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Abstract: Progressive collapse, the extensive or complete collapse of a structure resulting from
the failure of one or a small number of structural components, has become a focus of research efforts
and design considerations following events occurring at the Ronan Point apartment building in
London, the Murrah Federal Building in Oklahoma City, and the World Trade Center in New York City.
A principle research and design area for progressive collapse investigates the behavior of structural
frames when column support is removed. The mechanism that results from loss of column
support in structural frames characteristically involves beams that are unable to provide sufficient
flexural resistance. Cable retrofit is one method to enhance existing frames and supplement or
replace the post-mechanism beam load resistance with straight-legged catenary resistance after
a column removal. The cables are located linearly along the beam geometry and are affixed at
beam supports. This paper investigates both static and dynamic behavior of the catenary action of
retrofit cables, which include both the linear and nonlinear material behavior of the cable material.
Moreover, a simplified model serves as the basis for retrofit cable design is presented. Finite element
modeling and experimentation in this paper verify and validate the applicability of the model.
Finally, a framework for developing a procedure for retrofit cable design is presented.

Keywords: progressive collapse; disproportionate collapse; catenary action; non-linear analysis;
cable retrofit; modified catenary

1. Introduction

Catenary behavior plays a significant role in the behavior of structural elements resisting loads
capable of causing progressive collapse [1–6]. Members designed to resist primarily flexural action in
frame structures can undergo significant catenary action under column loss scenarios in both steel [7,8]
and concrete [9–12] systems. For example, in an interior column loss scenario shown in Figure 1,
span lengths are effectively doubled and subjected to significant load increases from the columns
above over a very short time. The flexural capacity of the beams is likely inadequate to solely support
the dynamic load, thus mechanisms occur at supports, and alternative resistance paths (e.g., catenary
action from frame members or additional retrofit cables) are required to achieve equilibrium and
avoid progressive collapse. The transition from flexural resistance to catenary resistance has been
observed in experimental work comprising static application of load to structural systems of different
materials [13–22]. The ultimate structural resistance in column removal is a form of catenary behavior
that may be available in the frame itself and can also be provided through the use of retrofitted cables.
Unlike many geometrically linear structural components (e.g., beams, trusses), catenary systems
exhibit non-linear load-displacement relationships. Thus, linear structural analysis techniques for
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characterizing load-deflection relationships are not applicable. For example, in instances of “small”
initial variations from horizontal (i.e., shallow modified catenary), truss analysis is not appropriate
and nonlinear geometry must be considered. Forms of this shallow modified catenary can be seen in
several structural applications: progressive collapse retrofit [23,24], progressive collapse resisted by
concrete reinforcement [9,20], overhead wires for electric rail [25,26], and ice loads and wind-on-ice
loads on electrical power lines [27,28].

Figure 1. Idealized column removal scenario.

This paper investigates fundamental modified catenary (M.C.) behavior and presents a preliminary
model that describes the static and dynamic nonlinear catenary behavior of structural elements with
minimal flexural stiffness, for example, retrofit cables. Cables attached at column supports and along
the beam can be used to provide or supplement load carrying capacity under loss of column support
conditions [23,24,29,30]. Upon loss of column support, the beam and cable initially resist load in tandem
according to the existing capacity of the beam and its connections. For simplicity in design, this paper
assumes that the retrofit cable is required to transfer the entire load.

This (M.C.) model provides a fundamental understanding of the stiffness of the catenary
throughout the static load-deflection behavior and incorporates this stiffness in nonlinear dynamic
analyses. The model is validated with finite element simulations and small-scale cable experiments in
which static and dynamic loads are applied to cables. Loading scenarios within and beyond the elastic
range of the cable material are considered. Lastly, an illustrative application of the M.C. model cable
retrofit design is presented.

2. Modified Catenary Behavior

The true catenary shape forms when a structural span with negligible flexural stiffness (i.e., a cable)
is subject to uniform self-weight. A modified version of the catenary form occurs when a span
with negligible flexural stiffness is subject to a point load from a concentration of mass (Figure 2).
The amount of mass concentrated at the midspan is assumed to be the dominant loading and the
self-weight of the modified catenary itself is assumed to be relatively small. These assumptions apply
in progressive collapse scenarios in which a floor is responsible for large column forces from one or
more floors [10,12,15,18]. Boundary conditions are idealized as frictionless pins that offer no moment
resistance. Material constitutive relationships are assumed as elastic–perfectly plastic. Two important
assumptions for both general analytical modeling and cable retrofit design in this paper are (a)
adjoining spans are equal in length, cross-section, and material properties; and (b) the end supports do
not translate laterally. Even small lateral movements, such as spring-type action of columns moving
laterally because of the horizontal catenary forces, can have a significant impact on results.

2.1. Load-Deflection Equations

The load-deflection relationship for the modified catenary is derived from the geometry and
dynamic equilibrium of forces in Figure 2 [31]. In this analysis, m represents an effective, concentrated
mass acted upon by gravity, g. The variables δ0, θ0, L0, and s are the initial vertical displacement,
the undeformed slope, undeformed span length, and the horizontal projection of L0, respectively.
The deformed span length, L, experiences tension, T, over cross-sectional area, A. The variables u and θ

are the vertical displacement and slope of the deformed modified catenary, respectively. The material
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behavior for the M.C. model is defined by the elastic and inelastic regimes of an elastic–perfectly
plastic model. The variables E and Fy define the material properties in these regimes; damping is not
considered. Dynamic equilibrium on the mass in Figure 2 results in the following equation of motion:

∑ Fy = m
..
u =⇒ −2Tsinθ + mg = m

..
u (1)

Geometric relationships in terms of the vertical displacement, u, are as follows:

L =

√
(δ0 + u)2 + s2 (2)

sin θ =
δ0 + u√

(δ0 + u)2 + s2
(3)

∆ = L− L0 =
TL0

EA
(4)

The tensile force is defined by the following piecewise relationship:

T =

 EA
L0

(√
(δ0 + u)2 + s2 − L0

)
∆ ≤ ∆y

AFy ∆ > ∆y

(5)

After combing Equations (1)–(5), the equation of motion for the nonlinear elastic system is as
follows:

m
..
u =


−2 EA

L0

(√
(δ0 + u)2 + s2 − L0

)
δ0+u√

(δ0+u)2+s2
+ mg ∆ ≤ ∆y

−2AFy
δ0+u√

(δ0+u)2+s2
+ mg ∆ > ∆y

(6)

For the static case, replacing the gravity force with a general concentrated force, P:

P =


2 EA

L0

(√
(δ0 + u)2 + s2 − L0

)
δ0+u√

(δ0+u)2+s2
∆ ≤ ∆y

2AFy
δ0+u√

(δ0+u)2+s2
∆ > ∆y

(7)

The static load-displacement relationship is shown in Figure 3; geometrically non-linear behavior
occurs in the elastic range. Equations (6) and (7) have no restrictions on the values of δ0 or u. For small
initial deflections, the resulting load-deflection relationship is nonlinear. Previous research and analysis of
catenary behavior in progressive collapse has addressed the catenary behavior for larger δ0 values [11,18].

Figure 2. Modified catenary system.
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Figure 3. Static load-displacement relationship.

2.2. Approximate Static Load-Deflection Equations for Design

An approximate static load-deflection relationship in the elastic material range can be estimated
by rewriting Equation (7) and solving for PSE, which is the applied load at the mid-span
(representing, for example, the axial force from the column above):

PSE = 2
EA
L0

(√
(δ0 + u)2 + s2 − L0

)
δ0 + u√

(δ0 + u)2 + s2
(8)

Equation (6) can be rewritten as follows:

PSE = 2
EA
L0

 (δ0 + u)2 + s2 − L0
2√

(δ0 + u)2 + s2 + L0

 δ0 + u√
(δ0 + u)2 + s2

(9)

Under the assumption that δ0<< s, s ≈ L0, then, s2 − L0
2 is equal to zero, and all L0 can be

replaced by s. So, Equation (9) can be rewritten as follows:

PSE = 2
EA
s3

 (δ0 + u)2

1 +

√(
δ0+u

s

)2
+ 1

 δ0 + u√(
δ0+u

s

)2
+ 1

(10)

Extending the assumption further such that the ratio δ0+u
s is small, Equation (10) becomes

the following:

PSE =
EA(δ0 + u)3

s3 (11)

In the inelastic material range, the tensile force in each cable arm becomes the yield force and
the static force in the inelastic range, PSI , is as follows:

PSI = 2
AFy(δ0 + u)

s
(12)

2.3. Dynamic Load Deflection Equations Using Dynamic Amplification Factors

The progressive collapse design process must account for dynamic effects either by direct dynamic
analysis or through static analysis and dynamic amplification factors. Dynamic effects produce larger
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demand than indicated by static analyses. Therefore, either a dynamic design procedure that directly
calculates the required cross-sectional area of steel or a static design procedure that incorporates
adjustments for dynamic effects is required. Kunnath et al. [32] provide a summary of energy
approaches in progressive collapse applications [32–35]. Utilizing an energy approach relating maximum
dynamic response with a static response involves equating internal strain energy with work done by
the externally-applied dynamic load; kinetic energy is assumed to be zero initially and at the point of
maximum deflection. This energy relationship is shown graphically in Figure 4.

Figure 4. Energy Approach.

For the elastic case, the internal strain energy caused by the static load to a static, elastic displacement,
uSE, is equal to the external work done by the dynamic load up to the same elastic deflection:

w uSE

0
PSEdu = PDEuSE (13)

Similarly, for the inelastic case:

w uy

0
PSEdu +

uSIw

uy

PSIdu = PDIuSI (14)

From Equation (13), and substituting PSE from Equation (11), the relationship between static and
dynamic loads in the elastic range becomes the following:

PDE =
EAuSE

3

4S3 =
PSE
4

(15)

Substituting αuy for an arbitrary limiting static deflection in the inelastic range, uSI , where α > 1,
Equation (14) becomes the following:

PDIαuy =
EAu4

y + 4S2 AFyuy
2(α2 − 1

)
4αS3 (16)

Equating PSE and PSI at uy provides the following expression for the yield displacement:

uy = s

√
2Fy

E
(17)
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Substituting Equation (17) into Equation (16) and factoring PSI from Equation (12):

PDI =

(
α2 − 1

2

)
2α2 PSI (18)

The amplification factors, βE and β I , relating dynamic and static loads in the elastic and inelastic
range, respectively, are as follows:

βE =
1
4

(19)

β I =

(
α2 − 1

2

)
2α2 (20)

The bounds of β I are 1⁄4 at yield and approach 1⁄2 as α increases.

3. Materials, Methods, and Experimental Setup

3.1. Finite Element Model of M.C. System

Numerical verifications of the results from the M.C. model and experiments were carried
out in the finite element solver OpenSees (O.S.). The nonlinear finite element model considers
corotational geometry transformation using truss elements and elastic–perfectly plastic material
behavior. Boundary conditions are pinned at each support and internal hinges are located at
the midspan at the location of the load. Displacement control is utilized with an increment of 0.25 mm
and a modified Newmark integration method for dynamic analysis. Table 1 provides quantities of
interest for small-scale (experiments) and large-scale (design and analysis examples) configurations.
The results from the static and dynamic M.C. and O.S. analyses are presented in Section 4.1.

Table 1. Modified Catenary Configuration Properties.

s (mm) A (mm2) E (GPa) Fy (MPa)

Configuration 1 (Small Scale) 340 1.5 200 460

Configuration 2 (Large Scale) 6.1 × 103 3.2 × 103 97 830

3.2. Static Experiments

In order to validate the analytical modified catenary model and observe the predicted nonlinear
behavior, experimental static tests were performed. A small-scale reaction frame was designed and
constructed for use in an INSTRON 5582 axial load frame shown in Figure 5. The reaction frame
was designed to prevent translation in the vertical and horizontal directions at the boundaries of each
specimen; vertical and lateral stiffnesses of the frame were measured as 380 N/mm and 760 N/mm,
respectively. For each small-scale experimental investigation, the test specimen was a 16-gage mild steel
wire with the geometric and material properties shown in Table 1; Figure 6 displays the constitutive
character of the wire specimens in Configuration 1. The wire was clamped at both ends and subjected
to a quasi-static displacement control. The displacement was increased at a constant rate of 0.1 mm/s.
Load and deflection data were collected using the INSTRON 5582 load cell and header displacement for
comparisons with analytical modified catenary models.

Several different initial deflections and final displacement values were investigated. Each test began
at the reference location representing an initial deflection of 0 mm for Test 1. Specimens engaged at
the residual deformation from the previous test. Initial deflections of 0 mm (Test 1), 30 mm (Test 2), 30 mm
(Test 3), and 52 mm (Test 4) were repeated for the same specimen. The experiments were performed in
displacement control comprising a steady loading phase and a two-cycle linear sawtooth unloading and
loading phase. In Test 1, the specimen was loaded into the inelastic region to a deflection of 38.1 mm and
then unloaded; a residual deformation of 30 mm occurred. In Test 2, the specimen was reloaded and
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unloaded elastically from and to this residual deformation. Tests 3 and 4 followed this procedure from
permanent deformations of 30 mm (Test 3) and 53.3 mm (Test 4) to peak deformations of 44.5 mm and
63.5 mm, respectively. The results from the static experiments are presented in Section 4.2.

Figure 5. Experimental setup: (a) load frame, (b) reaction frame and specimen.

Figure 6. Stress–strain curve for Configuration 1 specimens.

3.3. Dynamic Experiments

Dynamic experiments performed on similar specimens were conducted to assess the dynamic
behavior of modified catenary systems and to corroborate the analytical results. The same load frame
used in previous tests was used to test specimens of similar geometry, span, and material properties.
Loads of 9.81 N (1 kg) and 30.31 N (3 kg) were applied rapidly to illicit dynamic elastic and inelastic
responses, respectively. Hanging masses of 1 kg and 3.1 kg were suspended in a position that lightly
contacted the specimen, but imparted no significant force to the specimen. These loads were applied
dynamically by burning the thin string supporting the hanging masses so they immediately transferred
to the specimen in a free fall condition. Accelerations of each mass were measured using a single-axis
micro–electrical–mechanical sensor (MEMS) accelerometer (Kistler KBeam 8315A) rigidly attached to
the hanging mass. The results from the dynamic experiments are presented in Section 4.3.
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4. Results and Discussion

4.1. Analytical Results

The first analysis includes determination of static and dynamic behavior predicted by the M.C.
model, O.S. finite element results, and the approximate M.C. model for a fully defined cable subject to
several loads. Figure 7 displays static and dynamic load-displacement curves for Configuration 2 in
Table 1. Figure 7 shows the results of the static load deflection results for the M.C. model (Equation (5)),
O.S., and the approximate M.C. model (Equation (9)); dynamic results are shown for discrete loading
values for the M.C. model (Equation (5)), O.S., and the approximate M.C. model using the load
amplification factors (Equation (10)). M.C. and O.S. results match exactly, and the approximate M.C.
model matches well in the elastic range and begins to diverge as displacements increase in the inelastic
range, with Equation (9) overestimating the load for a given deflection.

Figure 7. Analytical load-deflection results. MCM—modified catenary model. O.S.—OpenSees.

4.2. Static Experiment Results

Figure 8 displays load-displacement curves for four experimental tests shown as solid, continuous
curves; analytical estimates of the response are overlaid with the dotted curves. Excellent agreement
was observed between individual experimental tests and the analytical curves from the modified
catenary model. The initial loading branch of each curve is increasingly linear as initial deflections
increase as predicted by the modified catenary model.

Small variations between the predicted and observed response occur during the initial loading
and near the yield point during Test 1; this behavior was observed in all static tests. The experimental
data suggests that the specimen is slightly stiffer as it is initially loaded and is slightly more flexible
near the end of the elastic phase. This is attributed to two primary sources of error: the inability to test
a perfectly straight wire and the small pretensioning of the specimen during clamping. Small bends
or imperfections in the specimen alter the unloaded length of each catenary leg and create very small
amounts of slack that appear in the results as a softening of the curve. Pretensioning in the specimen
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manifests as a stiffening of the curve. In the inelastic range, the model predicts a slightly stiffer curve;
small flexibilities within the load frame and the support frame may attribute to this small discrepancy.
At the scale considered in Configuration 1, small variations or uncertainties along a wire’s cross-sectional
area (1.4 mm to 1.6 mm), initial deflection (0 mm to 10 mm), and pretensioning (0 N to 22 N) contribute
to experimental error.

Figure 8. Static experimental results. Exp.—experiment.

4.3. Dynamic Experiment Results

Table 2 displays the results for ten dynamic tests performed on a total of five specimens. All five
elastic tests were performed with individual specimens and applied loads of 9.8 N; inelastic tests
were performed on the same five specimens with an applied load of 30.3 N. All specimens exhibited
the same material behavior as the static specimens. The only variation in elastic experiments was
the initial displacement, δ0. Natural frequencies, natural periods, maximum and minimum accelerations
for experiments (Exp.) and the modified catenary model (M.C.), and displacements for the modified
catenary model (M.C.) are provided.

Table 2. Dynamic results of modified catenary experiments. M.C.—modified catenary model;
Exp.—experiment.

Test δ0 (mm)
fn (Hz) Tn (s) a+ (g) a− (g) u+ (mm) u− (mm)

M.C. Exp. M.C. Exp. M.C. Exp. M.C. Exp. M.C. M.C.

Elastic 1 −1.50 7.99 8.90 0.13 0.11 2.62 3.05 −1.00 −1.03 −1.50 −15.88
Elastic 2 −0.29 7.99 8.40 0.13 0.12 2.81 1.88 −1.01 −1.10 −0.29 −16.11
Elastic 3 −0.50 7.99 7.95 0.13 0.13 2.76 1.60 −1.00 −0.96 −0.50 −16.04
Elastic 4 −1.81 7.99 9.05 0.13 0.11 2.49 2.66 −1.00 −1.10 −1.81 −15.71
Elastic 5 −1.61 7.99 7.60 0.13 0.13 2.52 1.70 −1.00 −0.89 −1.61 −15.75

Inelastic 1 −3.80 6.99 7.45 0.14 0.13 1.90 1.77 −1.03 −1.56 −3.80 −23.03
Inelastic 2 −0.41 7.99 8.45 0.13 0.12 2.05 1.50 −1.13 −1.10 −0.41 −24.24
Inelastic 3 −0.25 7.99 8.65 0.13 0.12 2.06 1.37 −1.13 −1.20 −0.25 −24.32
Inelastic 4 −6.60 6.99 7.35 0.14 0.14 1.84 1.64 −1.00 −1.31 −6.60 −22.54
Inelastic 5 −1.61 6.99 6.95 0.14 0.14 1.99 1.82 −1.08 −0.98 −1.61 −23.72
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Figure 9 contains acceleration time histories from the dynamic M.C. and O.S. analyses, along with
the measured acceleration from corresponding laboratory experiments. The trends in behavior of
the experimental acceleration time histories match well with the modified catenary model for both
the elastic and inelastic cases. Numerical values for analytical and experimental natural frequencies
and periods in Table 2 also show strong correlations. Predicted frequencies for the elastic models were
all approximately 8 Hz, while observed frequencies ranged from 7.6 Hz to 9.05 Hz. For the inelastic
models, the calculated frequencies decreased to 7 Hz for specimens with larger initial deflections of 1.61
mm–6.6 mm. The observed natural frequencies for these specimens were the lowest observed frequencies
of 6.95 Hz–7.35 Hz. While the time histories do show excellent shape agreement, specific magnitudes of
acceleration vary from model to experiment. Initial deflections, load application, and material properties
are uncertain quantities that were measured or estimated and characterized in the dynamic analyses,
but errors in the experimental data can be attributed to these uncertainties.

Figure 9. Dynamic experimental results: (a) elastic and (b) inelastic.

5. Application to Retrofit Cable Design

In practice, the design of retrofit cables for progressive collapse entails many considerations such as
cable type, material properties, cross-section, and connection detailing. This paper provides a framework
for the rational selection of cross-sectional area for retrofit cables to arrest motion and prevent progressive
collapse. Equations for cross-sectional area are developed that meet two criteria for a selected cable
type: (1) sufficient strength to arrest motion from a large, concentrated dynamic force; and (2) sufficient
stiffness such that some arbitrary limiting deflection is not exceeded. The dynamically applied load is
simply the factored design load calculated at the onset of the design problem; the deflection criteria is
also dictated by the appropriate provision and might be chosen based on limiting strain, serviceability,
or story height.

5.1. Retrofit Design Equations and Procedures

For a given required load, Pu, and a desired limiting deflection, αuy, an adequate cable
cross-sectional area can be determined by manipulating Equations (11) and (12) in the elastic and
inelastic ranges, respectively. For elastic limiting deflections, the required area is as follows:

AE =
4PuS3

Eu3
SE

(21)
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For the more likely scenario of the limiting deflection falling within the inelastic range, the required
area becomes the following:

AI =
Puα2(

α2 − 1
2

)
FyuSI

(22)

The procedure for calculating the required area is as follows:

• Establish a given deflection limit, uE or uI (e.g., uy, floor-to-floor height, ultimate strain)
• Calculate α from a given deflection limit and uy from Equation (17)
• If α < 1, use Equation (21), and if α > 1, use Equation (22).

5.2. Illustrative Cable Retrofit Behavior Deisgn Example

In this example, two plausible design scenarios are illustrated. In both cases, the design load is
450 × 103 N and all geometric and material properties are provided in Configuration 2 of Table 2;
the required cross-sectional area is the unknown variable to be designed. The two scenarios limit
deflection by (1) onset of yield in the cable and (2) ultimate strain in the cable.

• Case 1

The deflection limit is equal to the deflection at yield, uy. Using Equation (17), uy = 798 mm. In this
case, α = 1, and either Equation (21) or Equation (22) may be used. The required area is 0.0083 mm2.

• Case 2

The deflection limit is equal to the deflection at fracture, u f . Assuming that the ultimate strain is
approximately 0.04 and using Equation (4), u f = 1700 and α = 2.2 In this case, α > 1, and Equation (22)
leads to the required area of 0.0021 mm2.

5.3. Limitations of the Method

This framework is not intended to serve as a codified procedure, but rather as a guideline to
be used in the development of codified procedures as other research addresses additional design
considerations. The equations and relationships developed in this work apply only to systems or
system components that satisfy, or approximately satisfy, the assumptions outlined in Section 2.
Specifically, the equations should only be applied to system components with negligible flexural
resistance (including at the boundary conditions), concentrated mass at midspan, and equal spans.
The model also considers an elastic–perfectly plastic constitutive relationship. Retrofit cables can meet
these requirements, but other structural systems require further study to assess the effect of assumption
violations on the M.C. model. Such candidate systems include the following: braced frames with shear
tab connections; moment resisting steel frames, which may have their own flexural-catenary resistance;
reinforced concrete frames in which the reinforcing steel serves as catenary resistance; and column
supports that are not constrained horizontally or vertically.

6. Summary and Conclusions

The modified catenary model presented in this paper is an efficient, applicable tool that can
be used to understand the fundamental mechanisms present in catenary scenarios in which mass is
lumped to a central position and flexural resistance is small. This model follows from first principles
and provides an efficient means to perform geometrically- and materially-nonlinear static or dynamic
analyses. The following conclusions are based on research presented in this paper:

• As expressed in Equation (11), geometric nonlinearities in modified catenary systems in
the elastic material range result in load carrying capacity that is approximately proportional
to the cubic displacement.
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• As expressed in Equation (12), geometric nonlinearities in modified catenary systems
provide significant post-yield load carrying capacity that is approximately proportional to
post-yield displacement.

• For a given displacement, the ratio of dynamic load to static load is 1⁄4 for the elastic case and
varies with α2 post yield.

• Static and dynamic experimental results verify the applicability of modified catenary behavior for
scaled cable systems (i.e., 16-gage steel wire with 680 mm spans).

• The approximate modified catenary equations adequately represent the essential features of a retrofit
cable system and provide closed-form estimations of required cross-sectional areas to be used in design.
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