
 

Infrastructures 2017, 2, 20; doi:10.3390/infrastructures2040020 www.mdpi.com/journal/infrastructures 

Article 

Integrated Big Data Analytics Technique for  
Real-Time Prognostics, Fault Detection and 
Identification for Complex Systems 
Chinedu I. Ossai 

Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, 
Singapore; chinedu_ossai@sutd.edu.sg or ossaic@gmail.com 

Received: 5 October 2017; Accepted: 8 November 2017; Published: 10 November 2017 

Abstract: Real-time prediction of the state of complex systems is vital for integrity management 
since it is easier to plan for asset maintenance, reduce risks associated with unplanned downtime 
and reduce the cost of maintenance. This study utilized a four-fold cross-validation ensemble for an 
Artificial Neural Network (ANN) that used Multi-Layer Perceptron (MLP) in a backward 
propagation technique for haul crane prognosis. Big data on components’ degradation states 
obtained from the Supervisory Control And Data Acquisition (SCADA) systems were used to 
implement the study. After preprocessing the dataset, importance scoring was used to compute the 
Cumulative Target-component Percentage-influence (CTP) of the input variables (source 
components) on the output variable (the target component) at the 95.5%, 99.3%, 99.9% and 100% 
levels. The specific source components responsible for the CTP levels of the target component were 
later used for the ANN network training that followed the cross-validation ensemble technique. The 
cross-validation ensemble ANN technique was also compared to the classic ANN and other 
machining learning algorithms. Finally, the best-trained cross-validation ensemble ANN network, 
which was obtained at the 99.9% CTP level, was used for future estimation of the time of failure of 
the system to enhance planning for the expected maintenance program that will be required at  
such times. 

Keywords: artificial neural network; data analytics; fault detection and identification; complex 
systems; SCADA 

 

1. Introduction 

Management of asset integrity is one of the smartest things that organizations should do if they 
want to stay competitive in business. As intelligent asset integrity methods have systematically taken 
over the traditional asset maintenance management techniques for complex systems [1,2], it is 
becoming imperative that operators of these systems get inspections, maintenance and repairs right 
if asset performance is to be sustained [3]. Many complex systems have Supervisory Control And 
Data Acquisition (SCADA) systems that use sensors for streaming terabytes of data over the years. 
These datasets hold useful clues about the state of systems and should be effectively utilized for 
systems’ prognostic and real-time fault detection and identification [4]. Expert knowledge acquired 
over years of asset maintenance management has been viable for fault detection and  
identification [5], and systematically following the maintenance routines, stipulated by the original 
equipment manufacturers, has undoubtedly helped to reduce downtimes. However, there is still the 
need for more precision in maintenance management decisions, because of the difficulties of effective 
downtime prevention and operating cost optimization, by the traditional maintenance systems [6]. 
Since the management of complex systems has proven to be tricky, they require the efficiency that 
can be provided by the real-time information transferring, analysis and decision-making framework 
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that can be achieved via data analytics. This is the primary goal of this research that aims to make 
fault identification and detection quicker via big data analytics with an Artificial Neural Network 
(ANN). It is also important to note that despite the prevalence of SCADA systems and the 
proliferation of big data, real-time fault detection and identification has not been implemented 
successfully in the management of complex systems, as unplanned maintenance and shutdowns still 
dominate the integrity management landscape [7]. This case is most prevalent on complex systems 
that have hundreds to thousands of components, sub-systems and systems that have complex 
operational procedures. This research will enhance the knowledge of the degradation status of the 
components of complex systems and identify the expected time of failures, to improve the 
implementation of real-time maintenance planning programs [8], which can result in cost savings 
with the increased availability of the facilities.  

Given the fact that the deterioration patterns enshrined in the degradation of the components 
and systems are an indication of the characteristics of the components and systems, it is possible to 
use big data analytics to determine the expected future pattern of the facilities’ behavior. This has 
made data analytics stand out as an effective maintenance management tool that will aid in the 
prediction of the status of assets via intelligent asset integrity management that will greatly impact 
the integrity management decisions of ageing assets [9,10], which are more prone to failures [11] than 
newer ones. Similarly, the possibility of mitigating against operational risks associated with asset 
failures and reducing the cost impacts of unscheduled downtimes in industrial operations will all be 
a possibility, if real-time fault detection and identification are achieved [12]. Since integrity 
management should address the fitness for the purpose of assets, which depend on the probability 
of failure at different lifecycle phases [13–15], understanding the failure intensity of facilities and 
implementing action plans that will mitigate them are vital for efficiency; hence the necessity of 
implementing this study that will potentially help to optimize the performance of complex systems, 
by utilizing the historic trend of the components and systems degradations in prognosis and fault 
detections.  

To date, effective integrity management, which entails cost minimization through the modeling 
of the system’s conditions [16] with different dynamic tools, to maintain reliability [12] has been the 
focus of numerous researchers [17,18]. Kan et al. [19] affirmed in the study of the state of prognosis 
of non-stationary and non-linear rotating systems that the effectiveness of failure and downtime 
prevention centers on data-driven statistical and artificial intelligence technologies. This implies that 
the use of different statistical and machine learning procedures such as ANN, Support Vector 
Machine (SVM), fuzzy logic, particle filters, the extended Kalman filter, Gaussian process regression, 
etc., is fundamental to the understanding of the deterioration trends of components of complex 
systems, since the proper utilization of the techniques could lead to actionable knowledge that will 
influence maintenance management decisions [20]. Fumeo et al. [21] proposed an online support 
vector machine for the prediction of the remaining useful life of train axle bearings and could use the 
method to solve some of the problems associated with the streaming and analysis of big data for 
complex systems. Similarly, phase editing for vibration signal processing in fault detection of 
bearings was used by Barbini et al. [22] to enhance the efficiency of bearing fault detection using big 
data. This computationally-efficient procedure used full-band demodulation to obtain results that 
outperformed some other damage detection methodologies based on spectral kurtosis and cepstral 
pre-whitening. Again, Kumar et al. [23] used the linguistic interval-valued fuzzy reasoning 
framework for predicting the remaining useful life of complex systems, by using condition-based 
monitoring data and optimized maintenance schedules, whereas Manco et al. [24] used the cluster of 
outliers in fault identification of train doors. 

Due to the increasing need to reduce the unplanned failures of complex systems such as haul 
cranes that are locked into 24 h operations in busy harbors, it is important to have pre-knowledge of 
the components’ behaviors, to make room for resources allocation in work planning and maintenance 
management decisions. Hence, a framework for integrating ANN-based big data analytics into  
real-time fault detection and identification for complex systems will be developed. This will be 
achieved using future time prediction of the target component’s behavior, with the source/control 
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components’ degradation information from historic SCADA sensor data. The successful 
implementation of the framework will make maintenance planning, inspection and repairs quicker, 
and at a reduced cost, due to the elimination of downtimes arising from unplanned  
maintenance schedules. 

2. Artificial Neural Network Concept 

ANN is a machine learning tool that has been widely utilized in engineering, science, health and 
finance for predicting the effects of input variables on outputs, by using a weighing system that 
adjusts the networks, to reduce the errors to the lowest possible value. There are three main sections 
in ANN: the input layer, hidden layer and output layer, which are interconnected. They also have 
weighted input elements that are modified as the signals pass through the hidden neurons, which 
produce their outputs using the sigmoidal function Equation (1) [25]. The output weight produced 
by the hidden neurons (hi), which are connected to the input neurons in adjacent layers and linked to 
the output neurons with a weight factor, can be estimated with Equation (2) [26,27]. 

൞ ௜ܺௌ = 11 + ݁ି௦௜ݏ௜ =෍߱௜௝ ௝ܺௌିଵ  (1) 

where ௜ܺௌ represents the output of node i in layer s, ௝ܺௌିଵ represents the output of node j in layer  
s − 1 and si represents the weighted sum (߱௜௝) of the inputs to node i. 

ℎ௜ = ߪ ቌ෍ߴ௜௝ே
௝ୀଵ ௝ݔ + ௜ܶ௛௜ௗቍ (2) 

Here, ߪ(. ) is the activation function; N is the number of input neurons; ϑij is the weights between 
input neuron j and hidden neuron i; xj is the input values to the input neurons; and Tihid represents 
the threshold term of the hidden neuron. 

In ANN network training, the weights are adjusted continually, to reduce the difference (ε) 
between the desired value and the target value to the bare minimal, per Equation (3) [27]. 

ɛ = 12෍෍൫ ௜ܻ௝ − ௜௝൯ଶ௠೚ܦ
௝ୀଵ

௠೟
௜ୀଵ  (3) 

Here, mt, mo, Yij and Dij represent the number of training samples, the number of output nodes of the 
training samples, the output of the training network and the desired value of the target components 
(response), respectively.  

3. Frameworks for Complex System’s Prognosis 

The main aim of intelligent asset integrity management is to enhance real-time fault detection 
and identification via forecasting of the future state of the systems, over a given time. The key 
advantage of this process is quick service triggering that prevents downtime [1]. Since random 
failures can be prevented in complex systems with intelligent condition monitoring, the proper 
utilization of the big data (acquired over the periods of intelligent monitoring from SCADA system 
sensors) is vital for managing age- and environment-related stresses on the systems [8] following the 
procedure shown in Figure 1. 
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Figure 1. Framework for intelligent prognosis of complex systems (Note: SCADA, Supervisory 
Control And Data Acquisition; CMS, Condition Monitoring Sensor; ANN, Artificial Neural Network; 
SVM, Support Vector Machine; GBM, Gradient Boosting Machine; RF, Random Forest; DL, Deep 
Learning; GS, Grid Search; GLM, Generalized Linear Model; SMPP, Statistical Matching Performance 
Pattern). 

Owing to the fact that the utilization of components of complex systems results in deterioration, 
which is a result of ageing or physical stresses associated with the operations, they generally  
degrade [8,28]. The Condition Monitoring Sensors (CMS) attached to the components continuously 
send the readings of the state of the components via the SCADA systems and store the data in 
databases or clouds as big data. Processing of these data is vital for the prediction of the future state 
of the components, which is done by using different models such as ANN, Support Vector Machine 
(SVM), Gradient Boosting Machine (GBM), Deep Learning (DL), Random Forest (RF), the 
Generalized Linear Model (GLM), Grid Search (GS) and Statistical Matching Performance  
Pattern (SMPP) [8,25,26,29–33].  

Using these models for determining the behavioral patterns of the components and systems, 
generally, helps with the prognostic and real-time fault detection and identification by forecasting 
future trends. Numerous techniques, such as Autoregressive Integrated Moving Average (ARIMA), 
exponential smoothing, autoregressive analysis, fuzzy logic, Auto Regression Moving Average 
(ARMA) and Monte Carlo estimation, have been used for the prediction of the future trends of 
components’ behaviors. This prediction is very vital for integrity management as the planning of 
inspection, replacement and repairs will hinge on the forecasted information that has the original 
pattern of the systems’ and components’ degradations enshrined in the big data. It is obvious that 
implementing the integrity management program will improve the status of the complex systems, 
but the need for cost-effective maintenance is the reason why a group maintenance policy [8], which 
targets components of the system that are prone to failure within a given timeframe, is necessary. 
This strategy is an economic maintenance operation that will not only minimize the cost of 
maintenance, but will ensure that the system’s reliability is not compromised [34–36].  
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4. Fault Detection and Identification with ANN 

To model the current system’s status and make the prediction of the future state, historic big 
data of the components’ degradation are needed, because the future degradation behavior of the 
system will be like the historic pattern. The procedure used for this prediction is shown in Figure 2. 

 

Figure 2. Integrated process of fault detection and identification with Artificial Neural  
Networks (ANNs). 

Before using the big data for analysis of the system’s state and real-time fault detection,  
pre-processing, which requires the replacement of missing values, removal of incomplete rows and 
columns, outliers and extreme values, was done. This process of data cleaning can also involve data 
integration, transformation, reduction and discretization, to make the analysis fast and prevent bogus 
results [37]. Hence, redundant input variables such as those that were constant were removed, and 
missing values were replaced with zeros and by averaging the nearest neighbors’ values of the 
missing value cells. The outliers and extreme values were computed by using the values of the first 
and third quantiles and the inter-quantile ranges while using an outlier factor of three and an extreme 
value factor of six.  

This study used importance scoring to establish the influences of the source components (input 
data) on the target component’s (output data) behavior. This procedure was meant to determine 
actionable data processing size that will have an effective contribution to the behavior of the target 
component. Hence, the first step in the predictive analytics was to correlate the readings of the source 
components with that of the target component and the cumulative influence of the source 
components on the target component recorded. The ANN model training, which estimated the value 
of the target component using the combination of the information in Equations (1)–(3), was carried 
out using the architecture shown in Figure 3 in a cross-validation ensemble procedure. 
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Figure 3. ANN architecture used for the model development, Tx1 is the target component (output) 
and Tx2, Tx3, …, Tx234 represent the source components (inputs) of the system. 

Cross-Validation Ensemble 

Since this study aims to make a prediction of the future status of the target component from a 
given set of historic data, a four-fold cross-validation ensemble (Figure 4) that used randomization 
to pick the validation data from the original dataset was adopted. It can be recalled that this technique 
has the advantage of considering all sections of the dataset in the training and validation, thereby 
giving room for robust prediction when compared to the classic approach that uses a given fraction 
of the data for training and validation. Again, this technique is necessary for reducing variabilities in 
prediction results and minimizing the chances of type III error, which results in the wrong 
hypothesis, due to erroneous conclusions [38]. By randomly choosing 20%, 40%, 60% and 80% of the 
original dataset at separate occasions as the validation dataset and using the remainder as the training 
dataset, the ANN models were trained. The networks were built with a Multi-Layer Perceptron 
(MLP) algorithm in a backward propagation technique, by applying grid search to determine the 
best-trained network amongst different networks having various hidden neurons and learning rates. 
The varying hidden neurons (Hn) were computed with the expression in Equation (4), by considering 
the number of input variables (ncol) in the datasets, because preliminary analysis showed that the 
trained networks with the values obtained from the equation produced high precision results. The 
learning rates used for the training of the networks were 0.01, 0.15 and 0.25.  

௡ܪ = ൝2݊௖௢௟ + 12݊௖௢௟ + 22݊௖௢௟ + 3 (4) 
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Figure 4. A randomization based four-fold cross-validation ensemble used for the ANN training and 
validation of the dataset. 

5. Illustrative Example and Results 

The cross-validation ensemble ANN technique described in the previous section was 
exemplified by analyzing 100 days of SCADA sensors’ streamed data of 233 source components that 
were responsible for the status of one target component (Table 1). This dataset (experimental data), 
which belongs to a haul crane, is vital for decision-making on the expected status of the target 
component in the future. 

Table 1. Descriptive statistics of some of the SCADA data used for the analysis (Std.: Standard 
deviation, COV: Coefficient of Variation). 

Descript. Tx_1 Tx_3 Tx_18 Tx_37 Tx_94 Tx_160 Tx_197 Tx_216 Tx_232 Tx_234
min 0.0000 1.9998 0.0000 9.6552 0.0000 0.0000 0.0000 0.0000 1.9998 0.0000 
max 1.9247 8.1290 912.8352 100.0000 99.9546 1.0000 100.0000 1199.7422 8.1979 912.8352 

range 1.9247 6.1292 912.8352 90.3448 99.9546 1.0000 100.0000 1199.7422 6.1981 912.8352 
median 0.0269 7.4863 487.3383 40.0000 31.6343 0.0000 13.5617 600.0000 7.6996 487.3383 
mean 0.2230 7.4596 362.3406 53.4006 24.4100 0.2227 11.5449 514.5615 7.6864 362.3406 
Std. 0.4188 0.2081 308.2417 25.5838 23.5495 0.4069 6.9333 282.3706 0.2626 308.2417 

COV 1.8778 0.0279 0.8507 0.4791 0.9647 1.8275 0.6006 0.5488 0.0342 0.8507 

The ANN analysis was done at various levels of the Cumulative Target-component  
Percentage-influence (CTP)—95.5%, 99.3%, 99.9% and 100%—by using the source components 
responsible for the CTP levels for the network training. This was done to estimate the actionable size 
of the source components that will provide the best-trained network at reduced time and cost. It 
should be noted that the Cumulative Target-component Percentage-influence (CTP) was used to 
describe the measured cumulative influence of the source components on the target component. 
Table 2 summarizes the number of source components responsible for the various levels of target 
component behavior after preprocessing the original dataset.  

Table 2. Cumulative Target-component Percentage-influence (CTP) and the number of contributing 
source components. 

CTP Number of Source Components
95.50% 10 
99.30% 27 
99.90% 46 
100% 82 

ANN1 ANN2 ANN3 ANN4

Data(1) V(1) V(12) V(8) T(16)

Data(2) T(5) . T(9) T(n)

Data(3) V(2) T(10) V(29) V(n)

. . . . .

. . . . .

. V(n) V(n) V(n) .

. . . . V(27)

. . T(n) . .

Data(n) T(n) T(13) T(n) V(41)

T 80% 60% 40% 20%
V 20% 40% 60% 80%

Training (T); Validation (V)
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The aggregates of the ANN results obtained at each of the CTP levels—95.5%, 99.3%, 99.9% and 
100%—were found by calculating the averages of the built ANN models—ANN1, ANN2, ANN3 and 
ANN4 (Figure 4)—at the levels. After trying between 1000 and 5000 iterations of the ANN training 
networks, the best networks from each CTP level was used to compute the Hit Ratio (HR), Miss Ratio 
(MR), Mean Square Error (MSE) and the coefficient of determination (R2) of the trained and validation 
datasets per Equations (5)–(7) [39].  

൝ ܴܪ = ܰௐி௦ܴܰܯ = 1 −  (5) ܴܪ

ܧܵܯ = 1ܰ௦෍൫ ௙ܶ − ௣ܶ൯ଶேೞ
௜ୀଵ  (6) 

ܴଶ = ൣ∑ ൛൫ ௙ܶ − ௠ܶ௙൯ ∗ ൫ ௣ܶ − ௠ܶ௣൯ൟேೞ௜ୀଵ ൧ଶ∑ ൫ ௙ܶ − ௠ܶ௙൯ଶ ∗ ∑ ൫ ௣ܶ − ௠ܶ௣൯ଶேೞ௜ୀଵேೞ௜ୀଵ  (7) 

Here, NWF is the number of the accurately predicted status of the target component over a given 
number of sampling size Ns, Tf is the original sensor reading, Tp is the ANN predicted sensor reading, 
Tmp is the mean predicted sensor reading and Tmf is the mean original sensor reading. 

Figures 5 and 6 show the validation results of the cross-validation ensemble ANN at the various 
CTP levels in comparison to the experimental readings of the target component obtained from the 
SCADA streamed dataset. Please note that the results for 80% training and 20% validation were used 
to exemplify the nature of the results obtained from the ANN models. The differences in the results 
obtained from the ANN models and the experimental results as measured with the Root Mean Square 
Error (RMSE) are as follows:  

- 80% training and 20% validation {100% CTP: 0.0359, 99.9% CTP: 0.0483, 99.3% CTP: 0.0565 and 
95.5% CTP:0.0484} 

- 60% training and 40% validation {100% CTP: 0.0419, 99.9% CTP:0.0393, 99.3% CTP:0.0386 and 
95.5% CTP:0.050} 

- 40% training and 60% validation {100% CTP: 0.044, 99.9% CTP: 0.0365, 99.3% CTP: 0.0391 and 
95.5% CTP: 0.0515}  

- 20% training and 80% validation {100% CTP: 0.0455, 99.9% CTP: 0.0384, 99.3% CTP: 0.0407 and 
95.5% CTP: 0.093}. 

 

Figure 5. Comparison of the experimental and the cross-validation ensemble ANN predicted target 
sensor readings for the 95%, 99.3%, 99.9% and 100% levels of the Cumulative Target-component 
Percentage-influence (CTP) of the validation dataset. 
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Figure 6. Performance evaluation of the experimental data with the predictions of the cross-validation 
ensemble ANN at the 95%, 99.3%, 99.9% and 100% levels of the Cumulative Target-component 
Percentage-influence (CTP) of the validation dataset. 

The correlation of the cross-validation ensemble ANN predicted target component readings and 
the experimental results shown in Figure 6 as determined with Equations (5)–(7) are summarized in 
Table 3.  

Table 3. Summary of the best-trained networks, R2, Mean Square Error (MSE), Hit Ratio (HR) and 
Miss Ratio (MR) for various Cumulative Target-component Percentage-influence (CTP). 

TD:VD (%) 
Training Dataset (TD) Validation Dataset (VD)

CTP 
R2 MSE R2 MSE HR MR

80:20 0.856 0.0254 0.848 0.0277 90.53% 9.47% 

95.50% 
60:40 0.852 0.0266 0.839 0.0282 90.53% 9.47% 
40:60 0.836 0.0301 0.833 0.0289 91.88% 8.12% 
20:80 0.87 0.0236 0.862 0.0289 89.87% 10.13% 

Average 0.853 0.0264 0.845 0.0284 90.70% 9.30% 
80:20 0.886 0.0224 0.878 0.0245 94.59% 5.41% 

99.30% 
60:40 0.886 0.0211 0.877 0.0227 92.19% 7.81% 
40:60 0.884 0.0214 0.881 0.0204 94.86% 5.14% 
20:80 0.889 0.0176 0.876 0.0232 93.65% 6.35% 

Average 0.886 0.021 0.878 0.023 93.80% 6.18% 
80:20 0.89 0.0192 0.881 0.0216 94.69% 5.31% 

99.90% 
60:40 0.889 0.021 0.879 0.0216 95.26% 4.74% 
40:60 0.887 0.0214 0.881 0.0205 96.18% 3.82% 
20:80 0.889 0.0176 0.876 0.0233 94.85% 5.15% 

Average 0.889 0.02 0.879 0.022 95.20% 4.76% 
80:20 0.881 0.0208 0.873 0.023 94.38% 5.62% 

100% 
60:40 0.887 0.0201 0.877 0.0212 94.12% 5.88% 
40:60 0.879 0.0227 0.877 0.0226 94.59% 5.41% 
20:80 0.884 0.0175 0.869 0.0238 94.87% 5.13% 

Average 0.883 0.02 0.874 0.023 94.50% 5.51% 

It can be inferred from the results (Table 3) that the 99.9% CTP level ANN model (validation 
dataset) is the best model for estimating the degradation of the target component, with an average 
hit ratio of 95.20%, which is 0.7%, 1.4% and 4.5% better than the hit ratios at the 100%, 99.3% and 
95.5% CTP levels, respectively. Similarly, the coefficient of determination (R2) for the 99.9% CTP level 
is also higher than those of the other CTP levels. The higher explanatory power and accuracy of the 
prediction at the 99.9% CTP level, compared to the 100% CTP level, could be because of the very low 
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influences {0.000%–0.0007%} of the input variables that succeeded the 99.9% CTP level have on the 
behavior of the target component.  

Comparison of Cross-Validation Ensemble ANN with Classic ANN and other Techniques 

For comparing the cross-validation ensemble technique of ANN used in this study with the 
classic ANN used by other researchers on fault detection and diagnostics of industrial assets [40–42], 
the dataset used for this study was subjected to a classic ANN (70% training and 30% validation). 
Table 4 shows the comparison of both results. Judging from the HR and MR obtained from both 
techniques (Table 4), it can be inferred that the cross-validation ensemble technique has obvious 
advantages over the classic ANN, due to its ability to make more accurate estimations compared to 
the classic ANN.  

Table 4. Comparison of classic ANN and the cross-validation ensemble technique. 

CTP 
Classic ANN Dataset (70% Training, 30% Validation) Cross-Validation Ensemble ANN

Hit Ratio (HR) Miss Ratio (MR) Hit Ratio (HR) Miss Ratio (MR)
95.50% 89.45% 10.55% 90.7% 9.3% 
99.30% 91.95% 8.05% 93.8% 6.18% 
99.90% 94.10% 5.90% 95.2% 4.76% 
100% 93.89% 6.11% 94.5% 5.51% 

The cross-validation ensemble ANN was also compared with other fault detection techniques to 
affirm the robustness of the technique. Table 5 summarizes the methods and the level of accuracy 
obtained using them. It can be inferred from this table that cross-validation ensemble ANN with the 
prediction accuracy of 95.2% outperformed classic ANN, Evolutionary Programming ANN 
(EPANN), fuzzy logic, immune neural network, rough set theory, SVM, bootstrap and Genetic 
Programming with K-Nearest Neighbors (GP-KNN), phase editing and cepstral editing, whereas 
ANN-PSO, ANN-IPSO, ANN with Evolutionary Particle Swarm Optimization (ANN-EPSO) 
performed better than the cross-validation ensemble ANN. To further improve on the Cross-
Validation Ensemble Artificial Neural Network (CVEANN) to enhance the accuracy of the 
predictions, it may be necessary to increase the number of validation folds from four to between eight 
and twelve, as this will make it possible to consider smaller fractions of the dataset and could improve 
the prediction accuracy. 

Table 5. Comparison of the performance of different fault detection and identification techniques 
with Cross-Validation Ensemble ANN (CVEANN). 

Technique Accuracy Variation from 
CVEANN Ref 

ANN (classic) 95% −0.20% [43] 
Artificial Neural Network with Particle Swarm Optimization 

(ANN-PSO) 
96% 0.80% [43] 

Artificial Neural Network with Iterative Particle Swarm 
Optimization (ANN-IPSO) 

97% 1.80% [43] 

Artificial Neural Network with Evolutionary Particle Swarm 
Optimization (ANN-EPSO) 

98% 2.80% [43] 

Evolutionary Programming Artificial Neural Network 
(EPANN) 

95% −0.20% [44] 

Fussy logic 89% −6.20% [45] 
Rough set theory 92.11% −3.09% [46] 

Support Vector Machine (SVM) 92% −3.20% [47] 
Phase editing 79% −16.20% [22] 

Cepstral editing 69%, 72% −26.2%, −23.2% [48,49] 
Artificial Neural Network with Expert System (ANN-EPS) 90.40% −4.8% [50] 
Bootstrap Genetic Programming and K-Nearest Neighbor 

(GP-KNN) 
92.11% −3.09% [51] 
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6. Predicting Future Behavior of the Target Component 

The best results of the trained networks were used for the estimation of the future state of the 
target component by randomly generating readings from the original dataset (source components). 
These readings were subjected to measurement noises that were assumed to cause the readings to 
fluctuate randomly between ±2.5%. The summarized results of the average future target sensor 
readings at the CTP levels are shown in Figure 7. Since the 99.9% CTP level gave the best estimation 
of the validation dataset of the target component, the expected future status of the target component 
was computed with the model. The summary of the target sensor behavior in the future 358 h  
(~15 days) using the 99.9% CTP level is shown in Table 6. The future readings of the target component 
(Table 6) form the basis for decision-making on the time faults are to be expected and the requisite 
actions to be taken. Hence, when the target component is expected to have a faulty status that will 
last for less than four hours, the maintenance will be expected to be a minor one and could involve 
replacement of fuses and resetting of relays. However, when the future time of failure is expected to 
last for 4–16 h consecutively, a major maintenance will be planned. This category of maintenance may 
warrant fault isolation at the sub-system levels and requires higher specialty of technical personnel 
in comparison to minor maintenance operations. Similarly, when the expected future faulty status of 
the target component goes above 16 h consecutively, a shutdown maintenance is anticipated, because 
some critical components, such as the bearings, shafts, rollers etc., will either need replacement or 
servicing, due to deteriorations that could involve deformation, fatigue failure, cracking and 
corrosion damages. 

 

Figure 7. Comparison of the cross-validation ensemble ANN modeled future target sensor reading 
for the 95.5%, 99.3%, 99.9% and 100% CTP levels. 

Following the explanatory power of the 99.9% CTP level used for the prediction of the future 
behavior of the target component, it could be expected that approximately 13% variability in the 
expected time of failure and duration of the faulty status of the target component may occur. To this 
end, contingency actions could be taken ahead of time to prevent the disruption of operations, by 
planning maintenance in advance, shifting workforce to other machinery and stopping operation of 
assets that have been predicted to breakdown, which could help to prevent more damages to the 
assets and reduce the operating cost. Incorporating this prediction model into an integrated asset 



Infrastructures 2017, 2, 20  12 of 15 

management architecture will provide a module for automated fault detection and identification, 
which will help to improve the integrity of assets.  

Table 6. Expected future status of the target component, the date and time the fault is expected, the 
duration of the fault and the requisite maintenance action required for the source components  

Date/Time (Start) Date/Time (End) 
Duration 

(h) 
System 
Status 

Required 
Maintenance 

Duration 
(h) 

System 
Status 

Required 
Maintenance 

16 May 2016 9:30 16 May 2016 1:30 4.00 faulty minor  0.5–4.5  faulty minor  
16 May 2016 14:00 16 May 2016 17:30 3.50 working  5–8.5 working  
16 May 2016 18:00 16 May 2016 18:00 0.50 faulty minor  9 faulty minor  
16 May 2016 18:30 16 May 2016 18:30 0.50 working  9.5 working  
16 May 2016 19:00 16 May 2016 19:00 0.50 faulty minor  10 faulty minor  
16 May 2016 19:30 16 May 2016 19:30 0.50 working  10.5 working  
16 May 2016 20:00 16 May 2016 20:00 0.50 faulty minor  11 faulty minor  
16 May 2016 20:30 16 May 2016 21:00 1.00 working  11.5–12 working  
16 May 2016 21:30 16 May 2016 22:00 1.00 faulty minor  12.5–13 faulty minor  
16 May 2016 22:30 16 May 2016 23:30 1.50 working  13.5–14.5 working  
17 May 2016 0:00 17 May 2016 1:00 1.00 faulty minor  15–16 faulty minor  
17 May 2016 1:30 17 May 2016 1:30 0.50 working  16.5 working  
17 May 2016 2:00 17 May 2016 2:30 1.00 faulty minor  17–17.5 faulty minor  
17 May 2016 3:00 17 May 2016 3:00 0.50 working  18 working  
17 May 2016 3:30 17 May 2016 4:00 1.00 faulty minor  18.5–19 faulty minor  
17 May 2016 4:30 17 May 2016 4:30 0.50 working  19.5 working  
17 May 2016 5:00 17 May 2016 13:30 8.50 faulty major 20–28.5 faulty major 
17 May 2016 14:00 17 May 2016 14:00 0.50 working  29 working  
17 May 2016 14:30 17 May 2016 15:00 1.00 faulty minor  29.5–30 faulty minor  
17 May 2016 15:30 17 May 2016 15:30 0.50 working  30.5 working  
17 May 2016 16:00 20 May 2016 15:00 71.00 faulty shutdown 31–102 faulty shutdown 
20 May 2016 15:30 20 May 2016 16:00 1.00 working  102.5–103 working  
20 May 2016 16:30 20 May 2016 17:00 1.00 faulty minor  103.5–104 faulty minor  
20 May 2016 17:30 20 May 2016 18:30 1.50 working  104.5–105.5 working  
20 May 2016 21:00 20 May 2016 23:30 3.50 faulty minor  108–110.5 faulty minor  
21 May 2016 0:00 23 May 2016 3:30 51.50 working  111–162.5 working  
23 May 2016 4:00 23 May 2016 4:00 0.50 faulty minor  163 faulty minor  
23 May 2016 4:30 31 May 2016 7:00 194.50 working  163.5–358 working   

7. Conclusions 

The implementation of intelligent asset integrity management has been made easier by big data 
of components’ degradations obtained over the years of service of the facilities. The utilization of 
these assets’ condition monitoring indicators for decision making on the future status of the 
components of the assets has made it possible to have real-time fault detection, identification and 
cost-effective maintenance management. This study has utilized cross-validation ensemble ANN for 
a predictive analytic study that aimed at estimating the future status of a target component that was 
influenced by the source components in a complex system of a haul crane. A four-fold randomized 
selection of the population of the original dataset was done using 20% training and 80% validation, 
40% training and 60% validation, 60% training and 40% validation and 80% training and 20% 
validation at different moments of the ANN modeling. The study implemented importance scoring 
to determine the influence of the source components on the output component and used the number 
of source components that contributed to 95.5%, 99.3%, 99.9% and 100% of the target component 
behavior to carry out the ANN network trainings at different instances. After comparing the 
validation results at the Cumulative Target-component Percentage-influence (CTP) levels of 95.5%, 
99.3%, 99.9% and 100%, it was observed that the 99.9% CTP level with the coefficient of determination 
(R2) of 0.879, hit ratio of 95.2% and miss ratio of 4.76% was the best network for making the prediction 
of the status of the haul crane components used as a case study in this work. 

The study also compared the cross-validation ensemble ANN technique with the best prediction 
accuracy (99.9% CTP level) with the classical ANN and other machine learning tools that have been 
employed in the literature to predict the faults of complex systems. It was observed that the technique 
used in this study could more accurately predict the system’s behavior than classic ANN, EPANN, 
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fuzzy logic, immune neural network, rough set theory, SVM, GP-KNN, phase editing and cepstral 
editing. On the other hand, the ANN-PSO, ANN-IPSO and ANNEPSO techniques predicted the 
system’s performance more accurately than the cross-validation ensemble ANN employed in  
this study. 

Finally, the 99.9% CTP level cross-validation ensemble ANN was used to predict the future state 
of the target component of the haul crane, and the results were used to envisage the expected time of 
the system breakdown and the type of maintenance that will be probable. It is expected that future 
studies on the complex systems will focus on using 8–12-fold cross-validation ensemble ANN with 
particle swarm optimization and evolution-based modifications to improve the accuracy of  
the predictions. 
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