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Abstract: The limitations of the standard two-year interval for the visual inspection of bridges required
by the U.S. National Bridge Inspection Standards have been well documented, and alternative
approaches to bridge inspection planning have been presented in recent literature. This paper
explores a different strategy for determining the interval between inspections and the type of
inspection technique to use for bridges. The foundational premise of the proposed approach is
that bridge inspections are conducted to increase knowledge about the bridge’s current condition,
and therefore, are only required when uncertainty about the knowledge of the bridge condition
is too high. An example case of a reinforced concrete bridge deck was used to demonstrate how
this approach would work. The method utilized deterioration models for predicting corrosion and
crack initiation time, considering the uncertainty in the models’ parameters. Bridge inspections
were used to update the current condition information and model parameters through Bayesian
updating. As this paper presents a new idea for inspection planning, not all of the data or models
necessary to fully develop and validate the approach currently exist. Nonetheless, the method was
applied to a simulated example which demonstrates how the timing and means of bridge inspection
can be tailored to provide the required data about individual bridges needed for effective bridge
management decision making.

Keywords: bridge inspection planning; bayesian updating; deterioration modeling; nondestructive
evaluation techniques; inspection uncertainty; concrete bridge decks

1. Introduction and Purpose

The U.S. National Bridge Inspection (NBI) program was established in 1968 as a result of the
Silver Bridge collapse in 1967. Accordingly, the National Bridge Inspection Standards (NBIS) were
established in 1971 [1]. The NBIS set a uniform inspection interval of two years for most bridges,
regardless of bridge age or past performance. Although the Federal Highway Administration [2]
does allow exceptions for certain bridges, the two-year interval is still the most common today, even
though the National Bridge Inventory consists of over 600,000 bridges, most of which were built before
1960 [3]. Bridge design and inspection technology has changed since the NBIS were established, and
the new technology may allow for longer inspection intervals so that inspection resources can be more
efficiently focused on bridges most in need of monitoring [4].

Traditionally, routine bridge inspections have relied heavily on visual inspection. Results of
these inspections have been documented primarily in the form of inspector-assigned condition ratings
using a variety of systems that have evolved over time (e.g., historic NBIS ratings [5], AASHTO CoRe
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elements [6], AASHTO bridge element ratings [7]). Visual inspection is mostly limited to the flaws and
defects on the surface, or internal defects that have grown to the extent that they reach the surface.
Chain drag is an example of a simple acoustic test that is also routinely used to assess the internal
conditions of reinforced concrete decks. Many new techniques for nondestructive evaluation (NDE)
of bridges have been developed based on electrical, magnetic, thermal, and acoustic properties of
materials. Several of these techniques can help establish the internal condition of a structure, for
example, defining the propensity to corrosion for a concrete element, detecting cracks and delamination
beneath the concrete substrate, and detecting fatigue cracks and welding discontinuities in steel
members. However, all of these NDE methods are accompanied with uncertainties in measurements
and difficulties in implementation on site [8–11]. The wide-scale adoption of NDE methods has been
hindered by the lack of clear techniques for effectively integrating NDE practices and findings into
well-established existing practices for visual inspection.

In addition to new inspection techniques, a significant body of research has been conducted
to enhance our understanding of bridge deterioration processes and mechanisms. Mechanistic
deterioration models for estimating the initiation time for corrosion [12,13] can be established/calibrated
by measuring the chloride content at a certain depth under the concrete surface [14,15] or monitoring
the corrosion rate in a concrete element. In addition, deterioration models for estimating the time
until the initiation of concrete cracks have been developed [16,17]. The loss of cross sectional area of
reinforcing steel and the loss of bond between concrete and steel due to general and localized (pitting)
corrosion can also be predicted using deterioration models (e.g., the ones proposed by [17]). Stochastic
deterioration models, such as case-based reasoning and Markovian models, have been used for many
years in the field of bridge management, specifically to enhance the timing of maintenance, repair and
replacement actions [18,19]. However limited applications of stochastic and mechanistic models to
improve inspection planning have been found in the literature [20,21], specially to reduce the number
of inspection cycles by utilizing NDE methods. Deterioration models and NDE techniques are both
important technological advances that could be applied to more effectively decide when and how
bridge inspections are conducted. The purpose of this paper was to develop a rational approach for
establishing the timing of bridge inspections and determining the appropriate inspection techniques
by integrating several sources of information about bridge condition. The novel approach to bridge
inspection practice described in this paper was based on the premise that, for purposes of bridge
management, bridge inspections serve to provide knowledge about the bridge’s current condition,
and therefore, inspections are only required when there is too much uncertainty about the current
condition of the bridge to allow for effective decision making.

2. Approach

This paper explores uncertainty-based inspection planning based on limiting the level of
uncertainty in the bridge condition to a reasonable/acceptable level. To implement uncertainty-based
inspection planning, an integrated decision framework for selecting inspection interval and inspection
techniques was proposed. The framework leverages the information from multiple sources including
deterioration models and different NDE techniques and integrates the information through Bayesian
updating. Predictions made about future conditions and associated uncertainties using deterioration
models were used to guide the selection of inspection interval. On the other hand, the selection of
inspection technique considered not only the stage in the bridge element’s service life, but also whether
the inspection technique can effectively reduce the level of uncertainty to the acceptable level.

Once a specific inspection was carried out, Bayesian updating was used to calibrate the adopted
deterioration model using the inspection data, and the updated deterioration model (i.e., with
posterior model parameters) was used to inform more accurate prediction of the next inspection time.
The proposed framework can be implemented iteratively over the bridge service life. To demonstrate
how an inspection plan based on limiting the level of uncertainty in bridge condition would work,
this paper describes the example case of reinforced concrete (RC) bridge decks subject to deterioration
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caused by chloride-induced corrosion. RC decks were selected because they are very common bridge
elements that need frequent maintenance and repair, and also because both nondestructive evaluation
techniques and mechanistic deterioration models exist for these elements. However, the emphasis of
the paper was on developing and demonstrating a flexible framework for bridge inspection planning
that could be applied to a range of bridge elements, materials and construction types.

The remainder of this paper is organized as follows: first, the concept and motivation of
uncertainty-based inspection was discussed, then, to implement uncertainty-based inspection planning,
an integrated decision framework for selecting inspection interval and inspection techniques was
presented in detail, including Bayesian updating, and finally, the framework was illustrated through
inspection planning for an example RC bridge deck considering deterioration through different stages
of its service life.

3. Uncertainty-Based Inspection Planning

3.1. Sources of Uncertainty in Bridge Condition

For bridge management, bridge managers want to know the condition of a bridge and how that
condition is expected to change over time so they can determine the appropriate maintenance, repair,
or rehabilitation action for a given bridge in relation to other bridges in their management network
and their available financial resources. In other words, bridge managers need to know how a bridge
will move through various stages of its service life, which can be defined as the period of time during
which a bridge is able to perform its intended function at a satisfactory performance level with only
routine maintenance [13]. It is impossible to establish bridge condition or remaining service life at a
given time with absolute certainty due to various uncertainties including those in the bridge itself
(e.g., material properties), the external conditions (e.g., traffic loading and environmental exposures),
previous maintenance actions and repair work during the life span of the bridge and the deterioration
processes. Thus, bridge management must both acknowledge the presence of uncertainty and seek to
reduce uncertainty to a point where effective decisions can still be made.

Figure 1 conceptually shows the general deterioration of the condition of a bridge (or bridge
element) through time. Although the condition of a bridge can be measured or documented in several
different ways, we used remaining service life in this framework. The choice of remaining service life
as an indicator or measuring criterion was further discussed in the next section. Figure 1 shows not
only the expected bridge condition over time (the solid black line trending downward to the right) but
also the associated uncertainty in condition at several time instants as predicted by a deterioration
model. Note that Figure 1 is a conceptual plot used to mainly illustrate the general deterioration
process while the actual rate of degradation depends on variations in each individual bridge (e.g., the
construction materials and methods, geographic location, and traffic conditions). It should be noted
that for simplicity, this model does not consider past maintenance actions performed on the bridge.
However, if maintenance was to be considered, assuming a minimum uncertainty towards the bridge
condition after conducting the maintenance work would be reasonable.

The uncertainty in bridge condition could arise from limitations of inspection techniques in
establishing a current state and limitations in deterioration models in predicting changes in bridge
condition over time. Typically, over time, the uncertainty in the bridge condition increases, as various
uncertainties in the deterioration process and also variability in environmental factors affect the
predictive ability of deterioration models. This increase in uncertainty can be clearly seen by the
increasingly larger spread in the distribution of condition from time t1 to t2, and tinsp. This increase in
uncertainty represents the higher possibility that the bridge might be in many different conditions,
which is not desirable for planning purposes.
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Figure 1. Conceptual representation of increasing uncertainty about bridge condition over time, and
the reduction in uncertainty resulting from updated inspection findings.

Reducing the uncertainty in bridge condition allows bridge managers to make better and more
informed management decisions, including assessing the safety of a structure. Inspections are the
primary tool bridge managers have for reducing uncertainty in bridge condition. Considering the costs
associated with inspections, inspection intervals and techniques should be strategically considered.
As shown in Figure 1, if an inspection is carried out at time tinsp and when the inspection technique
used has sufficient accuracy and precision, the level of uncertainty in bridge condition can be reduced,
resulting in a narrower distribution for remaining service life, as will be demonstrated in the current
work. For bridges with conditions that make it especially hard to predict their deterioration (harsh
environments, unique materials or design), frequent in-depth inspections might be required. Other
bridges might be newer, or more typical, making predictions of their deterioration easier, and thus
more accurate. If deterioration models were very accurate in their predictions of bridge condition,
there would be little need to conduct inspections. However, current deterioration models have
limited accuracy due in part to uncertainty and variability in the model parameters, and in many
cases generalization is not possible since the model parameters are affected by many factors that are
not covered by sufficient available data [22]. Using information from inspections to update model
parameters will help enhance the accuracy of the deterioration model. Furthermore, the timing and
type of inspection can be selected to ensure that the model parameters are being updated when needed,
as was demonstrated in the current work.

As shown in Figure 1, relying on information from a deterioration model alone might lead to
biased condition predictions, not to mention the potential for large uncertainty. Biased condition
prediction has implications for the inspection interval/frequency, for example, the overestimation of
deterioration can lead to more frequent inspections, while the underestimation of deterioration can
lead to a false sense of safety when the actual condition might be much worse than predicted. While
deterioration models do have limitations, they are also a valuable source of information because they
can directly incorporate the effect of different environmental conditions and project into the future.
The inspection planning approach developed herein sought to leverage the benefits of deterioration
modeling, while also verifying and enhancing modeling capabilities through strategically planned
NDE inspections.
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The systematic use and integration of a variety of inspection techniques with deterioration models
can lead to improved knowledge of bridge condition and better management decisions. Therefore, this
paper proposes that decisions about inspection intervals and techniques should be carefully considered
to ensure that inspection findings can be readily used to enhance understanding and reduce the
uncertainty in bridge condition. This study suggests that bridge inspections should be performed
when the degree of uncertainty regarding the bridge condition has exceeded a certain level, regardless
of the time span between the planned inspection and the previous one. Further, in the framework
presented in this paper, the selection of the inspection technique went well beyond visual inspection
and became an important decision based on the current state of the structure and the type, accuracy
and precision of the data provided by the inspection technique.

3.2. Remaining Service Life (RSL) as Condition Indicator

This paper used uncertainty in the knowledge about bridge condition as a basis for planning
inspections (i.e., inspection interval and technique). The bridge condition was expressed in terms of
the remaining service life (RSL) of the bridge or bridge element. This selection differed from typical
bridge inspection practice, which emphasizes documentation of the current condition state of the
bridge using the NBIS rating system (0–9) or the updated CoRe elements [4,6]. There are several
reasons why RSL was selected as the condition indicator in the proposed uncertainty-based inspection
planning framework.

First, bridge inspections are ultimately conducted for the purpose of supporting bridge
management decisions. The condition state of a bridge element is important in that if the current
condition is unsafe, the bridge agency needs to know so that timely repairs can be made. For long-term
maintenance activity planning and projecting future costs, the condition of the structure and also how
long the structure is predicted to remain in that condition are important. Current deterioration models
use Markov chains to project the time that bridge elements will take to transition through a series of
condition states [18,23]. Using the RSL as an indicator of bridge condition thus tracks closely with the
use of condition information in bridge management decision making.

Second, as bridge elements deteriorate, they move through a series of different stages of their
service life. For example, in a RC bridge deck, there is the stage where chlorides are accumulating
in the concrete of the deck, followed by a stage of corrosion initiation and progression. As the deck
moves through different stages of its service life, different variables will be of interest in tracking the
progress of deterioration of the deck (e.g., chloride profiles, threshold chloride concentrations, and
corrosion currents). The RSL, however, is a consistent variable that is of interest throughout the bridge’s
life. Furthermore, RSL is a flexible measure of condition that is applicable to every type of bridge.
Although bridges constructed differently or with different materials will have their RSL predicted
through different means, RSL is applicable to all bridges, allowing for consistency in planning across
different types of structures.

Finally, depending on the type of bridge element, a significant portion of the element’s service life
might be spent in a condition where deterioration is not actively progressing, but where the condition
of the element is slowly changing in preparation for the deterioration to begin. For example, when
chlorides are accumulating in the concrete of a bridge deck, inspectors will not document any sign of
deterioration, and the condition state might very well remain in a high condition state for an extended
period of time. However, the useful life of that deck slowly decreases as the chloride concentration
increases and approaches the threshold for corrosion initiation. Tracking RSL allows us to consider all
parts of the deterioration process and may make it more convenient to plan and incorporate the effects
of preventative maintenance as part of bridge management decisions.



Infrastructures 2019, 4, 50 6 of 26

3.3. Important Situations in Uncertainty-Based Inspection Planning

The proposed method for bridge inspection planning considers two basic situations in which
uncertainty in bridge condition deserves particular attention. As demonstrated later, consideration of
these two cases can be used to determine inspection intervals and methods.

First, to make informed and appropriate bridge management decisions, the bridge managers need
information on bridge condition with an acceptably low uncertainty. Therefore, when uncertainty
in bridge condition (i.e., RSL) becomes too high (e.g., based on prediction of RSL from deterioration
models), an inspection is needed to reduce its uncertainty and facilitate bridge management planning.
Typically, inspection results can be used to update both the bridge condition and the deterioration
model used for bridge condition prediction (e.g., update model parameters for the deterioration
model). Defining “too high” depends on the situation, including how management decisions would
be impacted by the more refined information (i.e., if the same management decision will be made with
or without the enhanced information, there is little incentive to substantially reduce uncertainty) and
how expensive it would be to reduce the uncertainty. For different types of bridge construction or
materials, the available management actions or inspection techniques will have various levels of cost
and accuracy, meaning threshold values might be specific to the type of bridge. This was discussed in
detail in next section.

Second, uncertainty is of particular importance when the bridge is nearing a transition in the
stages of its service life. It is important to identify the transition stages with higher accuracy because
many changes need to occur. For example, the deterioration mode may change, requiring changes in
the model used to predict the RSL and likely new model inputs. Furthermore, different inspection
techniques and different maintenance practices will become relevant as a new stage of the service life
is reached. Therefore, when transition of stages is anticipated, even if uncertainty is at an otherwise
reasonable level, a bridge manager or inspection planner might be interested in further verifying the
predictions to ensure that the correct deterioration model is being used for future projections. For this
purpose, an inspection technique (or combination of techniques) that measures the appropriate variable
and with the necessary accuracy and precision needs to be selected to make a targeted reduction
in uncertainty. Take the case of corrosion of RC decks for example. In this deterioration mode, the
appropriate inspection technique could be based on the stage of the corrosion. If the bridge is still in its
early years, using Chloride Ion Penetration test can help in determining the chloride profile in the
concrete deck. If the chloride concentration has reached the threshold level and corrosion has initiated,
then the rate of corrosion can be estimated by other non-destructive techniques such as the polarization
resistance technique [24]. As the end of the first stage of life approaches and inspection technique,
such as Half Cell Potential (HCP), can be used to measure the probability of corrosion initiation and to
determine when it is appropriate to switch from Stage 1 models and inspection methods to Stage 2
models and inspection methods.

Based on the preceding discussion, explicitly considering uncertainty in knowledge of bridge
condition provides a rational way to incorporate the results of NDE and deterioration models into
the process of selecting inspection interval and inspection techniques. Furthermore, the use of RSL
as a variable to track bridge condition facilitates the development of a framework that is adaptable
to different types of bridge construction and that directly addresses the information needed for
decision making purposes. The next section discusses the proposed framework for carrying out
uncertainty-based inspection planning.

4. Integrated Decision Framework for Uncertainty-Based Inspection Planning

4.1. Overview of the Proposed Framework

To implement uncertainty-based inspection planning, an integrated decision framework for
selecting inspection interval and inspection techniques was proposed. The framework leverages the
information from multiple sources, including deterioration models and different NDE techniques, and
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integrates the information through Bayesian updating. Figure 2 illustrates the overall framework in a
flow chart. This section first provides a brief overview of the framework, while the details about each
step in the framework are discussed in the following sections.
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Starting from available prior information on the uncertainty in the deterioration model and its
parameters, a deterioration model can be directly be used to predict the RSL of the bridge or bridge
element and associated uncertainty at different years (or inspection intervals). Two thresholds, related
to the level of uncertainty in the predicted RSL and the definition of different stages of the service life,
can be used to select the inspection interval where the shorter interval should be used. Additionally,
any other constraints on the inspection interval, e.g., lower bound and upper bound (i.e., minimum
and maximum inspection intervals), can be directly incorporated.

On the other hand, the selection of inspection technique was based on whether the inspection
technique can effectively reduce the level of uncertainty in RSL at the next inspection time to an
acceptable level. It should be noted that the term inspection technique is used to refer to an individual
NDE method or an individual inspection comprising more than one method. To integrate deterioration
modeling and inspection results (i.e., the projected inspection results at the next inspection time by the
candidate inspection technique), Bayesian updating was used to integrate the inspection results to
update the uncertainty in the deterioration model parameters (i.e., giving posteriori information on
these model parameters) where the uncertainties in the candidate inspection technique were explicitly
accounted for. Then, the updated deterioration model was used to provide an updated prediction on
the RSL and its uncertainty. In addition to updating the deterioration model, the inspection results
(which are typically not given in terms of RSL but rather some other measures of the bridge condition)
can be directly used to update the bridge condition (i.e., stage of its service life) where the prior
information is provided by the deterioration model.

In the end, the inspection technique that can reduce the uncertainty in the predicted RSL below
the target level was selected. When multiple inspection techniques satisfy the above requirements, the
one that is more cost-effective or fits the scheduling was selected. Note that after an actual inspection
(i.e., at the selected inspection time with the selected inspection technique) has been carried out, the
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updated uncertainty information on the deterioration model parameters serves as prior information
for the next inspection cycle. The proposed framework can be implemented iteratively over the bridge
service life with the use of appropriate deterioration models for the corresponding stages of element
life. Figure 3 shows an example implementation of the uncertainty-based inspection planning. It shows
the projected RSL and its uncertainty as a function of time and the inspections conducted to either
reduce the uncertainty or determine change in stage. The following sections will discuss the details
about each step in the framework and some theoretical characteristics of the framework.Infrastructures 2019, 4, x FOR PEER REVIEW  8 of 26 
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4.2. Selection of Inspection Interval Based on Prediction from Deterioration Models

To implement uncertainty-based inspection time selection, we need to (1) select the deterioration
model and quantify the uncertainty in the deterioration model and ultimately the uncertainty in the
predicted RSL at any future time, and (2) define respective thresholds for level of uncertainty in RSL
and the probability that a certain stage of a bridge element’s service life has been reached.

4.2.1. Deterioration Models and Associated Uncertainty in Condition and RSL Predictions

Let Y(t) represent the bridge (or bridge element) condition (i.e., representing the stages in its
service life) at time t, and let TRSL(t) represent the RSL at time t. Both Y(t) and TRSL(t) are typically
random variables, and we will use y(t) and tRSL(t) to represent their corresponding realizations.
We can use deterioration models to predict Y(t) and TRSL(t) for any future time t including their
uncertainties. We can write the deterioration model in a general form as

[y(t
∣∣∣θ), tRSL(t

∣∣∣θ)] = Md(t;θ) (1)

where Md(t;θ) is the deterioration model and θ are the uncertain model parameters (e.g., material
properties, environmental exposure, use of deicing salt, loading conditions). We will use the probability
distribution function (PDF) f (θ) to characterize the uncertainty associated with θ, which represents
the prior information we have about the deterioration model parameters.
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Depending on the problem, different deterioration models can be adopted, as long as they can
capture the uncertainty in the deterioration process. Some candidate deterioration models include
probabilistic models [25–27], stochastic models (including homogeneous and nonhomogeneous Gamma
processes, inverse Gaussian process [28–30], and Markov models (including homogeneous Markov
model, state-dependent Markov models) [31–35]. Note that the proposed framework is general and
does not limit the type of deterioration model used so long as it can predict the RSL and that it
can be improved by data collected during inspections, whether it is from visual inspection or other
NDE techniques.

Then we can use the deterioration model to predict y(t) and tRSL(t
∣∣∣θ) for different time t, and

by propagating the uncertainty in the model parameters θ, we can easily establish the associated
uncertainty for Y(t) and TRSL(t). The uncertainty for TRSL(t) can be characterized by a PDF fTRSL,t(tRSL)

or information such as mean µTRSL(t) and standard deviation σTRSL(t) or coefficient of variation (c.o.v)
δTRSL(t) = σTRSL(t)/µTRSL(t).

4.2.2. Uncertainty Thresholds and Stages of Service Life

Based on prediction from the deterioration model, we can determine the inspection time/interval
by checking whether either of the two criteria, related to the level of uncertainty in RSL and the different
stages of the service life, has been met. We use tinsp = t0 + Tinsp to denote the selected inspection time
and Tinsp the corresponding inspection interval with respect to the current time t0. First, we need to
establish the two criteria and corresponding thresholds.

To quantify the level of uncertainty in RSL, we use its standard deviation σTRSL(t). The standard
deviation is an absolute measure of uncertainty, which means that it has a direct meaning for decision
makers, i.e., the uncertainty can be thought of as plus or minus time affecting the predicted remaining
service life. In other cases, different measures of uncertainty (such as c.o.v δTRSL(t) = σTRSL(t)/µTRSL(t))
can be used as well. Let σub denote the threshold for σTRSL(t), the corresponding inspection time can be
selected as the first time that σTRSL(t) exceeds σub, i.e., tσinsp =

{
min(t) : σTRSL(t) ≥ σub

}
.

For the second criterion, to quantify the uncertainty associated with the stage of service life that
the bridge (or bridge element) is in, we use the probability that a certain stage of the service life has been
reached. Let yk represent the condition threshold (e.g., lower bound that defines a transition to the next
stage of the service life) for the kth stage in a bridge’s service life. As mentioned earlier, it is important for
bridge managers to be able to identify the transition stages with good accuracy, as many changes need
to occur (e.g., different inspection techniques and different maintenance practices). The probability that
the kth stage in a bridge’s service life has been reached can be written as Pk(t) =

∫
y(t)>yk

fY,t(y(t))dy(t),
where fY,t(y(t)) is the PDF for Y(t). Let FY,t(y) represent the cumulative distribution function (CDF)
for Y(t), then Pk(t) = 1− FY,t(yk). If we select Pub

k as the threshold for Pk(t), then the corresponding

inspection time can be selected as the first time that Pk(t) exceeds Pub
k , i.e., tk

insp =
{
min(t) : Pk(t) ≥ Pub

k

}
.

In the end, the inspection time should be taken as the smaller one of tδinsp and tk
insp, i.e.,

tinsp = min(tσinsp, tk
insp) (2)

The selection of the thresholds σub and Pub
k will directly impact the selected inspection time tinsp and

inspection interval Tinsp. Smaller values of σub and Pub
k will lead to more frequent inspections. Their

selection could be agency-dependent and to some extent reflect the agency’s attitude towards uncertainty,
e.g., uncertainty aversion (selecting smaller values of σub and Pub

k ), uncertainty tolerance (selecting larger
values of σub and Pub

k ), or uncertainty neural (selecting moderate values of σub and Pub
k ).

In addition to the thresholds σub and Pub
k , there are other considerations that need to be taken into

account when selecting the inspection interval Tinsp. Considering the cost associated with inspection, it
is not cost effective to inspect bridges too frequently. Therefore, typically, the inspection interval will be
larger than a prescribed minimum Tmin (e.g., typically 1 year). On the other hand, a maximum value
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Tmax for the inspection interval needs to be set. For example, this maximum can be selected as six
years. This is based on the maximum inspection interval from [36], as well as the maximum inspection
interval used in European bridge inspection agencies [4]. However, theoretically deterioration models
are capable of making projections well beyond six years. With a highly accurate and thoroughly
validated model, it would be reasonable to allow for longer inspection intervals in the future. Overall,
the appropriate values for σub and Pub

k should result in a range of inspection intervals, and not predict
all intervals above Tmax or below Tmin. In the end, the next inspection time tinsp can be decided using
Equation (2) along with the above considerations.

4.3. Selection of Inspection Technique Based on Uncertainty Reduction

Once the next inspection time tinsp is determined, we need to select appropriate inspection technique(s)
so that the uncertainty in the RSL at tinsp is reduced to below a target level (e.g., σTRSL(tinsp) < σlb).
To determine the appropriate inspection technique, we need to address three issues: (1) what inspection
techniques are appropriate for the structural element in question at the expected stage of bridge life,
(2) how to incorporate the uncertainty in different inspection techniques into the selection process, and
(3) how to integrate the uncertain inspection results and information from deterioration models to update
the knowledge on RSL and its uncertainty at the next inspection time tinsp.

To address the first issue, NDE techniques for particular types of bridge construction and service
life stages must be identified. A valuable web-based tool to help select the appropriate NDE method
is the FHWA NDE web manual [37]. This portion of the process is detailed in the example later in
the paper. To address the second issue, the uncertainty in the inspection techniques can be explicitly
modeled through a regression model between the true condition and the condition from inspection,
with bias and random error explicitly included in the regression model. Note that in practice, it is
challenging to determine the true condition or ground truth. By using the regression model, we
can mathematically formulate the relationship between the true condition and the condition from
inspection measurements so that we can use measurements to predict the true condition. If the
inspection has very good accuracy, then we will have more accurate predictions of the true condition;
otherwise, there will be larger uncertainty in the prediction. Overall, the formulation will give a
probabilistic prediction of the true condition. To address the third issue, Bayesian updating is used
to integrate inspection data. The inspection data was used to update the uncertainty in the model
parameters for deterioration model, and then the updated deterioration model was further used to
directly update the prediction on RSL including its uncertainty. Alternatively, using the inspection data
(e.g., expressed in terms of bridge condition) and prior knowledge on bridge condition (e.g., prediction
of bridge condition from deterioration model), Bayesian updating can be used to update the bridge
condition and its uncertainty, which were then used in proper models that convert bridge condition
measures to RSL, including its uncertainty. The following sections discuss the proposed approach for
uncertainty-based selection of an appropriate inspection technique in detail.

4.3.1. Uncertainty in Inspection Data

In order to select an inspection technique, it is first necessary to quantify the accuracy and precision
of different inspection techniques. The error and uncertainty in the inspection data can be captured
through the following regression model between the measured data from inspection (e.g., NDE) and
the true condition values [38–40]

y(tinsp) = β1 + β2ym(tinsp) + εm (3)

where y(tinsp) is the true bridge condition at the selected inspection time tinsp, ym(tinsp) is the inspection
measurement data if an inspection is carried out at time tinsp, and εm is a random variable that describes
the error in the inspection (i.e., the uncertainty in the inspection technique), and is typically assumed to
be approximately normally distributed with zero mean and a standard deviation σεm that varies with
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different inspection techniques (e.g., different NDE techniques) and inspection teams [40]. This means
εm ∼ N(0, σ2

εm).
The parameters β1 and β2 are regression parameters specific to an inspection technique and need

to be calibrated, for example, calibration of the NDE tool [38]. If β1 = 0 and β2 = 1, the inspection
technique is unbiased. If β1 = 0 and β2 > 1, the inspection technique is biased, and since β2 > 1, the
actual condition value is always higher than the inspection result, which means the inspection technique
underestimates the true condition value. For example, for the delamination of RC bridge decks, if
an inspection technique underestimates the actual delamination, this leads to β2 > 1. In addition, the
coefficient of variation (c.o.v) of the NDE technique can be defined as σεm/ym, which indicates the
precision, or repeatability of the inspection technique. A large c.o.v represents a technique that is
less repeatable and may yield a wider range of values. Some detailed discussions on the uncertainty
associated with common NDE techniques can be found in [41]. Overall, each inspection technique
and its uncertainty can be characterized by β1, β2, and σ2

εm. If a certain inspection technique is carried
out and it gives an inspection result of ym(tinsp), then the regression model will give a probabilistic
prediction of the true condition, which will follow a normal distribution with a mean of β1 + β2ym(tinsp)

and standard deviation of σεm, that is

y(tinsp) ∼ N(β1 + β2ym(tinsp), σ2
εm). (4)

4.3.2. Bayesian Updating of Deterioration Model Parameters and Posterior Prediction of Uncertainty
in RSL

Bayesian updating provides a rational framework to update our knowledge on deterioration
model parameters integrating prior information and the inspection data. Using Bayes theorem, the
posterior distribution for the uncertain model parameters θ of the deterioration model Md(t;θ) can be
established through

f
[
θ|Ŷ(tinsp)

]
=

L
[
Ŷ(tinsp)|θ

]
f (θ)∫

L
[
Ŷ(tinsp)|θ

]
f (θ)dθ

(5)

where f [θ|Ŷ(tinsp)] is the posterior distribution for θ, Ŷ(tinsp) represents the inspection data (e.g.,
Ŷ(tinsp) = ym(tinsp)) from a candidate inspection technique, L[Ŷ(tinsp)|θ] is the likelihood function,
which essentially corresponds to the probability of observing Ŷ(tinsp) for given value of θ, and f (θ) is
the prior distribution of θ. Let yd(tinsp|θ) represent the prediction from deterioration model Md(t;θ)
for given θ. Based on the model for quantifying the uncertainty in inspection data discussed earlier
(i.e., Equation (3) or Equation (4)), the likelihood function can be written as

L
[
Ŷ(tinsp)|θ

]
= φ

 yd(tinsp|θ) − β1 − β2Ŷ(tinsp)

σεm

 (6)

where φ[.] is the PDF for standard normal distribution. Obviously, this likelihood depends on
the inspection result and the accuracy of the inspection technique. When multiple measurements
(e.g., using the same technique) are carried out, the likelihood function can simply be updated as
the multiplication of the PDF for each of the measurements, assuming independence between the
measurements.

Using the deterioration model and propagating the uncertainty in θ using the updated posterior
distribution f [θ|Ŷ(tinsp)], we can update the uncertainty in RSL at tinsp (i.e., TRSL(tinsp)), represented
through the posterior fTRSL,tinsp |Ŷ(tinsp)

(tRSL) or σTRSL |Ŷ(tinsp)
(tinsp).

In addition to updating the deterioration model parameters, inspection data can also be used to
directly update information on the bridge condition Y(tinsp) (i.e., uncertainty on which stage of the



Infrastructures 2019, 4, 50 12 of 26

service life the bridge or bridge element is in). In this case, similar to updating θ, for updating the
bridge condition Y(tinsp), we have

fY,tinsp

[
y|Ŷ(tinsp)

]
=

L
[
Ŷ(tinsp)|y

]
fY,tinsp(y)∫

L
[
Ŷ(tinsp)|y

]
fY,tinsp(y)dy

(7)

where fY,tinsp [y|Ŷ(tinsp)] is the posterior distribution for Y(tinsp), L[Ŷ(tinsp)|y] is the likelihood function,
and fY,tinsp(y) is the prior distribution of Y(tinsp) established using, for example, the deterioration
model. The likelihood function can be written as

L
[
Ŷ(tinsp)|y

]
= φ

 y− β1 − β2Ŷ(tinsp)

σεm

. (8)

4.3.3. Selection of Inspection Technique

Using the above Bayesian updating, we can update the uncertainty in RSL at tinsp for each
candidate inspection technique (or combination of techniques) and select the inspection technique
that can reduce the uncertainty in RSL to an acceptable level for a certain period. Since an actual
inspection has not been carried out at tinsp, the inspection result Ŷ(tinsp) is not known yet. To use the
posterior information for TRSL(tinsp), e.g., fTRSL,tinsp |Ŷ(tinsp)

(tRSL) or σTRSL |Ŷ(tinsp)
(tinsp), to select inspection

technique, we established the posterior information for different inspection results, i.e., Ŷ(tinsp) = ym

for different values of ym.
To quantify the level of uncertainty in RSL, similar to the selection of inspection time, we use its

standard deviation. The posterior standard deviation at the inspection time is σTRSL |Ŷ(tinsp)
(tinsp). Let

σlb denote the target acceptable level of uncertainty for σTRSL(t). The selected inspection technique
needs to meet the following criterion

Minsp =
{
M j : σTRSL |Ŷ(tinsp)

(tinsp) ≤ σlb, j = 1, . . . , n
}

(9)

where Minsp represents the selected inspection technique, M j is the jth candidate inspection technique,
and n is the total number of candidate inspection techniques. When multiple inspection techniques
satisfy the selection criterion, the one that costs less or fits the inspection schedule in terms of availability
of inspection tools and personnel can be selected.

5. Application Example: Reinforced Concrete Bridge Decks

To demonstrate the proposed inspection planning framework, this example considered two stages
of deterioration of reinforced concrete (RC) bridge decks, namely, the chloride accumulation stage and
the active corrosion stage. An RC slab bridge deck satisfying current bridge design standards [42] with
a single span of 15 m, slab depth of 75 cm, and 60 mm concrete cover for unprotected main reinforcing
steel was used for the example, as shown in Figure 4. The bridge deck was assumed to be regularly
exposed to deicing salt. The example includes discussion of the deterioration models used at each
stage, the available inspection techniques at each stage and the Bayesian updating procedures used to
determine inspection planning intervals.
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Chloride-induced corrosion is considered one of the main causes of the deterioration of concrete
bridges [43]. De-icing salt and seawater are common sources of chlorides [13]. In most chloride-induced
deterioration models, degradation of the concrete deck is not considered until corrosion has initiated at
the rebar level [44]. However, waiting until after the beginning of corrosion to start considering the RSL
undermines the benefits of choosing an optimum inspection time and removes proactive maintenance
measures [45]. In our framework, Stage 1 extends from the time chlorides reach the concrete surface
(likely within the first six months after construction due to seasonal changes) until the time when the
threshold chloride concentration is reached at the level of the rebar and corrosion initiates.

Stage 2 is the active corrosion stage where corrosion propagates in the steel rebar, building up
pressure in the concrete, eventually causing cracking. Stage 2 begins when the chloride content reaches
the threshold level at the rebar level, the protective film surrounding the rebar fails and corrosion
becomes active. Due to the volume increase associated with corrosion of the rebar, tensile stresses
are induced on the concrete substrate around the rebar, causing cracking or spalling of the concrete
cover [46]. Stage 2 ends at the time when cracking starts.

Stage 3 would extend from the time cracking starts until the deck reaches a certain extent of cracking
(or delamination) as specified by the agency and is not considered in this paper, but can be considered
similar to Stage 1 and Stage 2 with appropriate deterioration models and inspection techniques.

5.1. Deterioration Models

5.1.1. Deterioration Model for Stage 1

Previous research in marine and bridge structures has shown that chloride accumulation profiles
in concrete can be approximately modeled by integrating Fick’s second law [14]

C(x, t) = C0

[
1− er f

(
x

2
√

Dt

)]
(10)

where C (x, t) is the chloride content at a distance x (m) from the surface at time t, C0 (kg/m3) represents
the chloride concentration at the deck surface, erf is the error function and D (m2/year) represents
the diffusion coefficient [14]. This model was found appropriate in this current work, while other
deterioration models that consider uncertainties in Stage 1 can also be used for further elaboration [25].
This formula can be re-arranged to estimate the corrosion initiation time t1, where C (x, t) is replaced
by the critical threshold value Cth (kg/m3), which indicates the critical chloride concentration level for
corrosion to initiate [13].

t1 =
1

4D

 Cover

er f c−1
(Cth

Co

) 
2

(11)
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5.1.2. Deterioration Model for Stage 2

The deterioration model used for Stage 2 was proposed by [47] to analyze the deterioration process
and the life span of concrete materials. This model predicts the time from initiation of corrosion until
the appearance of cracks. The empirical equation for the time from corrosion initiation until cracking
of the concrete cover, t2, is

t2 = 80
Cover

1000×V ×Db
(12)

where V is the rate of corrosion in concrete (µm/yr) and Db represents the diameter of the rebar.
To calculate the rate of corrosion V for a steel rebar, Equation (13), suggested by [48], can be used:

V = 0.0115mic (13)

where ic represents the corrosion current density (µA/cm2) and m is the corrosion coefficient which
depends on the type of corrosion (pitting or uniform). Uniform corrosion will be considered for this
example and the value of m is taken as 2 for this case [13]. The corrosion current density (ic) is estimated
using Equation (14) [12].

ic =
0.378

(
1− w

c

)−1.64

Cover
(14)

The factors that affect the corrosion density are mainly the water cement ratio (w/c) and the concrete cover.
The values of the parameters (θ), used in the deterioration models for both Stages 1 and 2, depend

on the inspection findings and as they are not known with certainty, they are represented with random
variables in the inspection-planning framework.

5.2. Available Non-Destructive Inspection Techniques for RC Bridge Decks

Table 1 shows the non-destructive (or slightly destructive) inspection techniques available
(and appropriate) for RC bridge decks at different deterioration stages (including indicators of
transitions between stages). The NDE methods for each stage were chosen based on the availability
of data regarding their accuracy and their potential in updating the deterioration model parameters.
The measures of accuracy for each method were obtained from references that compared the NDE
test results with destructive test results (e.g., concrete core tests). Note that in Stage 3, common
non-destructive methods for bridge decks that detect cracking and delamination, such as ground
penetrating radar (GPR) or impact echo (IE), can be used; however, this example is concerned with
Stages 1 and 2, where GPR and IE are not informative inspection techniques.

Table 1. Non-destructive inspection techniques available for RC bridge decks at different deterioration stages.

Deterioration Stage NDE Detects/Measures Accuracy/Precision References

Stage 1 Chloride
Accumulation

Pachometer Depth of concrete ±15% of cover depth [49]

Chloride Ion
Penetration test (CIP)

Chloride concertation and
Diffusion coefficient

±0.0106 % chloride by mass of
concrete [50]

Transition from Stage 1
to Stage 2

Half-cell Potential
(HCP)

Measures the probability of
corrosion. ±20 mV [51,52]

Stage 2 Active corrosion Polarization Resistance Corrosion Current Density
(ic) (µA/cm2)

ic = B
Rp

B : Stern-Geary
Coefficient (25 mv–50 mv) R :

Polarization Resistance with an
error factor ±2.83 ohm-cm2

[53]

Note: For parameter definition and explanation, refer to the corresponding references.
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5.3. Uncertainty-Based Inspection Planning for Stage 1

Inspection planning consists of three main steps: non-destructive inspection, the Bayesian updating
process, and deterioration prediction. The inspection step involves measuring model parameters onsite
using non-destructive methods. Bayesian updating is used to update the model parameters integrating
the new measured data. In the deterioration prediction step, the extent of a certain deterioration stage
and the probability of transitioning to a subsequent stage are estimated using models appropriate
for the current state of the bridge. Using the predicted bridge condition and the uncertainty in that
condition over time, the inspection time (tinsp) for the next inspection is determined.

5.3.1. Initiation of Deck Life Span at t0

In this example, we consider a new bridge deck (either part of a new bridge, or a recently
reconstructed deck). For demonstration purposes, it is assumed that the concrete bridge deck life span
starts once chlorides have started to arrive on the surface. An early visual inspection is assumed to
occur confirming construction, but no information is collected to aid in deterioration modeling. All the
predicted time spans for a certain deterioration stage will be calculated from t0. For example, the time
until corrosion initiation t1 will be the number of years starting at t0.

5.3.2. Inspection Planning at tinsp = 2years, (1st NDE Inspection, 1st Prediction, RSL Estimation and
Choosing the Next Inspection Time (tinsp))

The first NDE inspection is assumed to be conducted after 2 years from initiation of the bridge
deck life span. The two-year period is selected to reflect current bridge inspection practice. This initial
period ensures that there are useful parameters to measure at the time of the first NDE inspection.

In this simulated inspection, two parameters were measured: the surface chloride concentration
using a Chloride Ion Penetration test (CIP) and the concrete cover using a Pachometer. In this case, the
measured surface chloride concentration (C0) had a mean value of 3.5 kg/m3 and a c.o.v equal 0.5 kg/m3.
The cover mean value was 6 cm and the c.o.v was 0.2 cm. These measured parameters, along with
random variables representing the diffusion coefficient (D) and critical chloride concentration (Cth),
shown in Table 2, were then used in the first prediction at t = 2years. It should be noted that to ensure a
non-destructive inspection procedure, the CIP test was used to measure only the surface chlorides, and
therefore would require a relatively small sample or core from the concrete deck. However, an agency
could decide to measure the chloride content at a certain depth using a more destructive method and
calibrate the model in Equation (10) depending on its measurements.

Table 2. Random variables used in Monte Carlo Simulation of concrete deck deterioration.

Parameter (θ) Mean Coefficient of
Variation (c.o.v) Distribution Reference

C0 3.5 kg/m3 0.5 Lognormal [14]
D 6.3 × 10−5 m2/yr. 0.75 Lognormal [14]

Cth 1 kg/m3 0.1 Lognormal [54]
Cover (x) 60 mm * 0.2 Lognormal [54]

Db 18 mm * 0.02 Lognormal [54]
Fc’ 45 Mpa. * 0.18 Lognormal [55]
w/c 27

FC′+21 [12]

* The mean values are based on the assumed design, while the c.o.v comes from cited references.

Monte Carlo Simulation (MCS) was used to predict the mean and standard deviation of the RSL
at different time intervals. Using the parameters measured from the inspection and assumed from the
concrete properties including their associated uncertainties, the time interval to reach a specific mean
chloride concentration at the rebar level was predicted using the corrosion initiation prediction model
Equation (11). Using specified distributions for the chloride concentration and calculating the time to
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reach that chloride concentration allows estimation of uncertainty in the RSL in years. For instance, a
mean chloride content of 0.6 kg/m3 will accumulate at the rebar level after almost 16 years from the
arrival of chlorides on the concrete surface (t0), as shown in Table 3. The 16-year predicted time is
associated with a standard deviation (σ = 3.7years), which corresponds to the standard deviation of
the RSL (σTRSL) at year 16.

Table 3. Mean and Standard Deviations of predicted time to reach specified chloride content at the rebar
level used to establish the Standard deviation of RSL (σTRSL ) with time (predictions at tinsp = 2years).

Mean Chloride Content (kg/m3) Time (Mean) (Years) σ=σTRSL (Years)

0.1 5.1 1.6
0.2 8 2.3
0.4 11.8 2.8
0.6 15.9 3.7
0.8 20.8 5.4
1 27 7

In this example, the condition threshold yk in Stage 1 is the corrosion initiation time and it is
assumed to initiate at a critical chloride concertation (Cth) of 1 kg/m3 (c.o.v. = 0.1 kg/m3) [54,56].
Accordingly, using the mean and standard deviation for the time to reach a chloride content of 1 kg/m3

the probability of corrosion initiation Pk(t) was estimated at different times, as indicated in Table 4.

Table 4. Probability of corrosion initiation (Pk(t)) predicted at different times measured from t0

(predictions at tinsp = 2years).

Time (Years) Pk(t)

20 15%
22 27%
24 40%
26 54%
27 60%
30 75%

The prediction made at tinsp = 2years indicates that the chloride content is expected to reach 1
kg/m3 at the rebar level after almost 27 years from the arrival of the chlorides on the concrete surface
(t0) and therefore corrosion is predicted to initiate around this time. In addition, at tinsp = 2years,
the duration of Stage 2 was estimated to be 7 years using the variables in Table 2 and Equation (12).
At year 2, Bayesian updating was not performed, since it is the first prediction, with no prior knowledge
of the values of the model parameters.

In this example, the RSL is the summation the time spans of Stage 1 (t1), Stage 2 (t2) and Stage 3
(t3). The first prediction at t = 2years predicted that the mean value for the durations of Stage 1 and
Stage 2 from t0 are 27 and 7 years, respectively. A concrete bridge deck is estimated to have a life span
ranging from 40 to 60 years [57,58]. In this example, the life span of the concrete bridge deck was
initially assumed to be 50 years. Based on the hypothetical 50-year life span and the first deterioration
prediction, the time span for Stage 3 will be 16 years (50 − 27 − 7 = 16years). Therefore, the RSL
calculated at year 2 has a mean value of 48 years (i.e., µTRSL(t = 2) = 48years). This was calculated by
adding the mean value for the predicted time span of Stage 1 (27-years), to Stage 2 (7 years) and 3
(16 years), then deducting the 2 years that have elapsed from t0. This indicates that the bridge deck
RSL has a mean value of 48 years, before reaching the end of its service life (as decided by the agency
due to excessive cracking). However, based on the results from the first prediction, the estimated RSL
is associated with uncertainty. The predicted duration of Stage 1 has a standard deviation of almost
σTRSL(t = 2) ≈ 7years. It is noted that the only uncertainty considered when making predictions in
Stage 1 is the uncertainty associated with the predicted duration for Stage 1, while the time spans of
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Stage 2 and 3 are considered constant until reaching Stage 2. Using the proposed inspection process
will help in reducing this degree of uncertainty in RSL, as will be demonstrated.

To choose the time interval for the next inspection, three governing factors were considered: (1) a
maximum time of 6 years between inspections (i.e., Tmax = 6), (2) the standard deviation of the RSL
σTRSL exceeds 2 years (i.e., σub = 2years), and (3) the probability of corrosion initiation exceeding 40%
(i.e., Pub

k = 0.4). Once any of the thresholds is reached, an inspection should be conducted. In practice,
these thresholds should be decided by the agency or the bridge management team based on their
management needs, and these thresholds could change over time as the agency became more familiar
with this inspection planning process. In this example, 2 years was selected as the standard deviation
threshold so as not to introduce too much uncertainty into short term budget planning. The probability
threshold Pub

k of 40% was chosen as a way to check on the bridge before the mean expected time for
corrosion to initiate. An agency might decide that they were not interested in catching corrosion
initiation at very early stages and they would prefer to wait until the probability of corrosion was 80%
or 90% before conducting an inspection. This demonstrates the flexibility of the proposed inspection
planning process and how it can be tailored to a specific agency’s needs and budget.

The first prediction results in Table 4 show that the probability Pk(t) will reach 40% after 24 years,
whereas, regarding the standard deviation criterion, the next inspection should be conducted at year 8
(measured from t0) when a standard deviation exceeding 2 years has been reached, and which happens
to correspond to the 6 years maximum interval between inspection (with the previous inspection
conducted at year 2). Thus, the next inspection will be conducted at tinsp = 8years, and CIP and
Pachometer non-destructive methods will be used as the bridge deck is still expected to be in Stage 1.

5.3.3. Inspection Planning at tinsp = 8years, (2nd NDE Inspection, Bayesian Updating of Parameters,
2nd Prediction, RSL Estimation, and Choosing the Next Inspection Time (tinsp))

To continue the demonstration example, another simulated inspection is assumed at year 8.
A Pachometer and CIP were once again used to measure the concrete cover and the surface chloride
content, respectively. The simulated inspection finds the surface chloride content (C0) higher than
the previous measured amount at tinsp = 2years by 5% and the cover is less than the design value by
the same percentage. For simplicity in this example the standard deviation of the measured surface
chlorides and concrete cover were assumed to depend only on the accuracy and error factor of the
equipment; since no inspection measurements or data from calibration of an NDE technique were
available (i.e., refer to Equations (3) and (4), β1 = 0 and β2 = 1). However, in reality, the accuracy
of the inspection can also depend on the proficiency of the inspectors, the number of measurements
conducted and the dispersion between measurements.

In the Bayesian updating process, the measured parameter values and associated uncertainty at
year 2 correspond to the prior θ, while the new measured values at year 8 correspond to the data. Using
both sets of information, a posterior mean and standard deviation for the surface chloride concentration
and concrete cover were calculated using Bayesian updating. Table 8 at the end of the example
summarizes the values of the updated bridge deck parameters at each inspection time investigated.

Using samples from the posterior distribution for the bridge deck parameters, along with samples
for the other Stage 1 model parameters, MCS was used for the second prediction. Tables 5 and 6 show
the second prediction results.
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Table 5. Mean and Standard Deviations of predicted time to reach specified chloride concentrations
at the rebar level used to establish the Standard deviation of RSL (σTRSL ) with time (predictions at
tinsp = 8years).

Chloride Content (kg/m3) Time (Mean) (Years) σ=σTRSL (Years)

0.4 11.3 2.2
0.6 14.5 2.9
0.8 19.2 3.6
1 24.3 4.6

Table 6. Probability of corrosion initiation (Pk(t)) predicted at different times measured from t0

(predictions at tinsp = 8years).

Time (Years) Pk(t)

20 17%
22 34%
23 42%
24 52%
27 78%
30 90%

The results of the second prediction at tinsp = 8years using the updated parameters show that the
expected time for corrosion initiation was reduced from 27 to 24.3 years and the standard deviation
of the expected corrosion initiation time decreased to almost 4.6 years rather than 7 years. Based
on the hypothetical 50-year life span of the bridge deck, the RSL after 8 years should be equal to 42
years. However, due to the simulated inspection measurements and the second prediction at year
8, the mean RSL decreased by 3 years to be 39 years (i.e., µTRSL(t = 8) = 39years), associated with a
standard deviation σTRSL(t = 8) ≈ 4.6years. This shows that updating the model parameters using the
inspection results had the desired effect of decreasing the level of uncertainty (i.e., decrease in the
standard deviation) associated with the prediction of deterioration and RSL estimation.

Applying the same inspection planning criteria to year 8, the results in Table 5 show that based on
the standard deviation criterion, the next inspection should be conducted at year 11, which corresponds
to a 3-year interval between inspections. On the other hand, based on the probability Pk(t), the next
inspection should be done at year 23. Therefore, the next inspection was assumed to be conducted at
year 11.

5.3.4. Subsequent Inspections in Stage 1

The same procedures (inspection with CIP and Pachometer, Bayesian updating of model
parameters, prediction of RSL) were applied to determine the remaining inspections needed in
Stage 1. Three more inspections are needed at year 11, 14 and 18. Table 7 summarizes all the inspections
needed in Stage 1 and the results of deterioration predictions after each inspection. It should be noted
that for the conditions assumed in this example, selection of the inspection time was governed mainly
by the standard deviation of 2 years at all inspection intervals. In the prediction made at year 18,
it was estimated that corrosion would initiate at year 23 with a standard deviation of 3.2 years and
a probability of corrosion initiation Pk(t) equal to 47%, compared to a 30% probability at year 22.
Therefore, based on the discussed criteria, year 23 can be considered a suitable time for performing the
next inspection and to be an accepted estimation for the end of Stage 1 and the beginning of Stage 2
(active corrosion stage), which will be discussed in the next section.
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Table 7. Summary of all inspections in Stage 1.

Time (tinsp)
(Year) Inspection

NDE
Methods

Used
Prediction

Predicted
Corrosion

Initiation Time
(years)

µTRSL (Years) σTRSL (Years)

2 1st NDE CIP and
Pachometer

1st prediction
(using inspection
results directly)

27 48 7

8 2nd NDE CIP and
Pachometer

2nd prediction
(Bayesian
Updating

Conducted)

24 39 4.6

11 3rd NDE CIP and
Pachometer

3rd prediction
(Bayesian
Updating

Conducted)

23.6 35.6 4.0

14 4th NDE CIP and
Pachometer

4th prediction
(Bayesian
Updating

Conducted)

23.2 32.2 3.8

18 5th NDE CIP and
Pachometer

5th prediction
(Bayesian
Updating

Conducted)

23.0 28 3.2

23 1st NDE in
Stage 2

HCP and
Polarization
Resistance

1st prediction for
Stage 2 (Bayesian

Updating
Conducted)

Corrosion initiates
now 16

Depends on
Stage 2

modeling

Table 8 shows the values of the measured concrete deck parameters used in the deterioration
model at each step in Stage 1. It also demonstrates how Bayesian updating changes the values of the
parameters. It was assumed at year 11 and 14 that a slight increase in the surface chloride concentration
was measured during inspection, and then the surface chloride concentration remained almost constant.

Table 8. Parameters used in Stage 1 and Bayesian updating.

Year Parameter

Parameters Based on
Previous Knowledge

(Prior θ)

Measured Values from
Inspections (Data)

Updated Parameter
Values (Posterior)

Mean σ Mean σ Mean σ

2
Cover (cm) 6 0.2

Surface chloride
content (kg/m3) 3.5 0.5

8
Cover (cm) 6 0.2 5.7 0.85 5.98 0.194

Surface chloride
content (kg/m3) 3.5 0.5 3.67 0.25 3.66 0.22

11
Cover (cm) 5.98 0.194 5.7 0.85 5.98 0.188

Surface chloride
content (kg/m3) 3.66 0.22 3.7 0.25 3.7 0.16

14
Cover (cm) 5.98 0.188 5.7 0.85 5.98 0.16

Surface chloride
content (kg/m3) 3.7 0.16 3.75 0.25 3.72 0.13

18
Cover (cm) 5.98 0.16 5.7 0.85 5.98 0.14

Surface chloride
content (kg/m3) 3.72 0.13 3.75 0.25 3.74 0.1
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5.4. Uncertainty-Based Inspection Planning for Stage 2

Inspection Planning at tinsp = 23years, (NDE Inspection, Bayesian Updating of Parameters, Prediction,
RSL Estimation, and Choosing the Next Inspection Time (tinsp))

Year 23 marks the end of Stage 1 and the start of Stage 2. In Stage 2, the condition threshold yk is the
time for cracking to initiate. For demonstration purposes, a half-cell potential (HCP) test was assumed
to be used at this time to measure the probability of corrosion and to confirm the initiation of corrosion
propagation in the rebar. The HCP recorded high probability of corrosion, which indicates the start of
Stage 2. In addition, Polarization Resistance was conducted to measure the corrosion current density
(ic) at year 23. When the duration of Stage 2 was initially predicted (at t = 2years), the corrosion current
density was estimated to have a mean value of 1.7 µA/cm2 and a standard deviation equal to 0.1 µA/cm2

obtained from Equation (14). The corrosion current density depends on the compressive strength of the
concrete, water cement ratio and the concrete cover. However, the simulated non-destructive test found
the corrosion current density to have a mean value equal to 2.50 µA/cm2 and a standard deviation
equal 0.75 µA/cm2 based on the equipment accuracy representing concrete in poor condition [55].

The NDE inspection and the empirical Equation (14) used to measure and calculate the corrosion
current density respectively, are associated with a degree of error or uncertainty. Therefore, to have a
better estimation of the corrosion current (ic) Bayesian updating was conducted. Using the 1.7 µA/cm2

as a prior value and the 2.5 µA/cm2 as the collected data, Bayesian updating calculated the posterior
value of the corrosion current density, which has a mean of 1.95 µA/cm2 and σ = 0.12 µA/cm2.
This estimated value represents a better prediction for the (ic), which will improve the second Stage 2
prediction at year 23. The second prediction in Stage 2 estimated the mean crack initiation time to be
after 6 years rather than 7 years from the corrosion initiation time with a standard deviation equal
to 0.33 years and a probability of crack initiation Pk(t) equal to 50%. Therefore, the appropriate time
for the next inspection should be at year 29, which is 6 years after the corrosion initiation and also
corresponds to the maximum time between inspections (i.e., Tmax = 6). The inspection techniques that
should be used at year 29 should be able to detect cracks (e.g., GPR, IE or Chain drag). Their results
can be used to confirm that Stage 3 has started and cracks are propagating in the concrete deck.

Based on the first estimation of the predicted duration of Stage 2 (7 years), the mean RSL calculated
is µTRSL(t = 2) = 23years with a standard deviation σTRSL(t = 2) = 0.5years. This is calculated
by adding the estimated duration of Stage 2 (7 years) and Stage 3 (16 years), While based on the
NDE inspection done at 23-years, which resulted in a new estimated active corrosion time equal 6
years, the new estimated mean RSL will equal µTRSL(t = 23) = 22years with a standard deviation
σTRSL(t = 23) = 0.3years. Figure 5 summarizes the inspection planning process for Stage 1 and 2.
Note that in general, there is a discontinuity in the predicted RSL at the time of each inspection.
The discontinuity occurs as the deterioration model is updated with new inspection results. In this
example, the assumed inspection findings were always a little more severe than the anticipated findings,
resulting in the shorter RSL. If the assumed inspection findings had been less severe than anticipated,
the RSL would have increased at the time of the inspection. Overall, the deterioration paths and
inspection results in Figure 5 correspond to a specific realization of the inspection planning process.
When the framework is applied in real-life, the inspection data or the sequence of inspection data may
or may not have fluctuations and the corresponding inspection process will depend on the actual data
which could be different for each bridge. In addition, note that the deterioration paths are smooth
because they corresponds to mean predictions from the deterioration model rather than the measured
deterioration path based on inspection data, which will have fluctuations.
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5.5. Discussion of Inspection Planning Results

Given the assumptions made in the example, using the proposed inspection planning process
specified, only five inspections need to be conducted in the 23-year Stage 1 period compared to
11 inspections if the standard 2 year inspection interval was implemented. In Stage 2, using the
proposed inspection plan resulted in two inspections in a 6-year period compared to 3. It should be
acknowledged that NDE-based inspections might require an initial capital cost to obtain equipment
and train NDE personnel. However, these initial capital costs would be distributed over all bridges
under management and over the total life span of a bridge deck. The use of NDE is expected to provide
better information than visual inspections and the reduced number of required inspections should
make NDE inspections at least cost-competitive if not cost-saving when compared to visual inspections.

In this example, two stages in a concrete bridge deck life span were investigated. The proposed
inspection planning framework is flexible and can be tailored to different types of bridge construction
(materials and techniques) by establishing appropriate bridge service life Stages and corresponding
NDE techniques for other types of bridges and bridge elements. The method can be further adapted to
different agency decision-making practices and objectives through careful selection of allowable levels
of uncertainty and probabilities of Stage transition. In the effort to keep the example straightforward,
some subtleties were not fully described previously. For example, during the analysis, it was observed
that if more deterioration model parameters are measured on site and updated, the proposed inspection
planning framework will be more effective. For example, if the diffusion coefficient (D) was measured
on site and the inspection value was then used in Bayesian updating, this would have resulted in a
different outcome, since the uncertainty regarding the diffusion coefficient would decrease. If, for
example, the measured diffusion coefficient was found to be 5% higher than assumed, the corrosion
initiation time initially predicted would have changed from 27 years to 23.4 years and the standard
deviation (σTRSL(t)) would have decreased by 3.4 years rather than 2.4 years only, which would reduce
the number of inspections in Stage 1 to four NDE inspections rather than five.
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However, there has not yet been any reliable data regarding a non-destructive test that can be
used to measure the diffusion coefficient. If an agency wanted to enhance its predictions, the agency
could choose to perform a destructive test on the bridge deck in the early inspections to have a better
estimation of the diffusion coefficient of the concrete material or to measure the chloride content at the
rebar level and compare it with the estimated value. The agency would need to consider the costs and
damage caused by destructive testing and the potential value of enhanced deterioration predictions.

In addition, the Bayesian updating process can be affected by the accuracy of the inspection
technique or equipment used. For example, the CIP test was found to have an error factor ±0.25
kg/m3, and this error factor resulted in a standard deviation of 4.6 years (as can be seen in Table 5)
when predicting the corrosion initiation time. In contrast, if this error factor was ±0.5 kg/m3, the
standard deviation would have become 5.2 years. This shows that using more accurate techniques in
the inspection can help to decrease the level of uncertainty. As explained in earlier sections, a target
uncertainty level can be chosen and a suitable inspection technique with higher accuracy that can
decrease the level of uncertainty to the target level could be selected. However, this might come with
a higher cost, since using more accurate inspection techniques might require more time and money.
A subsequent economic analysis is needed to investigate the trade-offs of using more expensive but
more accurate NDE methods.

6. Conclusions and Future Research

This paper presents a new approach to inspection planning of bridges (both the timing and
the type of inspection) integrating NDE inspection findings and deterioration model predictions by
considering uncertainty in bridge condition (measured with the RSL). In the proposed approach,
inspections are viewed not only as a means to evaluate the amount of deterioration in the bridge and
thus reduce the uncertainty in our current knowledge of the condition of a bridge, but also as a way of
updating the deterioration models that will predict future condition. By incorporating deterioration
models as an additional source of information about bridge condition, inspections can be conducted
less frequently. Using deterioration models to predict the Stage of bridge service life and the need to
reduce uncertainty to acceptable levels provides a means to justify the use of particular inspection
processes for a given bridge.

Conducting inspections only when the information collected can be used to reduce uncertainty in
bridge condition and enhance information for decision-making can help optimize agency resources
and reduce bridge management costs significantly.

The proposed framework is demonstrated through application of a newly constructed reinforced
concrete bridge deck with time until crack appearance as RSL. Deterioration models were used to
predict the time of corrosion initiation and propagation. Inspection scenarios where NDE equipment
were used to update model parameters were simulated. Then, Bayesian updating was used to estimate
the bridge deck RSL and to determine the time of the next inspection interval. Due to the flexibility of
the proposed framework, two criteria were used to choose the inspection time; the standard deviation
(i.e., amount of uncertainty) associated with estimated RSL and the probability of reaching a certain
deterioration stage. NDE methods were chosen based on the deterioration stage, the required model
parameters to be updated and the equipment level of accuracy.

For the bridge used in the example, the proposed inspection process helped in reducing the
number of inspections to 5 in Stage 1 and 2 in Stage 2 compared to the traditional two-year visual
inspection cycles which would have resulted in 11 and 3 inspections, respectively. When considered
in the context of a network of bridges, potential savings are much more significant. Based on the
current analysis, updating more model parameters during inspection measurements will further reduce
uncertainty associated with the estimated RSL. The proposed framework helps in determining the
suitable equipment (NDE method) for the next inspection, offers flexibility to agencies to set criteria
appropriate to their management practices and required level of certainty, and reduces the number of
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inspections during a certain deterioration stage. This significantly assists in the bridge management
process and inspection decision making.

While significant development remains before practical application, this paper demonstrates a
novel approach to the timing of bridge inspections that makes use of deterioration models to reduce
the required frequency of inspections and helps decide the type of inspection that should be conducted.

Note that the focus of this paper is on mathematically formulating the uncertainty-based bridge
inspection framework. The application to reinforced concrete bridge deck was used as an example.
However, the proposed framework is generic and can be applied to different bridge types (e.g., concrete
bridges, steel bridges) and different bridge conditions (e.g., newly-constructed bridges, in-service
bridges), in which cases appropriate deterioration models and corresponding inspection techniques,
as well as definition of RSL need to be used. While the maintenance is not explicitly modeled in
the framework, one potential way to incorporate maintenance action is by (1) updating the (initial)
condition and associated uncertainties after the maintenance action, and (2) using corresponding
deterioration models that can include the maintenance effects (e.g., if the maintenance corresponds
to a replacement, then the deterioration model for new elements should be used; if the maintenance
corresponds to some repair, then the deterioration model for repaired elements should be used).
On the other hand, to fully leverage the proposed framework, developments and advancements in
deterioration models (e.g., those that can incorporate the effects of maintenance actions) and systematic
interpretation and incorporation of results from different NDE inspection techniques (e.g., GPR, IE, and
others) would be needed. These represent current research areas in the bridge management domain.
The framework introduced herein contributes to the body of knowledge by focusing on inspection
planning in particular (a topic studied less often than maintenance planning) and proposing a new
direction to bridge inspection decision making. The framework has the potential to complement and
benefit from the ongoing research in the bridge management domain. As such, it is likely to promote
more discussion and research on this important topic.

There are many avenues for further development of the planning framework. Future research
should focus on studying the impact of the proposed inspection planning framework on the life cycle
cost of a bridge, particularly when compared with other inspection programs. Implementing the
proposed approach on existing bridges and including the effect of any maintenance actions performed
on the bridge deck in the inspection framework should be studied. Mitigating risk in asset management
is approached differently by each agency, the effect of the proposed approach on risk analysis in a bridge
network can be analyzed and compared with different approaches. Bridge inspection has a significant
effect on bridge maintenance, and the effect of the proposed inspection planning should be analyzed
from different stand points, such as economic and environmental consequences of maintenance. The
optimization of resources can also be implemented on the whole bridge network of an agency, for
example, NDE inspections can be applied on critical bridges only to avoid budget deficiency. The effect
of implementing such approach on the bridge network budgeting should be investigated.
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