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Abstract

Ultra-high-voltage (UHV) transmission lines are prone to galloping and oscillations under
ice and wind loads, posing risks to system reliability and safety. Accurate aerodynamic
coefficients are essential for evaluating these effects, but conventional wind tunnel and CFD
methods are costly and inefficient for practical applications. To address these challenges,
this study develops a surrogate model for rapid and accurate prediction of aerodynamic
coefficients for six-bundle conductors. Initially, a CFD model to calculate the aerodynamic
coefficients of six-bundle conductors was proposed and validated against wind tunnel
experimental results. Subsequently, Latin hypercube sampling (LHS) was employed to
generate datasets covering wind speed, icing shape, icing thickness, and wind attack an-
gle. High-throughput numerical simulations established a comprehensive aerodynamic
database used to train and validate multiple tree-based surrogate models, including deci-
sion tree (DT), random forest (RF), extremely randomized trees (ERTs), gradient boosted
decision tree (GBDT), and extreme gradient boosting (XGBoost). Comparative analysis
revealed that the XGBoost-based model achieved the highest prediction accuracy, with an
R2 of 0.855 and superior generalization performance. Feature importance analysis further
highlighted wind speed and icing shape as the dominant influencing factors. The results
confirmed the XGBoost surrogate as the most effective among the tested models, providing
a fast and reliable tool for aerodynamic prediction, vibration risk assessment, and structural
optimization in UHV transmission systems.

Keywords: transmission lines; ice coating; aerodynamic coefficients; machine learning;
surrogate model

1. Introduction
Transmission lines are critical infrastructures within power grids, ensuring stable and

continuous electrical supply essential for societal and economic stability. Under extreme en-
vironmental conditions involving strong winds and ice accretion, transmission lines usually
employing bundled conductors are highly susceptible to pronounced wind-induced vibra-
tions. Such phenomena typically manifest as galloping or sub-span oscillations, which can
significantly compromise operational stability and structural integrity [1]. These dynamic
instabilities significantly degrade the reliability and safety of electrical systems, often lead-
ing to fatigue damage of hardware components, insulator failures, and even widespread
power outages, thus posing substantial operational and economic challenges [2,3]. To miti-
gate these problems, a thorough understanding of the aerodynamic behavior of bundled
conductors under diverse weather conditions is essential [4].
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Wind-induced vibrations constitute a major threat to the safe operation of transmission
lines and are a direct source of economic losses through accelerated component fatigue,
increased maintenance interventions, and potential power interruptions. Crucially, the
aerodynamic coefficients of bundled or iced conductors form the load foundation for
vibration analyses, such as spanning galloping, sub-span oscillations, and aeolian vibration,
and their accuracy is a necessary condition for reliable force estimation, stability assessment,
and response prediction. Improved fidelity in these coefficients helps reduce lifecycle
costs and outage risk, while supporting utilities in meeting evolving expectations for grid
resilience under extreme weather.

Traditionally, the aerodynamic behavior of conductors has been extensively inves-
tigated using wind tunnel experiments [5–9] and computational fluid dynamics (CFD)
simulations [10–12]. Wind tunnel tests provide valuable direct observations but are typ-
ically costly, time-consuming, and limited to simplified scenarios [13]. CFD simulations,
meanwhile, offer detailed insights into aerodynamic characteristics under various condi-
tions, such as wind speed, attack angle, icing shape, and conductor configurations [10]. For
instance, previous studies have systematically examined how icing conditions influence
aerodynamic coefficients of bundled conductors, offering insights into the complex interac-
tions between airflow and conductor geometry [14]. Although significant progress has been
achieved through these conventional approaches, limitations remain. CFD simulations,
in particular, face inherent drawbacks, such as high computational demands, sensitivity
to modeling assumptions, and difficulties in providing real-time predictive capabilities
required for efficient operational decision-making [15]. Moreover, recent wake-interference
studies [9,16] have demonstrated that torsional velocity effects and three-dimensional wake
interactions among sub-conductors play a crucial role in large-amplitude galloping, thereby
challenging the adequacy of simplified 2D turbulence models, such as the Spalart–Allmaras
(S-A) formulation. These findings highlight the need to carefully consider the physical
limits of CFD modeling when applied to bundled or iced conductors.

To overcome these challenges, recent studies have increasingly turned toward machine
learning (ML)-based methods, leveraging their ability to model complex nonlinear relation-
ships efficiently [17–19]. ML techniques have shown promising results in rapidly predicting
aerodynamic characteristics and related dynamic behaviors in transmission lines [20–22].
For example, artificial neural networks and tree-based algorithms have been successfully
employed to predict conductor aerodynamic coefficients and dynamic responses under
icing and wind-loading scenarios [23]. Nevertheless, performance among different ML
techniques varies considerably, and selecting the most suitable modeling approach remains
a critical yet controversial issue in practical engineering applications [21].

Recently, machine learning has been applied to the aerodynamic analysis of iced
conductors as an efficient alternative to wind tunnel tests. A BP neural network model
was used to predict aerodynamic coefficients of iced conductors, showing good agreement
with experimental results and confirming its feasibility for galloping studies [24]. In
addition, a convolutional neural network (CNN) approach based on composite images was
proposed, which achieved high accuracy in predicting drag, lift, and torque coefficients,
demonstrating clear advantages over traditional methods [25]. These studies indicate that
data-driven approaches for predicting aerodynamic coefficients of iced conductors have
become a research hotspot.

This study is structured as follows: Section 2 presents the establishment of a high-
fidelity numerical flow field model for six-bundle conductors, and its accuracy is validated
against wind tunnel experimental data. The generation of a large-scale aerodynamic co-
efficient dataset using Latin hypercube sampling, together with the development and
optimization of multiple tree-based surrogate models through hyper-parameter tuning
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and cross-validation, is described in Section 3. In Section 4, comparative performance
evaluations are provided, and a global sensitivity analysis is carried out. Potential engineer-
ing applications of the proposed surrogate model are then discussed in Section 5. Finally,
Section 6 summarizes the conclusions and outlines future research directions.

2. Numerical Model of Flow Field for Bundled Conductors
This section presents the development and validation of a numerical model for analyz-

ing the flow field around bundled transmission conductors under various wind and icing
conditions. The aim is to accurately capture the complex aerodynamic behavior and force
distributions experienced by multi-bundle conductors subjected to different environmental
parameters. The modeling approach combines computational fluid dynamics (CFD) sim-
ulations with systematic parameterization of wind attack angles, icing shapes, and other
key factors. The results of this section provide a high-fidelity aerodynamic database, which
serves as the foundation for subsequent surrogate model development and data-driven
aerodynamic predictions.

2.1. Establishment of the Numerical Model

UHV transmission lines typically employ multi-bundle conductor configurations to
meet the requirements for high-capacity, long-distance power transmission. This study
focuses on a typical six-bundle conductor type, JL/LB1A-720/50, widely adopted in UHV
transmission lines. The detailed material and structural parameters of the conductor are
presented in Table 1, with a spacing of 450 mm between individual sub-conductors.

Table 1. Material parameters of conductor lines.

Diameter (mm) Cross-Section Area
(mm2)

Mass per Unit
(kg/km)

Young’s Modulus
(GPa)

36.20 775.00 2337.90 63.7

To accurately simulate the aerodynamic characteristics, a numerical flow field model
was established using the finite-volume method by means of the method in Ref. [10].
The computational domain was designed as a square region of 10 m × 10 m, i.e.,
L1 = L2 = L3 = L4 = 10 m, to ensure numerical stability and sufficient accuracy, shown in
Figure 1. The layout of sub-conductors and boundary conditions is presented in Figure 1a.
Wind attack angles ranging from 0◦ to 180◦ were analyzed to fully evaluate aerodynamic
behavior under various wind directions, with simulations conducted at increments of 5◦.
To enhance computational efficiency and consistency, the geometry and mesh structure
remained unchanged across simulations, while different wind attack angles were imple-
mented by adjusting inflow directions and boundary conditions. It is noted that this study
analyzes section-level, quasi-steady samples and, therefore, does not explicitly encode spa-
tial correlations of icing geometry (e.g., along-span variability) nor temporal dependencies
in wind loading.

The boundary conditions were defined according to the wind attack angle α, with
the left, lower, right, and upper boundaries denoted as L1, L2, L3, and L4, respectively.
The setup principle is as follows: when α = 0◦, L1 is specified as the velocity inlet (Inlet),
L3 as the pressure outlet (Outlet), and L2 and L4 as symmetry boundaries (Sym). For
0◦ < α < 90◦, both L1 and L2 are designated as Inlets, while L3 and L4 act as Outlets. When
45◦ < α < 135◦, L1 and L2 are set as Inlets, and L3 and L4 as outlets. At α = 90◦, L2 serves
as the velocity inlet, L4 as the pressure outlet, while L1 and L3 are imposed as Sym. For
90◦ < α < 180◦, L3 and L2 are used as Inlets, with L1 and L4 defined as Outlets. Finally,
when α = 180◦, L3 is assigned as the Inlet, L 1 as the Outlet, and L2 and L4 as Sym. The
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detailed boundary condition settings for different wind attack angles are summarized in
Table 2.

   
(a) Boundary conditions (b) Grid of six-bundle conductors (c) Grid of sub-conductor 

Figure 1. Flow field model of six-bundle conductor lines.

Table 2. Boundary conditions of the CFD model.

Wind Attack
Angle (α) L1 (Left) L2 (Bottom) L3 (Right) L4 (Top)

0◦ Inlet Sym Outlet Sym
0◦ < α < 90◦ Inlet Inlet Outlet Outlet

45◦ < α < 135◦ Inlet Inlet Outlet Outlet
90◦ Sym Inlet Sym Outlet

90◦ < α < 180◦ Outlet Inlet Inlet Outlet
180◦ Outlet Sym Inlet Sym

To improve the accuracy of the simulation results while maintaining computational
efficiency, a refined mesh was applied in the regions surrounding the sub-conductors,
whereas coarser grids were used in the areas farther away, as illustrated in Figure 1b,c. The
computational domain was set to 10 m × 10 m, which is about 22 times the cross-sectional
size of the six-bundle conductor (450 mm × 450 mm), ensuring that the wake effects
dissipate adequately before reaching the domain boundaries. This choice is consistent
with previous aerodynamic modeling studies of iced or bundled conductors, where the
computational domain was typically selected as 20–25 times the conductor cross-section
to minimize boundary influence [10]. The domain was discretized with quadrilateral
elements, and several mesh schemes were tested by gradually increasing the number of
cells to check mesh convergence. Finally, a mesh with 42,568 cells was demonstrated to
be sufficient for stable aerodynamic coefficient predictions. The mesh around each iced
sub-conductor was refined to properly resolve the boundary layer, while the outer domain
was meshed more coarsely to reduce computational costs.

For turbulence modeling, the S-A one-equation turbulence model was employed due
to its robustness, computational efficiency, and capability to accurately capture vortex
shedding and boundary layer separation phenomena around conductors at high Reynolds
numbers. Pressure–velocity coupling utilized the SIMPLEC algorithm, which accelerates
convergence through iterative corrections of the pressure field, effectively reducing mesh
dependency [10]. A second-order implicit scheme was chosen for temporal discretization
to ensure numerical stability and suppress numerical oscillations. Spatial discretization of
the pressure terms adopted a second-order upwind scheme to smooth gradients, while the
QUICK scheme was selected for momentum equations to minimize numerical dissipation
and improve convection term accuracy. Turbulent transport equations employed third-
order discretization schemes to enhance the resolution of turbulent kinetic energy transport.
This numerical setup ensures a balanced combination of computational efficiency and
accuracy, providing a solid foundation for subsequent aerodynamic analyses.
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2.2. Computation of Aerodynamic Coefficients

The aerodynamic forces on conductors, including lift, drag, and torque, constitute key
parameters governing their dynamic stability under wind loads, influencing phenomena
such as galloping and sub-span oscillations. These aerodynamic forces can be expressed
mathematically by:

CD =
FD

1
2 ρU2Ld

, (1)

CL =
FL

1
2 ρU2Ld

, (2)

CM =
M

1
2 ρU2Ld

, (3)

where CD, CL, and CM represent drag, lift, and torque, respectively, ρ is air density, U
denotes wind speed, L is the effective length of the conductor model, and d represents
conductor diameter. The aerodynamic coefficients CD, CL, and CM are dimensionless and
dependent on conductor geometry and environmental conditions.

The simulated velocity flow fields at various wind attack angles (0◦, 45◦, and 90◦)
are illustrated in Figure 2, in which the white color presents the sub-conductors. At 0◦,
airflow patterns are symmetric, and flow remains relatively attached, generating stable
wake structures downstream. As the wind attack angle increases to 45◦, the flow field
exhibits noticeable asymmetry, intensified turbulence, and complex vortex shedding around
conductors. At 90◦, clear and pronounced wake separation is observed, characterized by
periodic vortex shedding downstream. These distinct flow characteristics significantly
influence the temporal behavior of aerodynamic loading acting upon the conductors.

  
(a) 0° (b) 45° 

 
(c) 90° 

Figure 2. Velocity flow fields at different wind attack angles.
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To further quantify these dynamic effects, time series curves of aerodynamic coeffi-
cients (drag, lift, and moment) at a 0◦ wind attack angle are presented in Figure 3. Here,
sub-conductor 1 (windward side, blue line) demonstrates relatively stable aerodynamic
responses due to direct exposure to incoming airflow. In contrast, sub-conductor 2 (lee-
ward side, orange line), positioned behind sub-conductor 1, exhibits more pronounced
oscillations caused by wake-induced turbulence and flow instability. This clear difference
highlights the substantial influence of wake interference on aerodynamic performance
and underscores the importance of accurately capturing conductor arrangement effects in
predictive modeling.

  
(a) Drag coefficient (b) Lift coefficient 

 
(c) Moment coefficient 

Figure 3. Time series curve of aerodynamic coefficients at a 0◦ wind attack angle.

2.3. Verification of the Proposed Model

To ensure the accuracy and reliability of the established numerical model, a compre-
hensive comparative validation was conducted using published wind tunnel experimental
data for bundled conductors. In this study, the aerodynamic performance of a crescent-
shaped iced eight-bundle conductor, as reported in Ref. [10], was used as the benchmark for
model verification. The validation setup involved an ice thickness of 12 mm, a wind speed
of 10 m/s, and wind attack angles ranging from 0◦ to 180◦ in 5◦ increments, replicating the
experimental conditions as closely as possible.

The physical arrangement of the wind tunnel test is presented in Figure 4a, where the
iced conductor models were mounted in a controlled wind tunnel environment to directly
measure aerodynamic forces. Figure 4b presents a direct comparison between the drag
coefficient CD obtained by the numerical model (setup model) and those obtained from the
wind tunnel experiments (reference model) across the full range of wind attack angles. The
numerical results show good agreement with experimental data, successfully capturing the
overall trends, peak values, and characteristic response variations of the drag coefficient as
a function of wind attack angle.
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(a) Wind tunnel test (Cai et al., 2015) 

 
(b) Aerodynamic coefficients obtained by the setup model and wind tunnel test (Cai et al., 2015) 

Figure 4. Comparative verification of the setup model [10].

While minor discrepancies exist, especially near the peaks, these differences can
largely be attributed to inevitable simplifications in the numerical model (such as idealized
boundary conditions and mesh resolution) and experimental uncertainties. Importantly,
the model faithfully reflects the variation and sensitivity of aerodynamic coefficients with
respect to the wind attack angle, thereby confirming its robustness and predictive reliability.
This strong consistency between simulation and experiment validates the effectiveness of
the developed model and provides a solid foundation for further aerodynamic analyses
and the construction of accurate surrogate models for bundled conductors under complex
environmental conditions.

3. Establishment of the Prediction Model
3.1. Acquisition of Large-Scale Data Samples

To develop a surrogate model with both high accuracy and strong generalization
capability, it is essential to obtain a dataset that uniformly and comprehensively covers
the high-dimensional input space. In this study, Latin hypercube sampling (LHS) was
employed as the core experimental design strategy. LHS is a stratified, quasi-random
sampling technique widely recognized for its efficiency in multi-dimensional parameter
studies and its advantage over simple random sampling in achieving good space-filling
properties [18].

The basic principle of LHS can be described as follows: Suppose the input parameter
space has nv dimensions and a total sample size of N. For each dimension, the range
is divided into N equally probable intervals. A single value is randomly selected from
each interval, ensuring that each interval is sampled exactly once per dimension. These
values are then randomly paired across all dimensions to form N distinct sample points.
Mathematically, for the j-th dimension and the i-th sample, the sample value xij can be
expressed as:

xij = F−1
j (

Pij − 1 + uij

N
), (4)
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where F−1
j is the inverse cumulative distribution function of the j-th variable, Pij is

the i-th permuted interval for dimension j, and uij is a random number uniformly
distributed in [0, 1).

In this research, five key factors affecting the aerodynamic coefficients of six-bundle
conductors were selected as input parameters: wind speed, wind attack angle, icing shape,
icing thickness, and sub-conductor number. To fully capture engineering scenarios, icing
shape (S) included three typical cases: bare conductor, crescent-shaped ice, and sector-
shaped ice, which are shown in Figure 5. It is noted that the icing angle of sector-shaped
ice is set as 120◦. The specific value ranges for each parameter are provided in Table 3.
Specifically, icing thickness (T) varies from 0 mm to 50 mm, incremented by 1 mm, reflecting
both light and severe icing events. Wind speed (V) ranges from 0 to 30 m/s, encompassing
calm conditions up to severe storms. Wind attack angle (a) is considered from 0◦ to 180◦

at 5◦ intervals, enabling the exploration of a wide variety of wind directions relative to
the conductor axis. Finally, sub-conductor number (m) covers all six bundle positions to
account for possible spatial variability within the bundle structure.

(a) Bare conductor (b) Crescent-shaped (c) Sector-shaped 

conductor 

ice ice 

conductor conductor 

Figure 5. Typical ice shapes.

Table 3. Key parameters of aerodynamic characteristics and their value ranges for bundle conductors.

Factor Label Unit Range

Icing shape S - bare, crescent-shaped, sector-shaped
Icing thickness T mm [0, 50, 1] *

Wind speed V m/s [0, 30, 1]
Wind attack angle a ◦ [0, 180, 5]

Sub-conductor number m - 1, 2, 3, 4, 5, 6
* [0, 50, 1] represent the range from 0 to 50 with the interval 1.

Based on the Latin hypercube sampling (LHS) strategy, a total of 3580 sample combi-
nations were generated to uniformly explore the five-dimensional design space defined by
icing shape, icing thickness, wind speed, wind attack angle, and sub-conductor number.
Each sample point represents a unique set of parameter values, and these combinations
were used as input cases for high-throughput CFD simulations with the validated model
described in Section 2.

The effectiveness of the LHS method in generating well-distributed samples is clearly
illustrated in Figure 6. As shown in Figure 6a, the projection of the sample distribution
onto the two-dimensional plane of icing thickness (T) and wind speed (V) reveals a highly
uniform coverage, with no clustering or significant gaps, ensuring that all regions of
the parameter space are adequately represented. Figure 6b extends this visualization to
three dimensions among icing thickness (T), wind speed (V), and icing shape (S), further
confirming that the sampling strategy achieves excellent space-filling properties across both
continuous and discrete variables. The stratified, layered pattern in the third dimension
reflects the inclusion of all three typical icing shapes, with samples in each layer uniformly
spread over the full range of T and V.
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(a) Two dimensions between T and V (b) Three dimensions among T, V, and S 

Figure 6. Illustration of distribution of the sample data.

This comprehensive and well-balanced dataset not only enhances the representative-
ness and diversity of training and testing samples, but also provides a robust foundation for
developing, evaluating, and generalizing the tree-based machine learning models proposed
in this study.

3.2. Tree-Based Machine Learning Methods

Tree-based machine learning algorithms offer significant advantages for regression
and classification tasks involving complex, nonlinear relationships and heterogeneous data.
Their ability to capture feature interactions, robustness to outliers, and interpretability make
them particularly suitable for modeling aerodynamic coefficients, which are influenced by
multiple coupled factors, such as wind speed, attack angle, and icing conditions. Given
our 3580-sample tabular dataset, ensemble tree methods offer strong sample efficiency
and stable generalization with modest tuning, whereas neural network alternatives typ-
ically require larger datasets and more elaborate regularization to achieve comparable
performance. In this study, several representative tree-based regression algorithms were
considered, including DT, RF, ERT, GBDT, and XGBoost.

Among these, XGBoost (extreme gradient boosting) stands out for its superior predic-
tive accuracy and computational efficiency. XGBoost is an advanced ensemble learning
algorithm built on the framework of gradient boosting decision trees (GBDTs). Its core
concept is to construct a series of weak regression trees in an iterative fashion, each learning
to correct the residuals of its predecessors. The final prediction is a weighted sum of all trees.
Compared to traditional GBDT, XGBoost introduces regularization, second-order gradient
optimization, and parallel computation, which together improve both the accuracy and
generalization capability of the model—especially when dealing with structured datasets
and high-dimensional regression problems.

In the context of aerodynamic coefficient prediction for bundle conductors, XGBoost’s
segmented tree-based structure effectively captures the strong nonlinearity and feature
interactions inherent in the data, while its built-in mechanisms provide resilience to noise
and missing values. The objective function of XGBoost can be formulated as:

Γ =
n

∑
i=1

L(yi, ŷi) +
K

∑
i=1

Ω( fk), (5)

where L(yi, ŷi)denotes the loss function (e.g., mean squared error), and Ω( fk) = γT + 0.5λ∥ω∥2

is the regularization term, with T as the number of leaves, ω as the leaf weights, and γ and
λ as regularization parameters.
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During tree construction, the optimal feature split is determined by maximizing the
gain function:

Gain =
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ
− γ, (6)

in which gi = ∂ŷ(t−1) L(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) L(yi, ŷ(t−1)) represent the first and sec-

ond derivatives (gradients and Hessians) of the loss function for the left and right child
nodes, respectively.

The performance of XGBoost is highly dependent on hyper-parameter tuning. Key
parameters include the number of trees (n_estimators), learning rate (learning_rate), maxi-
mum tree depth (max_depth), subsample ratio (subsample), and minimum child weight
(min_child_weight). These parameters jointly control model complexity, learning effi-
ciency, and the ability to generalize, and are typically optimized through grid search and
cross-validation.

3.3. Model Training and Testing

Before developing the surrogate prediction model, data preprocessing is necessary to
mitigate the effects of varying scales, dimensions, and outliers, thereby ensuring stability
and accuracy during training. In this study, Min–Max scaling was utilized to normalize
all five-dimensional input parameters and three-dimensional output variables, linearly
mapping each feature to the range [0, 1] as follows:

x′ =
x − min(x)

max(x)− min(x)
, (7)

where x is the original value, and x′ is the normalized value.
The complete process for establishing the aerodynamic prediction model for six-bundle

conductors is comprehensively illustrated in Figure 7. After data preprocessing, the dataset
was randomly divided into training and testing subsets at a ratio of 4:1, ensuring that the
model’s evaluation would be based on previously unseen data and thus provide a reliable
assessment of its generalization capability. The training set (80%) was utilized to construct
and tune the tree-based surrogate models, with a focus on the XGBoost algorithm due to
its superior performance in preliminary comparisons.

Data Preprocessing

Dataset

Hyper-parameters

Training dataset
(80%)

Testing dataset 
(20%)

Evaluation score

Surrogate model

GridSearch & 
optimization

10-Fold 
Cross-validation

Tree-based 
algorithms

generalization 
capability

Good!

Not Good!

 

Figure 7. Process illustration of the setup of tree-based surrogate models.



Infrastructures 2025, 10, 243 11 of 19

A grid search strategy, implemented via the GridSearchCV module from Scikit-learn,
was employed to systematically optimize key hyper-parameters. This process was com-
bined with 10-fold cross-validation, allowing the model to be trained and validated on
multiple splits of the training data. Through this approach, issues such as overfitting
and underfitting could be effectively identified and mitigated, resulting in robust model
performance across varying data partitions. The primary hyper-parameters subjected to
tuning included the learning rate, maximum tree depth, subsample ratio, minimum child
weight, and regularization terms, all of which play a critical role in balancing model com-
plexity and predictive accuracy. The detailed search ranges and the final selected optimal
values for these hyper-parameters are provided in Table 4. The convergence behavior
of the XGBoost-based surrogate model during training is illustrated in Figure 8. As the
epoch number increases, the cost function (loss) decreases rapidly in the initial stages and
gradually stabilizes, indicating effective learning and optimization of the model parameters.
This steady decline in loss demonstrates the model’s ability to fit the training data effi-
ciently without signs of overfitting, further validating the appropriateness of the selected
hyper-parameters and the overall robustness of the training procedure.

Table 4. Model hyper-parameter adjustment process based on the XGBoost algorithm.

Hyper-Parameters Range Best Hyper-Parameter

n_estimators 50~1000 300
learning_rate 0.01~0.1 0.05

max_depth 2~8 6
subsample 0.8~1.0 0.9

min_child_weight 0.8~1.0 0.88

0 200 400 600 800 1000
0.00

0.03

0.06

0.09

0.12

0.15

C
os

t

Epoch number

 XGBoost-based model

Figure 8. Training process of the XGBoost-based surrogate model.

Following optimization, the best-performing surrogate model was further evaluated
using the independent testing dataset (20%) to assess its predictive accuracy, stability, and
generalization capacity. The entire modeling workflow, including dataset partitioning,
hyper-parameter tuning, model training, cross-validation, and performance evaluation, is
clearly visualized in Figure 7, offering a transparent and reproducible process for surrogate
model development in aerodynamic prediction tasks.

It should be noted that the same modeling and hyper-parameter optimization pro-
cedure described above was also applied to all other tree-based algorithms evaluated in
this study, including DT, RF, ERT, and GBDT. For each algorithm, an independent grid
search combined with 10-fold cross-validation was performed using the training dataset to
identify the optimal hyper-parameter settings, ensuring a fair and rigorous comparison
among different models. Due to space limitations, the specific optimal parameters for
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these additional models are not listed in detail in this paper, but the overall workflow and
optimization principles are consistent with those outlined for the XGBoost-based model.

After selecting the optimal hyper-parameters, the model was retrained on the entire
training dataset, applying regularization constraints and feature weighting to further
enhance its predictive accuracy and robustness. Finally, the generalization capability of
the trained model was quantitatively assessed using the independent test dataset. Three
widely used regression evaluation metrics were employed: coefficient of determination
(R2), mean squared error (MSE), and mean absolute error (MAE), calculated as follows:

R2 = 1 − ∑ (yi − ŷ2
i )

2

∑n
i=1 (yi − y2

i )
2 , (8)

MSE =
1
n

n

∑
i=1

(yi − ŷ2
i )

2
, (9)

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (10)

where n is the number of test samples, yi and ŷi are the observed and predicted aero-
dynamic coefficients, respectively, and y is the mean of observed values. An R2 value
approaching 1 indicates high predictive accuracy, whereas lower values of MSE and MAE
reflect improved model precision. These metrics collectively provide a comprehensive basis
for evaluating model accuracy, stability, and generalization performance.

4. Discussion
To determine the optimal tree-based surrogate model for accurately predicting aero-

dynamic coefficients of six-bundle conductors, five representative tree-based algorithms—
decision tree (DT), random forest (RF), extremely randomized trees (ERTs), gradient boosted
decision tree (GBDT), and extreme gradient boosting (XGBoost)—were systematically eval-
uated. Each algorithm reflects a distinct modeling philosophy: DT represents the simplest
single-tree structure, RF utilizes ensemble learning through feature perturbation under
the Bagging framework, ERT incorporates complete randomness in feature and threshold
selection to enhance robustness, GBDT applies gradient boosting in a sequential manner to
reduce bias, and XGBoost extends GBDT with second-order optimization, regularization,
and efficient parallelization.

The comparative evaluation was based on three widely used regression metrics—
coefficient of determination (R2), mean squared error (MSE), and mean absolute error
(MAE)—on both training and testing datasets. The results, summarized in Figure 9,
highlight clear performance differences among the models. RF achieved the high-
est R2 (0.999) and the lowest MSE (9 × 10−6) on the training set, but this near-
perfect fit indicates overfitting, as reflected by its reduced generalization on the test set
(R2 = 0.835, MSE = 0.001976). ERT also exhibited very high training accuracy (R2 = 0.965)
due to its randomized splitting strategy but suffered a notable performance drop on the
test set (R2 = 0.836, MSE = 0.001925), confirming its tendency toward overfitting.

GBDT delivered balanced but less competitive results, with moderate training accuracy
(R2 = 0.934) and reduced test performance (R2 = 0.829), suggesting that its sequential
boosting process is more sensitive to noise and parameter tuning. DT, as expected for
a single-tree model, had the lowest accuracy on both datasets (R2 = 0.922 on training,
0.814 on testing), indicating its limited capacity to capture complex nonlinear relationships.
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Figure 9. Comparison of scores of different prediction models. (The red one presents the best).

Among all candidates, XGBoost achieved the best trade-off between fitting accuracy
and generalization, with R2 values of 0.981 (training) and 0.855 (testing), and the lowest
MAE (0.0156) on the test set. These results demonstrate that XGBoost’s advanced regular-
ization and optimization mechanisms effectively mitigate overfitting while maintaining
high predictive precision. The improved generalization capability of XGBoost makes it the
most suitable choice for aerodynamic coefficient prediction in scenarios involving diverse
and nonlinear interactions among environmental and structural parameters.

The overall comparison of the five tree-based models is summarized in Table 5. Al-
though RF and ERT achieve near-perfect training accuracy, their substantial drop in testing
performance reveals a pronounced overfitting tendency. DT and GBDT provide moderate
results but fail to match the predictive precision of advanced ensemble methods. XGBoost
consistently outperforms other models in test-set accuracy and error metrics, demonstrating
superior generalization and robustness for aerodynamic coefficient prediction tasks.

Table 5. Summary of performance comparison among tree-based models.

Model Training R2 Testing R2 Generalization Assessment

DT 0.922 0.814 Limited capacity, underfitting
RFT 0.999 0.835 Overfitting tendency
ERT 0.965 0.836 Overfitting tendency

GBDT 0.934 0.83 Sensitive to noise, unstable
XGBoost 0.981 0.855 Best trade-off, high accuracy

To evaluate the reliability of the XGBoost-based model, an uncertainty quantification
analysis was conducted, and the results are shown in Figure 10. As presented in Figure 10a,
the residual histogram indicates that prediction errors are highly concentrated around zero,
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with only a few deviations on the negative side, suggesting that the model exhibits low
bias and good overall calibration. Figure 10b further demonstrates the stability of model
performance across different validation folds: the R2 values remain consistently high (close
to 0.85), while both MSE and MAE show very small dispersion. These results confirm
that the proposed tree-based surrogate not only achieves accurate predictions but also
provides reliable variance estimates, thereby supporting its robustness in aerodynamic
coefficient modeling.

  
(a) Residual histogram for the test predictions (b) Cross-validated distributions 

Figure 10. Uncertainty quantification via prediction intervals and variance estimates.

To further validate the predictive capability of the XGBoost-based surrogate model,
Figures 11 and 12 present detailed comparisons between the predicted and true aerodynamic
coefficients under two representative operating conditions. Figure 10 corresponds to a crescent-
shaped ice case with a wind velocity of 10 m/s and an icing thickness of 20 mm, while Figure 11
corresponds to a sector-shaped ice case with a wind velocity of 30 m/s and the same icing
thickness. For both scenarios, the variation of lift coefficient (CL), drag coefficient (CD), and
moment coefficient (CM) with wind attack angle (a) is shown for sub-conductor 1.

 
(a) Lift coefficients (CL) (b) Lift coefficients (CD) 

 

(c) Moment coefficients (CM) 

Figure 11. Comparison of the true values and prediction values obtained by a surrogate model at the
sub-conductor 1 with crescent ice, 10 m/s wind velocity, and 20 mm icing thickness.
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(a) Lift coefficients (CL) (b) Lift coefficients (CD) 

 
(c) Moment coefficients (CM) 

Figure 12. Comparison of the true values and prediction values obtained by a surrogate model at the
sub-conductor 1 with sector ice, 30 m/s wind velocity, and 20 mm icing thickness.

Across the entire range of a from 0◦ to 180◦, the predicted curves (red dots) closely
follow the measured true values (black squares), accurately reproducing both the amplitude
and phase of the aerodynamic coefficient variations. Minor local deviations are observed
at certain angles, particularly near peak and valley regions, which may be attributed to
local flow separation complexities not fully captured in the training data. Nonetheless, the
overall agreement remains high, with the surrogate model successfully capturing the key
aerodynamic features under different icing shapes and wind speeds.

These results confirm that the XGBoost-based model is capable of delivering accurate
and stable predictions of aerodynamic coefficients under diverse and challenging condi-
tions, further supporting its applicability in practical engineering analyses of wind-induced
vibrations in iced bundled conductors.

Feature importance analysis is a critical step in understanding the internal decision-
making process of machine learning models, as it quantifies the relative contribution of
each input variable to the model’s predictive performance. This not only enhances the
interpretability of the surrogate model but also provides valuable guidance for prioritizing
key parameters in subsequent aerodynamic studies and engineering applications.

Within the XGBoost framework, feature importance evaluation revealed, as shown in
Figure 13a, that wind attack angle (a) is the most influential factor, contributing approx-
imately 49.38% to the prediction of aerodynamic coefficients. This is followed by icing
thickness (T, 20.19%), icing shape (S, 13.58%), sub-conductor number (m, 10.01%), and
wind speed (V, 6.83%). These results indicate that the aerodynamic response of six-bundle
conductors is dominated by the wind attack angle, while icing-related parameters also
exert a significant impact, and wind speed plays a comparatively minor role under the
considered scenarios.
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Figure 13. Analysis of the importance characteristics of the XGBoost-based surrogate model.

To provide a more robust and unbiased interpretation beyond the gain-based met-
ric, permutation importance analysis was also performed. As shown in Figure 13b, this
approach identifies sub-conductor number (m) and wind attack angle (a) as the two dom-
inant factors, with wind speed (V) ranking third, whereas icing thickness (T) and icing
shape (S) contribute relatively less. The difference arises because gain-based importance re-
flects model-internal splitting criteria, which tend to favor continuous variables with more
potential thresholds (such as wind attack angle), whereas permutation importance directly
measures the impact of perturbing each feature on prediction accuracy. The consistency be-
tween both methods in highlighting wind attack angle and sub-conductor effects confirms
their dominant physical role, while the divergence in the relative ranking of other variables
underscores the necessity of combining multiple importance measures. This joint analysis
not only reduces potential bias associated with a single metric but also provides a more
comprehensive understanding of the aerodynamic drivers of iced bundled conductors.

By integrating this feature importance analysis with the results from model perfor-
mance evaluations, the XGBoost-based surrogate model is confirmed to be the most effective
choice among the investigated tree-based algorithms. It demonstrates high predictive ac-
curacy, strong generalization capability, and clear interpretability, making it particularly
suitable for aerodynamic coefficient prediction of bundled conductors under complex wind
and icing conditions.

It should be noted that the present surrogate model was trained and validated entirely
on CFD-generated data, which have been benchmarked against published wind tunnel
measurements to ensure credibility. Nevertheless, direct experimental validation of the
surrogate itself against independent wind tunnel or field measurements is still lacking. This
limitation will be addressed in future work by designing dedicated wind tunnel campaigns
and exploring field monitoring data, which will enable a more rigorous verification of
surrogate predictions and provide a deeper quantification of predictive uncertainty under
real icing events. In addition, the surrogate achieves inference at the second level per
sample on a standard workstation, representing a speedup of several orders of magnitude
compared with full CFD simulations (hour level). By contrast, the training process remains
computationally intensive and is carried out offline using a precomputed CFD database.
Future work will, therefore, focus on integrating physical experiments with data-driven
approaches to develop real-time prediction capability.

5. Potential Applications of the Developed Surrogate Model
The tree-based surrogate model established in this study provides a powerful and

efficient tool for predicting aerodynamic coefficients of six-bundle conductors under diverse
wind and icing conditions. Compared with traditional wind tunnel testing and high-fidelity
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CFD simulations, the surrogate model offers a substantial reduction in computational cost
while maintaining high prediction accuracy, making it suitable for a variety of practical
and research applications.

The model enables rapid aerodynamic coefficient prediction for typical transmission
line configurations, allowing engineers to efficiently evaluate conductor aerodynamics
under numerous environmental scenarios. This capability is particularly valuable in the
early stages of line design, where multiple configurations and loading conditions must
be assessed in a short time. In addition, the surrogate model serves as a key compo-
nent for wind-induced vibration analysis, including galloping, sub-span oscillations, and
wake-induced vibrations. By providing fast and reliable aerodynamic inputs, it facilitates
dynamic simulations and stability assessments for conductors under complex environmen-
tal loads.

Beyond design-stage applications, the model can be integrated into fast monitoring
and risk assessment systems. Coupled with online meteorological and structural moni-
toring data, the surrogate model can provide near-instantaneous aerodynamic estimates,
enabling timely identification of adverse conditions and supporting preventive control
measures. Moreover, the modeling framework developed in this study is scalable and
adaptable. With appropriate retraining using additional datasets, the surrogate model can
be extended to other conductor types, bundle configurations, or even different transmission
line components, providing a generalizable methodology for aerodynamic performance
evaluation across the power transmission sector.

Overall, the developed surrogate model bridges the gap between high-accuracy aero-
dynamic analysis and engineering efficiency, offering significant potential for both academic
research and practical engineering applications. Nevertheless, due to the scope of this work,
certain aspects—such as the influence of D-shaped icing and non-uniform icing—have not
yet been considered and will be the subject of future in-depth investigations.

6. Conclusions
This study developed a large-scale aerodynamic coefficient dataset for six-bundle

conductors based on high-throughput numerical simulations and established a multi-input,
multi-output aerodynamic prediction model using several tree-based algorithms. It is
concluded that:

(1) Among the five evaluated tree-based surrogate models (DT, RF, ERT, GBDT, and
XGBoost), the XGBoost-based model consistently achieved the highest predictive accuracy
and strongest generalization capability. This was evidenced by its superior R2 values and
lower MSE and MAE on the testing dataset, indicating a balanced trade-off between fitting
precision and robustness.

(2) Global sensitivity analysis revealed that wind attack angle (a) was the most in-
fluential factor (55.38%), followed by icing thickness (T, 20.19%), icing shape (S, 13.58%),
sub-conductor number (m, 10.01%), and wind speed (V, 6.83%). These findings confirmed
that the aerodynamic responses of six-bundle conductors are governed by strong multi-
factor coupling effects, with a and T exerting dominant influences.

(3) Compared to conventional CFD simulation workflows, the proposed XGBoost-
based surrogate model achieved high-accuracy aerodynamic coefficient predictions within
seconds. This substantial improvement in computational efficiency enabled rapid evalua-
tion of aerodynamic behavior and supports engineering analyses of wind-induced vibration
(galloping, sub-span oscillations, etc.) in UHV transmission lines.

It should be noted that, due to the scope of the present study, certain factors, such as 3D
models, D-shaped icing, non-uniform icing distributions, and typhoons with complex wind



Infrastructures 2025, 10, 243 18 of 19

loads, were not considered. These aspects will be the focus of future research to further
enhance the applicability and robustness of the proposed surrogate modeling framework.
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