiDAR-based systems; the increased
computational power available for research. Nowadays, LiDAR-based data has been used for
automatically detecting and extracting not only the road surface, but also different elements and
features on the road such as road markings and driving lanes, cracks, or manholes. Furthermore,
an efficient extraction of the road surface is typically a preliminary processing step that allows the
separation of ground and off-ground elements when using 3D point clouds as a main data source.
Hence, it is a process that can be found in a large proportion of works focused on object detection and
extraction from 3D point cloud data.
Road surface extraction:

Within the literature, different ways of organizing the existing knowledge of road surface
extraction can be found. Ma et al. [13] define three main methodological groups based on the data
structure: (1) 3D-point driven; (2) 2D Geo-reference feature image-driven; (3) Other data (ALS/TLS)
driven. Differently, Guan et al. [11] define four groups based on the processing strategy, which
can be summarized in two larger groups: (1) Processes based on previous knowledge of the road
structure; (2) Processes based on the extraction of features for identification or classification of the road
surface. The approach of Guan et al. [11] will be taken as reference for the following analysis of the
state-of-the-art. Found in Table 2 is a summary that has considered both approaches (based on the data
structure and on the processing strategy).

• Road surface extraction based on its structure: A common approach for road surface extraction relies
on the definition of road edges that delineate its limits. This approach has been evolving since the
beginning of this decade. Ibrahim and Lichti [50] propose a sequential analysis that segments the
ground based on the point density and then using a Gaussian filtering to detect curbs and extract
the road surface afterwards (Figure 3a). These steps are analogous in similar works, changing the
curb detection method. Some works perform a rasterization (projection of the 3D point cloud in
a gridded XY plane generating two dimensional geo-referenced feature (2D GRF) images) and
detect curbs using image processing methods such as the parametric active contour or snake
model [51,52] or image morphology [53,54]. Guan et al. [55] generate pseudo-scan lines in the
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plane perpendicular to the trajectory of the vehicle to detect curbs by measuring slope differences.
Differently, a number of approaches have been developed for curb detection directly in 3D data
using point cloud geometric properties such as density and elevation [56], or derived properties
such as saliency, which measures the orientation of a point normal vector with respect to the
ground plane normal vector [57] and has been successfully used to extract curbs or salient points
in different works [58,59]. Xu et al. [60] use an energy function based on the elevation gradient
of previously generated voxels (3D equivalent of pixels) to extract curbs, and a least cost path
model to refine them. Using voxels allows one to define local information by defining parameters
within each voxel and to reduce the computational load, so they are commonly used for road
extraction [61,62]. Hata et al. [63] propose a robust regression method named Least Trimmed
Squares (LTS) to deal with occlusions that may cause discontinuities on road edge detection.
A different approach can be found in Cabo et al. [64], where the point cloud is transformed into a
structured line cloud and lines are grouped to detect the edges (Figure 3b). Although good results
can be found among these works, most of them rely on curbs to define road edges, hence the
extraction of the road surface will not be robust when it is not delimited by curbs, as is the case in
most non-urban roads.

• Road surface extraction based on feature calculation: A different approach for road surface extraction is
based on previous knowledge about its geometry and contextual features, which can be identified
on the 3D point cloud data. Guo et al. [65] filter points based on their height with respect to
the ground and then extract the road surface via TIN (Triangulated Irregular Network) filter
refinement. Generally, the elevation coordinate of the point cloud is the key feature that is
employed for road surface extraction: Serna and Marcotegui [66,67] defined the λ-flat zones
algorithm, which analyses the local height difference of the point cloud projected on the XY
plane. Additionally, Fan et al. [68] employ a height histogram for detecting ground points as a
pre-processing step on an object detection application. Another feature that is commonly used
is the roughness of the road surface. Díaz–Vilariño et al. [69] present an analysis of roughness
descriptors that are able to classify different types of road pavements (stone, asphalt) with accuracy.
Similarly, Yadav et al. [70] employ roughness, together with radiometric features (assuming
uniform intensity as a property of the road) and 2D point density, to delineate road surfaces
from non-road surfaces. As it was the case for curb detection methods, there are scan line-based
methods that rely on the point topology [71] or density [72] across the scan line for extracting the
road surface.

Viewing this analysis, it can be seen that there exist a large number of works focused on the
extraction of the ground or the road surface but there still is not an established standard for this process
and it is typically designed ad hoc for a more complex final application.

Table 2. Summary of state-of-the-art works for road surface extraction.

Processing Strategy

Based on road structure (road
edge delineation) Based on feature calculation

Data structure

3D point cloud [50,56–63] [65,68–70,72]

2D GRF [51–54] [66,67]

Scan lines [64] [71]
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Figure 3. Road surface extraction. (a) Ibrahim and Lichti [50] segment non-ground (left) and ground
(center) using a density-based filter. Then, a 3D edge detection algorithm based on local morphology
and Gaussian filtering extracts road edges (right). (b) Cabo et al. [64] scan lines are grouped based on
length, tilt angle and azimuth, and the initial groups (left) are joined following predefined rules using
the vehicle trajectory to define the road surface (right).

Road markings and driving lanes:
Derived from road extraction methods, there exists a vast literature focused on the automatic

detection of road markings, which are highly important road elements as they are one of the main
information sources for drivers and pedestrians. This automation may assist maintenance and inventory
tasks, reducing both the cost of the process and the subjectivity of the inspection activities [73]. The main
feature that allows the detection of road markings using 3D point clouds as its data source is its
reflectivity, which is translated into larger radiometric attributes of the 3D data. Most road marking
detection works to exploit this feature once the road pavement is extracted. Guo et al. [65], for example,
generate raster binary images based on the intensity of the road points and extract different classes of
road markings. As it can be seen in Figure 4, the generation of binary images based on point cloud
intensity is a common approach [73–78], making the principal differences among these works the
features employed for road marking detection and the classification methods employed: Some works
rely on previous knowledge and heuristics to classify different road markings [79,80], while others
follow a more recent trend based on machine learning [73] or deep learning [81]. A comprehensive
summary of these methodological differences is shown in Table 3. As it can be seen, automatic road
marking detection and classification using data from LiDAR scanners is more than feasible, and may
be a standard data source not only for road marking inspection but for applications such as driving
line generation [77,82,83]. Regarding other applications, such as autonomous driving where real-time
information is required, road marking recognition is carried out using RGB images analysed by
machine learning or deep learning classification models [84–87].
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Figure 4. Road markings and driving lanes. (a) Soilán et al. [73] apply an intensity filter on the point
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propose a scan line-based method using the gradient of point intensity to detect road marking points
on each scan line (left) and generate a 2D GRF image representing the road markings (right).

Table 3. Summary of state-of-the-art works for road marking extraction.

Processing Strategy

Detection Process Classification Process

Data structure

2D GRF
Morphology Adaptive

thresholding

- Template matching
[65,73]
- Neural Networks [73]
- Deep Learning [81][65,74,75,80] [73,76,88]

3D point cloud - Spatial density filter: [79]
- Scan line separation: [78]

- Deep Boltzmann
Machines [79]

Photogrammetry - Deep Learning (CNNs)
[85,87]

Road cracks and manhole covers:
Detecting and positioning road cracks is another relevant application that has been addressed by

researchers using LiDAR-based technologies. Using 3D point clouds, Yu et al. [89] extract 3D crack
skeletons using a sequential approach based on a preliminary intensity-based filtering, followed by
a spatial density filtering, a Euclidean clustering, and an L1-median-based crack skeleton extraction
method. However, 3D methods are not the most common approaches for crack detection, as the 3D
point clouds are typically projected into 2D GRF images based on different features such as intensity [90]
or minimum height [91], to detect road cracks. Guan et al. [90] define an Iterative Tensor Voting, while
Chen et al. [91] perform convolutions with predefined kernels over their GRF images. Cracks also
can be detected with other sensors that are typically mounted on MLS systems. There exist computer
vision approaches that analyse images, as done by Gavilán et al. [92] using line scan cameras, and there
also exist approaches using Ground Penetrating Radar (GPR) [93] and thermal imaging [94]. Another
relevant road surface element, especially in urban environments, are manhole covers which also can be
automatically detected using 3D point clouds. Guan et al. [95] use an analogous approach for detecting
cracks [90], that is, generating a GRF image and applying multi-scale tensor voting and morphological
operations to extract manhole covers. Yu et al. [96] generate GRF images as well, but detect manhole
covers based on a multilayer feature generation model and a random forest model for classification.



Infrastructures 2019, 4, 58 13 of 29

3.1.2. Off-Road Surface Monitoring

The elements of interest are not the road surface or its elements in several infrastructure monitoring
applications, rather different objects or infrastructure assets that play a relevant role on the correct
performance of the network. This section will analyse the state-of-the-art regarding the monitoring of
those elements and assets, namely: traffic signs, pole-like objects and roadside trees.
Traffic signs:

Traffic signs play a clearly important role in the transportation network as one of the main
information sources for drivers, together with road markings. Their standardized geometry and
reflective properties have encouraged researchers to develop different methods for the automatic
detection and recognition of road markings from MLS systems data. Pu et al. [38] show that, based
on a collection of characteristics such as size, shape or orientation, it is possible to recognize different
objects, provided previous knowledge of their geometry. Not only geometry but the radiometric
properties (high reflectance) of traffic sign panels have been used recurrently for traffic sign detection.
Ai and Tsai propose a traffic sign detection process which filters a 3D point cloud based on intensity,
elevation and lateral offset [97]. The method is able to evaluate the retroreflectivity condition of the
traffic sign panels, which is directly related to the wear and tear of the material and is a relevant
feature for traffic sign monitoring [98]. Unlike road markings, there are only a few works that rely
on 2D GRF images for traffic sign detection. Riveiro et al. [99] filter the point cloud by generating
a 2D raster based on point intensity values, simplifying the detection of traffic sign panels using a
Gaussian Mixture Model afterwards. Furthermore, they generate raster images on the plane of the
detected traffic signs to recognize their shape. However, 3D point cloud data resolution is still not
enough to extract semantic information of the traffic signs [100], hence, that recognition is typically
performed on RGB images from the cameras of the MLS system. Traffic sign panel detection primarily
relies on an intensity-based filter of the 3D point clouds, followed by different filtering strategies based
on geometric and dimensionality features [100–104] (Figure 5a). A different approach for traffic sign
detection can be found in Yu et al. [105], where a supervoxel-based bag-of-visual-phrases is defined
and traffic signs are detected based on their feature region description. Given that the 3D point clouds
are spatio-temporally synchronized with 2D images in a MLS system, it is straightforward to extract
images of the traffic sign panels and perform computer vision processes on them to extract semantic
information: Some works rely on machine learning strategies such as Support Vector Machines using
custom descriptors [100] or existing features such as a Histogram of Oriented Gradients (HOG) [106],
while others rely on the more recent trend of Deep Learning—approaching an end-to-end recognition
process using Deep Bolztmann Machines [104,105] or convolutional neural networks [107] (Figure 5b).
These techniques also are employed using only imagery data [108,109]. All the mentioned work is
summarized in Table 4.

Table 4. Summary of state-of-the-art works for traffic sign detection.

Processing Strategy

Detection Process Classification Process

Data structure

2D GRF - Intensity-based raster [99]

3D point cloud
- Intensity-based filtering
[100–104]
- Bag-of-visual-phrases [105]

-

Photogrammetry

- SVM [100,106]
- Deep Boltzmann Machines
[104,105]
- CNN [107–109]
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Figure 5. Traffic signs. (a) Soilán et al. [100] detect traffic sign panels applying intensity filters on a
previously segmented point cloud (left), define geometric parameters for each traffic sign and project
the panel on georeferenced RGB images (right). (b) Arcos et al. [107] classify those RGB images applying
a Deep Neural Network that comprises convolutional and spatial transformer layers.

Pole-like objects:
Detecting pole-like objects is a common objective in 3D point cloud processing works as their

geometry is well defined and easily recognizable when monitored by a LiDAR-based system. They are
typically used to detect street lights or power line poles [110]. Ground segmentation is usually a
pre-processing step as ground removal leads to an isolation of off-road objects. Subsequently, there are
many processing strategies to detect pole-like objects. Yu et al. [111] group 3D points with an Euclidean
cluster, refine them with a Normalized Cut segmentation and then construct a Pairwise 3-D shape
context to detect pole-like objects with a similarity measurement. A 3-D shape feature also is developed
by Guan et al. [112] where each object is compared against a bag of contextual visual words [113].
Similarly, Wang et al. [114] develop a 3D descriptor (SigVox) using an Octree and principal component
analysis (PCA) to get dimensional information at different levels of detail (Figure 6a). Other notable
approaches include the application of anomaly detection algorithms [115], or the development of
classification models such as Random Forests [116] or Support Vector Machines [117] for shape features.
Seen in a second group of approaches, those that do not rely on ground segmentation as a preliminary
step used to perform a voxelization of the 3D data, pole-like objects are detected based on the voxelized
structure. Cabo et al. [118] perform a relatively simple study of the local structure of occupied voxels
to define pole-like objects and Li et al. [119] define an adaptive radius cylinder model given previous
knowledge regarding the geometrical structure of a pole-like object. Supervoxels also are exploited for
detecting pole-like objects, obtaining structure, shape or reflectance descriptors [120,121].
Roadside trees:

Using a LiDAR-based mobile system, it is possible to map the presence of trees alongside the
road network. Since there is a correlation between vegetation and fire risk in a road environment,
roadside tree detection processes clearly are beneficial in road network monitoring applications.
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As seen for traffic sings and pole-like objects, ground segmentation is usually the first pre-processing
step, isolating above ground objects. Xu et al. [122] propose an hierarchical clustering to extract
trees’ nonphotosynthetic components (trunks and tree branches), formulating a proximity matrix to
calculate cluster dissimilarity and solving the optimal combination to merge clusters (Figure 6b). Other
clustering algorithms employed for tree extraction are the Euclidean Cluster [123,124] or, as in Li’s et al.
work [125], a region growing-based clustering in a voxelized space to distinguish between trunk
and crown in a tree. Machine and Deep Learning models also are developed for tree classification.
Zou et al. [126] employ a Deep Belief Net (DBN) to classify different tree species from images obtained
after a voxelization-rasterization process. Guan et al. [123] classify up to 10 tree species using waveform
representations and Deep Boltzmann Machines. Dimensional features obtained from PCA analysis
also are used for classification, with SVM [124] or Random Forests [127] as classification models.
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Figure 6. Pole-like objects and roadside trees. (a) Wang et al. [114] recognize street objects using a
voxel-based shape descriptor determined by the orientation of the significant eigenvectors of the object
at several levels of an octree. Nvec represents the number of eigenvectors that intersect each triangle of
the 3D descriptor (icosahedron) (b) Xu et al. [122] recognize trunks (red) and tree branches (blue) by
optimally merging clusters of points.

3.1.3. Current and Future Trends

Throughout this section, different applications of LiDAR-based systems for road network
monitoring have been reviewed. Most of the mentioned works have been developed in the last
five years and the number of publications still is increasing yearly. As LiDAR technology continues
its evolution, there are more robust solutions for specific road monitoring applications, however,
there is a lack of standards in the industry to apply when LiDAR data is automatically processed.
Recently, the performance of Deep Learning in 2D images has led researchers to develop Deep Learning
models for 3D data [128–131] which are being developed to solve classification problems using 3D
data acquired by MLS systems [81,132,133]. This paper presents an extensive literature review that
describes different methods and applications for the monitoring of terrestrial transportation networks
using data collected from Mobile Mapping Systems equipped with LiDAR sensors.

3.2. Railway Network Monitoring

Most of the works regarding railway infrastructure are developed using Mobile Laser Scanners,
as previously presented in the introduction of this section. These are large infrastructures and the
applications in which their point clouds are employed usually require a high resolution. This is why
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MLS is the most appropriate technology to be used for railway networks, although there are some
works developed using ALS or TLS data [134–136].

A summary of the most relevant applications of LiDAR data concerning the railway network is
shown in this section. One way of classifying the existing works in relation to railway infrastructure
recognition and inspection may be by attending to the collection methods used to obtain the 3D point
clouds. Likewise, Lou et al. [137] proposed a classification based on the methods followed for classifying
points. Based on this, three main categories were proposed: (i) data-driven and model-driven methods,
using point features and geometrical relationships; (ii) learning-based methods, which use imagery
data and/or MLS point data; and (iii) multi-source data fusion methods [13,56,138–141]. Although other
classification proposals also can be considered, the classification in this paper is made attending to the
main goal, or application of each work (Figure 7), as proposed in Che et al. [15], where a review about
object recognition, segmentation and classification using MLS point clouds in different environments,
such as forest, railway and urban areas, is presented. Additionally, several figures (Figures 8–12)
provide extra context to some of the works cited throughout the subsequent sections.
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very high resolution helicopter-borne LiDAR and ortho-image data. They also used LiDAR data 

Figure 8. Inventory and 3D modelling.(a) Arastounia et al. [134] classified rail tracks and contact cables
using an improved region growing algorithm. Then, the catenary cables’ points are classified as they
are placed in the neighbourhood of the contact cables. (b) Sánchez–Rodríguez et al. [59] classified MLS
data using dimensional analysis and RANSAC methods and validated the rails’ classification with
SVM algorithms.
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fusion methods to classify rails. This opens up a new idea for the process of laser scanning data using 
deep learning techniques to classify points, and so, Rizaldy et al. [148] made a multi-class 
classification of aerial point clouds using Fully Convolutional Networks (FCN), which is a 
Convolutional Neural Network (CNN) designed for pixel-wise classification. 

The next step should be the conversion of the classified points into 3D models. Regarding this, 
there is not much work in the last years but, with the appearance of BIM and Digital Twin, it will 
soon become a need. Some authors have been using specific programs for that conversion [149], while 
others directly convert the LiDAR point cloud data into 3D models. This application within the 
railway network still needs to be developed. Most authors in this field based their research on specific 
elements of the infrastructure and automatically detecting damage or pathologies in them. Looking 
at the subsequent sections, a summary of the most critical works concerning this matter is shown. 

3.2.2. Rails 

One of the most extended practices when working with point clouds in railway environments is 
the extraction of the tracks’ centreline. Beger et al. [139] used data fusion of extremely high-resolution 
ortho-imagery with ALS data to reconstruct railroad track centrelines. The images were used to 
obtain, first a railroad track mask and laser point classification, and then, a rail track centreline was 
approximated using an adapted RANdom SAmple Consensus (RANSAC) algorithm [150]. 
Continuing with centre line estimation, Elberink and Khoshelham [151] proposed two different data-
driven approaches to automate this process. First, they extracted the tracks from MLS point clouds. 
Then, centre lines were generated directly using the detected rail track points or generating fitted 3D 
models and implicitly determining the mentioned centreline. 

Railway track point clouds may be extracted automatically from MLS data. Sánchez–Rodríguez 
et al. [59] found possible rails according to the curvature of ground-points neighbourhood and, then, 
they used SVM classifiers to verify the results obtained (Figure 9a). Additionally, Lou et al. [137] 
developed a method to this end which processes data in real time. They exposed the validity of using 
a low-cost LiDAR sensor (Velodyne) for performing mobile mapping surveys (Figure 9b). Stein, D. 
[152] also used low-cost sensors, contributing with his thesis to the improvement of track-selective 
localization. He determined the railway network topology and branching direction on turnouts 
applying a multistage approach. More specifically, Stein et al. [153] proposed a model-based rail 
detection in 2D MLS data. They developed a spatial clustering to distinguish rails and tracks from 
other captured elements. 

 
Figure 9. Rails. (a) Sánchez–Rodríguez et al. [59] classified them analysing the point cloud curvature 
(elevation difference) and validated the results applying SVM classifiers. (b) Lou et al. [137] detected 
rails based on their elevation difference together with their reflection characteristics. The figure is 
coloured by intensity. 

To create 3D models from rail point clouds, Soni et al. [135] first extracted rail track geometry 
from TLS point clouds. Then, models were created for monitoring purposes. Later on, Yang and Fang 
[154] also created railway track 3D models, but from MLS point clouds which first detect railway bed 
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flux leakage (MFL), acoustic emission (AE), electromagnetic acoustic transducers (EMATs), alternate 
current field measurement (ACFM), radiography, microphone and thermal sensors, among others. 

Figure 10. Power line. (a) Guo et al. [159] classified ALS point clouds into power line cables using a
JointBoost classifier and then used RANSAC to reconstruct the cables’ shapes. (b) Jung et al. [161]
grouped points in MLS data using SVM classification results as inputs for the multi-range CRF model.
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These detect defects from the surface to the internal part of the element being studied. High resolution 
and thermographic cameras are also good examples of NDT. They are used widely when performing 
visual inspections and applying image processing techniques for damage detection [166,167]. 
Although, laser scanning is also a non-destructive technology that may be used for damage detection, 
there is not a defined technique for the inspection of the railway network. 

The most common inspection developed in railway point clouds is the inspection of rail tracks 
and gauge clearance between them and the power line. Blug et al. [168], in 2004, had already 
developed a method for using laser scanning data from the CPS 201 scanner for clearance 
measurements. Years later, Mikrut et al. [169] determined the clearance gauge using MLS point 
clouds applying the 2D contours method. They use cross sections of the point clouds to create a 2D 
image and an operator reviews them to obtain suspicious areas. When using TLS data, Collin et al. 
[136] proposed the use of the Infra-Red information to extract distortions. They compared 
information from different campaigns and then visually extracted cracks, wear seepages and humid 
areas, among others. Continuing with this, and together with points classification, Niina et al. [170] 
performed a clearance check after the automatic extraction of rails matching their shape with an ideal 
rail head using the iterative closest point (ICP) algorithm [171]. The objects inside the clearance, and 
related to a contact line, are detected by visual confirmation, as explained in Figure 12a. 

Concerning rail inspection, Chen et al. [172] developed a methodology for comparing laser 
scanning data with a point cloud reconstructed from CAD models to measure the existing rail wear. 
Related to this part of the infrastructure, the railway ballast is also an important asset to consider. 
The recent work from Sadeghi et al. [173] showed a method for the development of a geometry index 
for ballast inspection using automated measurement systems (Figure 12b). 

 
Figure 12. Inspection. (a) Niina et al. [170] extracted the rails’ top head to visually inspect the clearance 
gauge. (b) Sadeghi et al. [173] performed a ballast inspection based on a geometry index developed 
to this respect. 
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applications for the monitoring of terrestrial transportation networks, using data collected from 
Mobile Mapping Systems equipped with LiDAR sensors. Furthermore, it also describes and 
compares different commercial MMS that are employed to obtain those data, discussing 
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on MMS such as GNSS sensors or digital cameras.  

The first conclusion that can be extracted is that 3D point cloud data is a feasible source for 
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Figure 12. Inspection. (a) Niina et al. [170] extracted the rails’ top head to visually inspect the clearance
gauge. (b) Sadeghi et al. [173] performed a ballast inspection based on a geometry index developed to
this respect.

3.2.1. Railway Inventory and 3D Modelling

The automatic classification of points forming specific objects is one of the first tasks that needs to
be developed in any area of study. Che et al. [15] made a review to this end, presenting different and
broadly known techniques for object recognition and feature extraction from MLS 3D point clouds.
Al–Bayari [142] has also presented a series of case studies in civil engineering projects using a mobile
mapping system, but with specific programs for the post-processing of the extracted point clouds,
as do Leslar et al. [143] in the railway field. They performed some preliminary classification of points
in terms of the number of returns of each point and the remaining ones were manually selected and
classified using external programs and semi-automatic methods.

Seen in the railway network, the works from Arastounia are relevant when applying heuristic
methods to classify points from MLS point clouds. His algorithms follow a data-driven and model-
driven approach [137], grouping points into railway objects’ classes [138,144,145]. Later on, he published
a specific work regarding the automatic recognition of rail tracks and power line cables using TLS and
ALS data, with better performance than the previous methodologies presented by the author [134].
Following these advances, Sánchez–Rodríguez et al. developed an algorithm for MLS tunnel point
cloud classification [59]. They used not only heuristic methods, but also SVMs [146] for the classification
of possible rails in the track. The results obtained in these two latter works are depicted in Figure 8.
Regarding the use of classifiers, Luo et al. [147] used the Conditional Random Field (CRF) classifier to
make a prediction with local coherence, also resulting in a context based classification of points into
different railway objects.

Another option for LiDAR point cloud processing is converting them into 2D images. Zhu and
Hyyppa [141] directly made this conversion and classified data using image processing techniques.
Considering mixing images with point clouds, Neubert et al. [140] extracted railroad objects from very
high resolution helicopter-borne LiDAR and ortho-image data. They also used LiDAR data fusion
methods to classify rails. This opens up a new idea for the process of laser scanning data using deep
learning techniques to classify points, and so, Rizaldy et al. [148] made a multi-class classification
of aerial point clouds using Fully Convolutional Networks (FCN), which is a Convolutional Neural
Network (CNN) designed for pixel-wise classification.

The next step should be the conversion of the classified points into 3D models. Regarding this,
there is not much work in the last years but, with the appearance of BIM and Digital Twin, it will
soon become a need. Some authors have been using specific programs for that conversion [149], while
others directly convert the LiDAR point cloud data into 3D models. This application within the railway



Infrastructures 2019, 4, 58 19 of 29

network still needs to be developed. Most authors in this field based their research on specific elements
of the infrastructure and automatically detecting damage or pathologies in them. Looking at the
subsequent sections, a summary of the most critical works concerning this matter is shown.

3.2.2. Rails

One of the most extended practices when working with point clouds in railway environments is
the extraction of the tracks’ centreline. Beger et al. [139] used data fusion of extremely high-resolution
ortho-imagery with ALS data to reconstruct railroad track centrelines. The images were used to
obtain, first a railroad track mask and laser point classification, and then, a rail track centreline was
approximated using an adapted RANdom SAmple Consensus (RANSAC) algorithm [150]. Continuing
with centre line estimation, Elberink and Khoshelham [151] proposed two different data-driven
approaches to automate this process. First, they extracted the tracks from MLS point clouds. Then,
centre lines were generated directly using the detected rail track points or generating fitted 3D models
and implicitly determining the mentioned centreline.

Railway track point clouds may be extracted automatically from MLS data. Sánchez–Rodríguez
et al. [59] found possible rails according to the curvature of ground-points neighbourhood and, then,
they used SVM classifiers to verify the results obtained (Figure 9a). Additionally, Lou et al. [137]
developed a method to this end which processes data in real time. They exposed the validity of using a
low-cost LiDAR sensor (Velodyne) for performing mobile mapping surveys (Figure 9b). Stein, D. [152]
also used low-cost sensors, contributing with his thesis to the improvement of track-selective localization.
He determined the railway network topology and branching direction on turnouts applying a multistage
approach. More specifically, Stein et al. [153] proposed a model-based rail detection in 2D MLS data.
They developed a spatial clustering to distinguish rails and tracks from other captured elements.

To create 3D models from rail point clouds, Soni et al. [135] first extracted rail track geometry from
TLS point clouds. Then, models were created for monitoring purposes. Later on, Yang and Fang [154]
also created railway track 3D models, but from MLS point clouds which first detect railway bed areas,
then follow patterns and intensity data of rails to find tracks. Similarly, Hackel et al. [155] detected rails
and other parts of the track applying template matching algorithms (model-based) as well as support
vector machines (feature based). The results show that this methodology can be used for data from any
laser scanner system.

Some authors go beyond railway track detection and propose methods, not only for classification,
but also for the inspection of these elements, as described in Section 3.2.5.

3.2.3. Power Line

Most railway networks use aerial contact lines to provide an energy supply to trains during
operation. Therefore, monitoring of their composite elements it is essential for railway companies.
To this respect, Jeon et al. [156] proposed a method based on RANSAC algorithms to automatically
detect railroad power lines in LiDAR data. Then, iterative RANSAC and least square adjustments
were used to estimate the line parameters and build the 3D model of railroad wires. As exposed in
Section 3.2.1, the work from Arastounia, M. [144] stands out since he proposed an heuristic methodology
for classifying points in the railway environment. This calculates points neighbourhoods and recognises
objects by their geometrical properties and topological relationships. Specifically, the recognition of
overhead contact cables was developed applying PCA and region-growing algorithms. Catenary and
return cables are detected attending to their distribution in the 3D space with respect to the contact
cable. Related to this method, Pastucha, E. [157] used the MMS (Mobile Mapping System) trajectory
to limit the search area vertically and horizontally for extracting the catenaries. Then, the method
classifies points also by applying RANSAC algorithms and geometrical and topological relationships.
This also provides the location of cantilevers and poles or structural beams supporting the wires.
Zhang et al. [158] also used information from the MLS trajectory to extract significant data from it.
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They apply self-adaptive region growing methods to extract power lines and PCA combined with an
information entropy theory method to detect junctions.

A different concept is presented by Guo et al. [159]. Working with ALS point clouds, they presented
a method for power line reconstruction, analysing the distribution properties of power-lines for helping
the RANSAC algorithms in the wires’ reconstruction (Figure 10a). Using both laser scanning and
imaging data, Fu, L. et al. [160] automatically extracted the geometric parameters of the aerial power
line without manual aiming. This later could be used as input information for the 3D modelling of the
power line infrastructure.

The unsupervised classification of points is still under development. Like in any other field, there
is not a standard to follow for the railway network when developing and applying these algorithms.
Since the distribution of the electrification system in the space is quite regular, Jung et al. [161] proposed
a classifier based on CRF. It takes into account both short and long range homogeneity of the cloud.
To locally classify points, SVM are used and ten target classes are obtained, representing overhead wires,
movable brackets and poles, as shown in Figure 10b. Wang et al. [162] also presented a power line
classification method for detecting power line points and the power line corridor direction. They have
based their investigation on the Hough transform, connectivity analyses and simplification algorithms.

3.2.4. Signalization

Although the detection and classification of signals has been developed deeply and successfully
in the roadway network (Section 3.1.2), it is not so much in the railway field. Presumably, the same
techniques can be used for detecting rail signage. As will be presented in 2020 by Karagiannis et al. [163],
methods for detecting railway signs working with RGB or video images are being developed. They
use image processing techniques and feature extraction [164,165] to locate the signage. Beyond these
state-of-the-art results, they have implemented the Faster R-CNN (Convolutional Neural Network for
object detection) for sign detection in RGB images (Figure 11).

3.2.5. Inspection

Inspections should be carried out using non-destructive techniques (NDT) in the railway
environment, as in many other fields. These do not intervene with the structural condition of
the elements being inspected, and allow to repeat the tests as many times as necessary without causing
any damage. Nowadays, different techniques are used, as presented in Falamarzi et al. [166]. They made
a review concerning the main sensors and techniques used in the railway environment to detect
damage. Some sensors categorized as NDT are ultrasonic testing (UT), eddy current (EC), magnetic flux
leakage (MFL), acoustic emission (AE), electromagnetic acoustic transducers (EMATs), alternate current
field measurement (ACFM), radiography, microphone and thermal sensors, among others. These
detect defects from the surface to the internal part of the element being studied. High resolution and
thermographic cameras are also good examples of NDT. They are used widely when performing visual
inspections and applying image processing techniques for damage detection [166,167]. Although, laser
scanning is also a non-destructive technology that may be used for damage detection, there is not a
defined technique for the inspection of the railway network.

The most common inspection developed in railway point clouds is the inspection of rail tracks and
gauge clearance between them and the power line. Blug et al. [168], in 2004, had already developed a
method for using laser scanning data from the CPS 201 scanner for clearance measurements. Years later,
Mikrut et al. [169] determined the clearance gauge using MLS point clouds applying the 2D contours
method. They use cross sections of the point clouds to create a 2D image and an operator reviews
them to obtain suspicious areas. When using TLS data, Collin et al. [136] proposed the use of the
Infra-Red information to extract distortions. They compared information from different campaigns
and then visually extracted cracks, wear seepages and humid areas, among others. Continuing with
this, and together with points classification, Niina et al. [170] performed a clearance check after the
automatic extraction of rails matching their shape with an ideal rail head using the iterative closest
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point (ICP) algorithm [171]. The objects inside the clearance, and related to a contact line, are detected
by visual confirmation, as explained in Figure 12a.

Concerning rail inspection, Chen et al. [172] developed a methodology for comparing laser
scanning data with a point cloud reconstructed from CAD models to measure the existing rail wear.
Related to this part of the infrastructure, the railway ballast is also an important asset to consider.
The recent work from Sadeghi et al. [173] showed a method for the development of a geometry index
for ballast inspection using automated measurement systems (Figure 12b).

4. Conclusions

This paper presents an extensive literature review that describes different methods and applications
for the monitoring of terrestrial transportation networks, using data collected from Mobile Mapping
Systems equipped with LiDAR sensors. Furthermore, it also describes and compares different
commercial MMS that are employed to obtain those data, discussing specifications not only of the
LiDAR sensors but also of other different sensors that can be mounted on MMS such as GNSS sensors
or digital cameras.

The first conclusion that can be extracted is that 3D point cloud data is a feasible source for
infrastructure monitoring applications. The number of publications and methodological approaches
has been increasing since the last decade, with results that have been improving constantly. Actually,
it can be seen that the potential that can be reached by these technologies is still uncertain. There
are three factors that are in constant evolution and support this conclusion: (1) The LiDAR sensor
technology is still evolving, with new systems that keep improving in terms of point cloud resolution,
accuracy and size, among others; (2) The improvement of these new systems implies new necessities
in terms of data storage and management, hence new strategies to handle geospatial big-data are
appearing and enhancing the potential for better point cloud data; (3) The automation of data processing
also is evolving, from heuristic methodologies to the implementation of artificial intelligence for the
semantic interpretation of 3D and 2D data.

Notwithstanding, it also is clear that there is a lack of standardization in terms of data processing,
showing that the application of LiDAR-based technologies for infrastructure monitoring and asset
inventory is still at an early stage. Every application (e.g., traffic sign detection, railway power line
detection . . . ) has different approaches, typically validated using different (and mostly private) datasets
where the scalability for different data acquisition parameters, such as point density, is rarely tested.
Furthermore, new methods that outperform the state-of-the-art are frequent, therefore, tools that could
be developed to process data acquired with MMS can be outdated rapidly. Other challenges that should
be faced are the cost-effective management of the large amounts of data collected by these systems
and, in the context of infrastructure monitoring, the accurate and reliable extraction of information of
geotechnical assets (landslides, barriers, retaining walls).

Upcoming, it seems that new big-data and artificial intelligence techniques are going to produce
a new step forward in terms of increasing the potential for the automatic interpretation of massive
datasets. The automatic interpretation of information from the infrastructure should gradually replace
manual inspections, especially if data fusion with other remote sensing sources is considered.
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