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Abstract

Aging railroad bridges present complex challenges due to advancing deterioration and
outdated design assumptions. This study develops a comprehensive analytical approach
for assessing an aging steel truss railroad bridge through finite element (FE) modeling,
sensitivity analysis, and model updating, supported by field testing. An initial FE model of
the bridge was created based on original drawings and field observations. Field testing
using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and
deflections) under regular train traffic. Key structural parameters (material properties,
section properties, support conditions) were identified and varied in a sensitivity analysis
to determine their influence on model outputs. A hybrid sensitivity analysis combining
log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter
space and calibrate the model. The GA optimization tuned the FE model parameters to
minimize discrepancies between simulated results and field measurements, focusing on
vertical deflections and natural frequencies. The updated FE model showed significantly
improved agreement with observed behavior; for example, vertical deflections under a
representative train were matched within a few percent, and natural frequencies were
accurately reproduced. This validated model provides a more reliable tool for predicting
structural performance and fatigue life under various loading scenarios. The results
demonstrate that integrating field data, sensitivity analysis, and model updating can greatly
enhance the accuracy of structural assessments for aging railroad bridges, supporting more
informed maintenance and management decisions.

Keywords: finite element modeling (FEM); sensitivity analysis; genetic algorithm; model
updating; field testing; laser doppler vibrometer (LDV)

1. Introduction
Aging infrastructure in the United States poses a significant concern as more railroad

bridges exceed their operational lifespans [1,2]. When most railroad bridges were designed
and built, load-carrying requirements, design codes, and material specifications differed
significantly from today’s standards [3,4]. These bridges have operated for decades under
intensifying and more frequent traffic from vehicles, along with unavoidable environ-
mental exposure [5,6]. Consequently, these structures often face issues such as corrosion,
fatigue cracking, and other forms of deterioration that compromise safety and serviceability,
frequently exhibiting unusual behavior under standard service loads [7].
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Addressing the complexity of aging bridges requires a multi-pronged approach in-
volving detailed inspections, structural health monitoring (SHM), and rigorous analytical
modeling [2,8]. Inspections remain the primary method for detecting visible signs of
damage; however, they are often labor-intensive, subjective, and limited to accessible ar-
eas [9–11]. Furthermore, superficial examinations may not detect internal cracks, hidden
corrosion, or incipient failures at riveted or welded connections [2,4]. To mitigate these lim-
itations, SHM methods have gained prominence [12,13]. By employing sensors, including
accelerometers and laser Doppler vibrometers, engineers can observe changes in dynamic
behavior under ambient or controlled loading conditions [5,14]. Such measurements enable
continuous or frequent evaluation of a structure’s condition, potentially identifying damage
early, before it becomes visually apparent [15].

Despite its effectiveness, monitoring alone cannot fully elucidate the underlying me-
chanics of complex structural systems [16,17]. Localized damage may go undetected by
a limited sensor network, or measured responses might be difficult to interpret without
a baseline model [18,19]. Finite element (FE) models assume a crucial complementary
role in analyzing aging bridges [13,20]. By discretizing the geometry into elements that
approximate the actual behavior of steel truss members, deck systems, and connections,
FE modeling provides a framework for simulating the structural response under various
load scenarios [18,21]. Engineers can adjust boundary conditions, material properties, and
connection details to capture the unique configuration of an older bridge, which may differ
significantly from modern standardized designs [4,20]. With this computational representa-
tion in hand, it becomes possible to explore different what-if scenarios, such as increased
live loads or localized damage, without conducting invasive or risky field tests [21,22].

However, the predictive accuracy of an FE model is not guaranteed at the outset [18,20].
Older bridges pose considerable uncertainty regarding existing material properties, residual
capacity, and condition [4]. For instance, variations in steel composition, rivet strength,
and section loss due to corrosion may all deviate from standardized assumptions [3,4,23].
Model updating, a process that systematically refines the FE model parameters to minimize
discrepancies between measured and simulated responses, has proven to be an effective
method for resolving these uncertainties [19,20]. By calibrating the model against field
data, such as natural frequencies, mode shapes, and displacement responses, engineers can
arrive at a high-fidelity representation of the aging bridge. This updated model is better
suited for predicting the structure’s behavior under future load demands or environmental
stressors [16,17]. Recent studies have extended model updating frameworks to a variety of
aging structures, including concrete dams, bridge piers, and machine foundations, where
degradation and dynamic behavior are similarly complex [24–27]. These applications
show how parameter tuning, sensitivity-based updating, and field testing improve seismic
safety evaluations and long-term resilience. Recent advances have integrated digital twin
models with Bayesian updating for fatigue assessment and structural model calibration.
Lai et al. [17] used SHM-informed Bayesian forecasting for life-cycle maintenance of fatigue-
sensitive details, while Nhamage et al. [13] combined a fatigue analysis system with a
BIM-based digital twin for real-time visualization and scenario simulation. Compared
to these data-intensive approaches, the method in this study offers a more practical and
computationally efficient alternative for bridges lacking continuous monitoring systems.

Within this broader context, sensitivity analysis is a powerful technique for identifying
which parameters, such as Young’s modulus, cross-sectional area, or joint stiffness, exert
the most significant influence on model outputs [18]. Because steel truss bridges often
have complex load paths and connections, small changes in certain parameters can dis-
proportionately affect global stiffness or dynamic characteristics [20,21]. By systematically
varying these parameters within plausible ranges, one can highlight where knowledge
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gaps or uncertainties significantly impact the overall analysis [18]. In tandem with model
updating, sensitivity analysis enables a more targeted data collection strategy: engineers
can strategically place sensors to capture the most informative signals, and subsequent
calibration can focus on the most consequential variables [17].

Integrating FE modeling, sensitivity analysis, and model updating lays the ground-
work for proactive bridge management [6,16]. Rather than reacting to problems once they
manifest visibly or result in service disruptions, agencies can continuously evaluate bridge
conditions and adapt maintenance strategies as new information arises [5,6]. This approach
fosters a dynamic process of structural assessment, where monitoring data feed into the
model, the model guides inspection and monitoring strategies, and the calibration of the
model refines the predictions of remaining service life or capacity [17,28]. Additionally, this
workflow facilitates more accurate load ratings, ensuring that restrictions or rehabilitations
are imposed only when genuinely necessary [6].

This paper outlines how FE modeling, sensitivity analysis, and model updating meth-
ods can be applied to an aging steel truss railroad bridge in the United States. The structure
in question is both historically significant and essential for modern transportation needs,
reflecting the broader national challenge of preserving heritage infrastructure under increas-
ingly stringent performance demands. By conducting field tests to measure acceleration
and displacement and systematically calibrating an FE model to align with these real-world
measurements, this study demonstrates the efficacy of a comprehensive model updating
approach in bridging the assessment. Sensitivity analysis identifies which parameters
crucially affect the model’s fidelity, while iterative model updating refines predictions of
the structure’s dynamic behavior and fatigue life [20]. Collectively, these tools help mitigate
risks, optimize maintenance resources, and extend the operational lifespan of a critical
railroad asset [6,16].

2. Bridge Description
The Cos Cob Bridge (Figure 1) is a long-span, open-deck truss railroad bridge located

on the Mianus River in Greenwich, Connecticut. It is one of the old and historic bridges in
Amtrak’s Northeast Corridor (NEC). The bridge was built in 1904 by the American Bridge
Company and has been in operation for more than a century. The bridge is commonly
used by passenger trains like Metro-North M8 (MTNR M8), Amtrak Regional, and Acela
Express. The bridge has eleven simply supported spans resting on eleven stone piers and
two abutments at the ends. Three of the sections are deck girder, seven are deck trusses,
and one is a rolling lift bascule. The bridge has four tracks (Track 1, Track 2, Track 3, and
Track 4), and each track sits on a separate parallel bridge. The track system on the bridge
consists of steel rails mounted on timber sleepers (cross-ties), which are supported on the
bridge deck. The rails are secured to the sleepers using conventional rail fastening systems
to maintain proper alignment and load transfer. This study focuses on Track 4 of span 3
(Figure 2) because of its accessibility for field testing equipment, especially during periods
of lowered water levels affected by tides.

Figure 1. Cos Cob Bridge Elevation View [29].
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(a) (b) 

Figure 2. Cos Cob Railroad Bridge of span 3: (a) Picture, (b) elevation view drawing [29].

Track 4 of span 3 has a span length of 37.2 m (122.1 ft) between pier centerlines. The
four parallel track structures collectively span a total width of approximately 27.43 m (90 ft)
across the river. All primary members of the bridge were fabricated from carbon steel
meeting the ASTM A7 specification (common for early 20th-century steel bridges). The
truss members have built-up cross-sections composed of steel plates forming I-shaped
and C-shaped sections, connected by rivets. The truss members are connected with gusset
plates, and lateral bracing systems are present at both the top and bottom levels of the truss.
These lateral braces provide stability against transverse and vertical loads, respectively.

3. Methodology
This section presents the methodology adopted to evaluate the structural behavior of

the bridge structure through a combination of field measurements and numerical modeling.
The methodology includes field tests and data processing, FE modeling using ANSYS
Mechanical, version 2025 R1, and sensitivity analysis for model updating using MATLAB
R2022b and ANSYS Mechanical, Version 2025 R1. These components collectively support
the comparison between measured responses and simulated results to assess and refine the
accuracy of the analytical model.

3.1. Field Tests and Data Processing

A single-point laser Doppler vibrometer (LDV) was used to perform field testing
on the bridge. An LDV is a non-contact optical instrument that emits a laser beam to
measure surface vibration by detecting the Doppler shift in the reflected beam. Its output
is typically a continuous analog voltage signal proportional to the velocity of the target’s
motion along the laser line of sight [30]. In this study, the LDV was deployed to capture
vertical vibration responses of the span during train passages. The LDV was mounted on a
stable tripod placed at a safe distance from the bridge piers and bottom chords and aligned
perpendicularly to the target surface to ensure a clear line of sight and minimize noise.
Since the LDV operates without physical contact, it is inherently isolated from ground-
transmitted vibrations, ensuring that only the structural response of the bridge is captured.
Measurement locations were selected based on accessibility to capture representative
dynamic responses. The LDV output was collected using a high-speed data acquisition
system, with sampling conducted at 512 Hz to adequately capture both forced and free
vibration signals during and after train passages.

Data were recorded in the time domain using a Polytec PSV® data acquisition sys-
tem and then processed in MATLAB® [31], a widely used scientific computing platform.
The LDV output, being a velocity-proportional voltage, required preprocessing to derive
meaningful displacement and acceleration time histories. This involved applying a scaling
factor (from the instrument calibration) to convert the voltage to physical velocity units and
then integrating the velocity signal to obtain displacement. The data were also high-pass
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filtered to remove any DC bias (offset) in the signal, which is a common artifact in LDV
measurements that can shift the mean away from zero [32]. The natural frequencies of the
bridge were extracted from the free vibration portion of the signal recorded after the train
had passed. The free vibration segment reflects the structure’s true dynamic characteristics
without external excitation. After this conditioning, the resulting time histories of bridge
deflection and acceleration were suitable for analysis in both time and frequency domains.

Field tests were conducted during normal service with trains of three types: Metro-
North M8 commuter train, Amtrak’s Northeast Regional, and Amtrak’s Acela Express.
The single-point LDV was mounted on a tripod beneath the span, aiming upward at the
underside of the Track 4 structure (Figure 3), to measure vertical velocity during train
crossings. The LDV was repositioned between tests to collect data at multiple points along
the span. Specifically, bridge responses (velocity) were recorded at three different locations
on span 3 (Track 4), designated as Vib 1, Vib 2, and Vib 3 (see Figure 4), where displacement
results were desired. Multiple train passages were recorded at each sensor position to
ensure reliable data under consistent operating conditions. All tests were performed with
trains traveling from New York toward New Haven (west-to-east direction).

 

Figure 3. Laser Doppler Vibrometer (LDV) setup to record vertical displacement of bridge during
train passage.

Figure 4. Cos Cob Bridge plan view (Track 4): Vib 1, Vib 2, and Vib 3 represent nodes where the
responses were collected using LDV.

3.2. Finite Element Model

A three-dimensional finite element (FE) model of span 3, Track 4 of the Cos Cob
Bridge was developed using the commercial FE analysis software ANSYS®. The model



Infrastructures 2025, 10, 195 6 of 21

geometry and properties were based on archival documents, including the original as-
built drawings [33]. Figure 5 illustrates the FE model of the span: Figure 5a shows the
idealized 3D wireframe model of the truss, and Figure 5b shows a rendered view of the
model. The bridge was modeled primarily with beam and truss elements: the main truss
members (bottom chords, top chords, and the connected verticals and diagonals) were
represented with beam elements (capable of bending and shear), while certain bracing
members carrying only axial loads were represented with truss (tension/compression-only)
elements. The timber slippers (railroad cross-ties) were modeled with equivalent beam
elements assigned the properties of oak wood, whereas all steel members were assigned
appropriate structural steel properties (ASTM A7 steel) in the model. In the model, the
sleepers were connected to the top chord of the bridge using node sharing to simulate
their structural restraint and interaction with the bridge under train loads. The rails were
modeled as beam elements and connected directly to the sleepers using standard node
sharing in ANSYS, representing a simplified form of the rail fastening system that provides
required constraints. Node sharing in ANSYS refers to assigning the same node to multiple
connected elements, thereby enforcing continuity in displacement and rotation at the
connection point. The rails were assumed to be continuously welded across the span, with
no rail expansion joints modeled. To simulate this continuity, rail elements were assigned
uninterrupted connectivity throughout the length of the span, and fixed translational
boundary conditions were applied at the rail ends to represent restraint from adjacent
spans. The connections between the diagonals and the top/bottom chords were modeled
as fully connected joints using shared nodes, which assumes idealized connectivity via
gusset plates typically used in riveted truss bridges. This approach provides adequate
transfer of axial and moment forces across the truss system while maintaining the integrity
of load path assumptions in global analysis.

(a) (b) 

Figure 5. Cos Cob Bridge FE model: (a) 3D wire model; (b) rendered view.

Boundary conditions were defined to replicate the support conditions of span 3.
One end of the span (the west side) was modeled with a longitudinal spring support that
allows movement in the longitudinal direction (x-axis) while restraining lateral (y-axis)
and vertical (z-axis) movements. This spring element represents the bearing or expansion
joint behavior, providing resistance but not full fixation in the longitudinal direction.
The spring stiffness was selected based on engineering judgment and refined through
sensitivity analysis, following a similar approach adopted by Svendsen et al. [18], where
spring parameters were used to account for uncertainties in boundary flexibility. The
opposite end (east side) of the span was modeled to represent a pinned support that
prevents translation in any of the three directions (x, y, and z axes) while allowing rotation.
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These support conditions capture the realistic behavior of the span, where one end can
expand/contract with temperature and load (through a sliding bearing) while the other
end is more constrained.

This study uses a series of stepwise activated pulse loads to represent the moving
axles of vehicles. Each train’s wheel load is represented as a triangular pulse load (Figure 6).
This triangular shape assumes a linear variation of contact force over time at each node,
which approximates the rising and falling nature of the dynamic wheel–rail interaction as
the wheel approaches, crosses, and moves past a specific point on the bridge. It serves as a
simplified yet effective representation of the transient loading behavior caused by moving
axles. The triangular profile also helps mitigate numerical instabilities during dynamic
simulations, making it suitable for time–history analysis in finite element modeling [34].
The loads were moved forward from the west end of the bridge to the east end of the bridge
at a total of 100 discrete steps. The loads were moved by 37.2 cm (14.7 in). The load time (t)
is defined by dividing the distance between two consecutive nodes in the FE model of the
rail (d) by the desired vehicle traveling speed (V). The integration time was defined in the
software using the sub-steps of the load. Figure 6 illustrates the triangular time–history of
a moving wheel load, where the load increases from zero to a peak axle loading and then
decreases to zero as the wheel crosses a point/node on the bridge.

Figure 6. Triangular step load model of force applied in the finite element model.

For the preliminary analysis, the Metro-North M8 (MTNR M8) service loading
(Figure 7a) is applied in the FE model. Each train’s axle load time was modeled as a
triangular load (Figure 7b). The MTNR M8 is an electric multi-axle railroad car built
by Kawasaki Rail Car, Inc., for exclusive use on the Metro-North Railroad New Haven
Line and the CTrail Shoreline East. The train can reach a maximum speed of 161 km/h
(100 mph) and an operational speed of 129 km/h (80 mph). The typical composition is
four to five married (double) cars with the same axle load.
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(a) 

(b) 

Figure 7. Metro-North M8 Train: (a) Axle loading, (b) Finite Element (FE) Model axle loading in
triangle step load.

3.3. Sensitivity Analysis for Model Updating

Sensitivity analysis is a fundamental step in finite element model updating, enabling
the identification of parameters that most significantly influence structural responses such
as deflection and natural frequencies. By systematically perturbing uncertain parameters
within realistic bounds and observing their effects on key outputs, the analysis prioritizes
variables that are both influential and identifiable. This focused approach improves compu-
tational efficiency and ensures a well-posed calibration process, particularly important in
complex or aging structures where numerous uncertainties exist.

In the case of the Cos Cob Bridge, sensitivity analysis was carried out on a finite
element model of span 3, Track 4 to determine which parameters most significantly affected
the span’s mid-span deflection and its first few natural frequencies. Based on engineering
judgment, structural behavior of truss systems, and insights from prior literature [18,23],
the analysis was confined to four critical parameters:

• Young’s Modulus (E) of the steel truss members—initially taken as 2.0 × 1011 Pa for
steel but allowed to vary within ±5% (approximately 1.9 × 1011 to 2.1 × 1011 Pa) to
account for possible material variability and deterioration effects. This range covers
potential reductions in stiffness due to micro-cracking, early steel material variability,
or other factors.

• Density (ρ) of the steel—initially 7850 kg/m3, varied between 7000 and 8100 kg/m3.
The range was chosen to reflect potential deviations in material density due to construc-
tion variations, aging, and corrosion, as well as to ensure an accurate representation of
the structure’s mass and inertial properties.

• Cross-Sectional Area of members—a uniform reduction factor was applied to all steel
member cross-sectional areas to represent possible section loss (e.g., from corrosion or
rivet slip). Based on the visual observation during the site visit and the prior inspection
report [35], a maximum cross-sectional area reduction limit of 10% was selected. The
reduction factor represents the worst-case cross-sectional deterioration identified and
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was used as an upper bound for the sensitivity analysis. A negative percentage change
indicates a reduction of the nominal cross-sectional area. For example, a −6% change
means the member cross-sectional areas are 94% of their original values.

• Support Spring Stiffness (k)—The longitudinal spring at the west-end support sim-
ulates translational flexibility, unlike a pinned support that restrains all movement
but allows rotation. The stiffness was varied between 50,000 and 250,000 N/mm. The
range was determined by comparing vertical displacements from the FEM under two
boundary conditions: pinned-roller and fully pinned. The lower bound produced
displacement similar to the pinned-roller case, while the upper bound matched the
fully pinned condition. This parameter was treated as uncertain and sampled using a
log-normal distribution. A similar approach to modeling support flexibility through
spring stiffness was adopted by Svendsen et al. [18] in their sensitivity-based bridge
model updating.

3.4. Mathematical Formulation

Let θ = [ θ1, θ1, . . . . . . .θn] represent the vector of model parameters to be updated
(e.g., stiffness, mass, or boundary conditions). The finite element (FE) model predicts system
responses rmodel(θ), and field monitoring provides corresponding measured responses rexp.
The FE model updating task can be performed by minimizing a discrepancy function:

Φ(θ) =∥ rexp − rmodel(θ) ∥ (1)

where ∥·∥ is typically a Euclidean or weighted norm [23,36]. Gradient-based methods
approximate the partial derivatives of each model response ri with respect to each parameter
θj, entries of the sensitivity matrix S:

Sij =
∂ri

∂θj
(2)

These derivatives form the sensitivity matrix, whose structure reveals how variations
in parameters influence different outputs. Singular Value Decomposition (SVD) of this
matrix can be used to identify rank deficiency or linear dependencies, helping to screen out
poorly identifiable parameters [23].

3.5. Iterative Updating Procedure Using Real-Coded Genetic Algorithm (RCGA)

A hybrid approach combining direct sensitivity analysis with a genetic algorithm (GA)
was used to update the FE model. Traditional gradient-based algorithms would update the
parameter vector (θ) iteratively; for example, using a steepest-descent type update:

θ(k+1) = θ(k) − α(k)(STW
)
∇Φ

(
θ(k)

)
(3)

where α(k) is a step size, W is a weighting matrix, and ∇Φ is the gradient of the discrepancy
function [36]. Alternatively, heuristic approaches (e.g., genetic algorithms) are employed
for highly nonlinear parameter spaces [37].

In the RCGA implementation, the optimization began with an initial population of
real-valued candidate solutions, each representing a possible set of values for the selected
model parameters (e.g., Young’s modulus (E), density (ρ), cross-sectional area (A), and
support stiffness (k)). To maintain physical realism while capturing parameter uncertainty,
the initial population was generated by random sampling from log-normal distributions
centered around nominal values. The log-normal formulation ensured positivity and
allowed asymmetric variation, reflecting practical scenarios, such as material degradation
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or corrosion, that often reduce properties rather than increase them. The evolutionary
process proceeded through the following steps:

1. Initial Population and Fitness Evaluation: Each candidate’s parameter set was fed
into the FE model, and the resulting global responses (vertical peak displacement at
different locations) were compared with field measurements. A discrepancy function
Φ(θ) quantifying the mismatch between model and measured responses was used to
evaluate fitness (with lower Φ(θ) indicating a better fit).

2. Selection of Best Parameters: Using roulette wheel selection, individuals were proba-
bilistically chosen for reproduction based on their fitness. This ensured that better-
performing candidates had a higher chance of contributing to the next generation,
while maintaining diversity in the gene pool.

3. Crossover and Mutation: Selected parent parameter sets underwent crossover
(e.g., uniform crossover) to produce offspring (children) by combining genetic material
from two parents. Additionally, mutation operations—small random perturbations
based on the Gaussian distribution—were applied to explore the parameter space
locally and avoid premature convergence.

4. Generation of Elite Offspring: The offspring (children) were then combined with
the parent population and sorted based on their fitness function to preserve the
original population sample size while generating quality offspring. This increases the
convergence toward the optimized parameters.

This process was repeated for multiple generations until convergence criteria (ε) were
met, either a negligible improvement in fitness between successive generations or the
completion of a predefined number of iterations. The resulting optimized parameter set
minimizes the discrepancy function Φ(θ) and enables the updated FE model to more
accurately reproduce the measured global responses.

The GA then evolved the population over successive generations. We used the roulette
wheel selection method to probabilistically favor parameter sets with lower discrepancy Φ
(better fit) while maintaining diversity in the gene pool. Crossover and mutation operations
were applied to create new candidate (children) solutions by combining and randomly
altering existing ones. At each generation, the FE model was run for each candidate’s
parameter set to compute the fitness (defined inversely by Φ, so lower Φ yields higher
fitness). Through this iterative evolutionary process, the GA efficiently explored the
parameter space, balancing global search and local refinement. The process was terminated
when the improvement between generations became marginal or a preset number of
generations was reached. A summary of the key RCGA parameters used in this study is
provided in Table 1. The schematic flowchart of this procedure is provided in Figure 8.

Table 1. Real-Coded Genetic Algorithm (RCGA) Parameters Used in Sensitivity-Based Model Updating.

Parameter Value Justification

Population size 12 sets per iteration
Balances exploration of parameter
space and computational cost for
FE analysis

Number of Generations
User-defined (until
convergence or fitness
plateaus)

Allows sufficient refinement of
solutions while keeping runtime
manageable

Crossover Rate Arithmetic average
(50–50 blend)

Simple, stable method to combine
genetic material from two parents



Infrastructures 2025, 10, 195 11 of 21

Table 1. Cont.

Parameter Value Justification

Mutation Rate 5% (per parameter)
Maintains diversity and avoids
local optima without disrupting
convergence

Initial Distribution Log-normal
distribution

Reflects physical constraints
(positivity) and realistic
degradation behavior

Selection Method Roulette Wheel
Ensures probabilistic bias toward
better solutions while preserving
diversity

Figure 8. Real-Coded Genetic Algorithm (RCGA) Optimization Process for Updating the Finite
Element Model of the Bridge Structure.
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3.6. Convergence and Validation

Model updating concludes when a convergence criterion is met, such as [9,18]:

• Error Tolerance: The norm of the difference between model predictions and experimen-
tal results, ∥rexp − rmodel∥, fell below a predefined threshold (indicating an acceptably
small discrepancy). In this study, the threshold was set to 1% of the experimental
value, which reflects an acceptable level of discrepancy based on typical measurement
uncertainty and modeling assumptions used in similar structural calibration studies.
This threshold was selected to ensure that the updated finite element model closely
replicates the measured structural response without over-fitting.

• Parameter Stability: The changes in parameter values between successive GA genera-
tions became very small, suggesting the algorithm had converged on an optimal or
near-optimal solution.

• Physical Reasonableness: The optimized parameters remained within realistic engi-
neering limits. In practice, this meant that the GA results were checked to ensure,
for example, that the adjusted Young’s modulus was still within a few percent of
the expected value for steel, or that the implied section loss or support stiffness was
reasonable and could be explained by actual bridge conditions.

Once a converged set of parameters was obtained, the final step was to validate the
updated model against independent data or metrics not explicitly used in the calibration.
In this study, the validation was performed by comparing the updated model’s predic-
tions to field measurements for different train cases (trains that were not the basis of the
optimization) and by checking additional response characteristics like frequencies. Close
agreement in these comparisons increases confidence that the model updating improved
the model in a general sense rather than over-fitting to a specific scenario.

4. Results
This section presents the vertical displacement results and the natural frequencies

of the Cos Cob bridge from FE model analysis using ANSYS and the field testing results
obtained using the LDV measurements under the service load of an eight-car MTNR M8
train. The results from these two methodologies have been compared to assess the accuracy
of the FE modeling approach.

4.1. Field Testing

The field test data from the LDV (and supplementary accelerometers) were processed
to obtain time-domain deflection histories and frequency-domain spectra for span 3 of
the Cos Cob Bridge. The Fast Fourier Transform (FFT) was applied to the vibration data
to identify the bridge’s natural frequencies from the free vibration response after train
passages. Table 2 compares the peak vertical deflections measured at the mid-span (and
other sensor locations) during the train tests with those obtained from the initial FE model
simulation under similar loading conditions (same train type and speed). These initial
comparisons help establish the baseline accuracy of the FE model prior to calibration.

Table 2. Comparison of FEM Model Transient Vertical Peak Deflection and Field Test Results at
Different Locations of the Cos Cob Bridge During MTNR M8 Train Passage.

Location FE Transient Vertical
Deflection Results +

Field Test Vertical
Displacement Results +

% Difference of FE Results with
Respect to the Field Test Results

Vib 1 −3.69 mm −3.38 mm 9.17%
Vib 2 −3.43 mm −3.04 mm 12.82%
Vib 3 −2.81 mm −2.61 mm 7.66%

Note: + The negative values in columns 2 and 3 represent the vertical downward deflections of the bridge.
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As shown in Table 2, the initial FE model predicted slightly larger deflections than
those observed in the field. The errors ranged from about 7.7% to 12.8%, with the largest dis-
crepancy at the Vib 2 location. These differences, while not enormous, are significant in the
context of model validation, and they motivated the subsequent model updating process.

The field vibration data also revealed the bridge’s natural frequencies during free
vibration (i.e., after the train had moved off the span). Table 3 presents the first three natural
frequencies identified from the field measurements (for lateral and vertical modes), after
the MTNR M8 train passage. These frequencies were identified using data collected from
three different sensor locations: Vib 1, Vib 2, and Vib 3. The frequency values extracted
across all sensor locations are very close to each other, indicating that sensor placement
had a minimal impact on the results. Figure 9 illustrates the typical frequency spectrum
obtained from the LDV data, where peaks corresponding to the bridge’s modal frequencies
can be observed.

Table 3. Natural Frequencies of the Cos Cob Bridge During Free Vibration after MTNR M8 Train Passage.

Mode
Natural Frequency (Hz)

Vib 1 Vib 2 Vib 3

1st Lateral 3.22 3.28 3.31
2nd Lateral 8.51 8.56 8.59
1st Vertical 7.56 7.61 7.65

Figure 9. Natural frequency of the Cos Cob Bridge during free vibration after Metro-North M8
Train passage.

The initial FE model’s natural frequency predictions were close but not identical to the
measured values. For example, the initial model gave a first lateral mode around 3.79 Hz
and a first vertical mode around 8.25 Hz, indicating the model was somewhat stiffer than
the actual structure (predicting higher frequencies). The second lateral mode from the
model was around 8.69 Hz, similarly higher than measured. These discrepancies in both
deflection and frequency reinforced the need for model calibration, targeting a reduction of
stiffness (or an increase in mass) in the FE model to better match the observed behavior.

4.2. Model Calibration/Updating

Using the procedure outlined in the Sensitivity Analysis and Model Updating section,
a comprehensive sensitivity analysis and optimization were conducted to calibrate the
FE model. The analysis confirmed that the parameters identified (steel E, steel density,
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cross-sectional area reduction, and support spring stiffness) had the most significant impact
on the outputs of interest (vertical deflections and frequencies). By integrating an initial
broad exploration of the parameter space (via log-normal sampling of the parameters)
with the focused optimization of the genetic algorithm, this study efficiently calibrated the
model to reflect the real-world behavior of the bridge. The GA’s evolution of the parameter
set is illustrated in Figure 10, which plots the fitness function (inversely related to Φ) versus
the number of iterations; the curve shows a clear convergence toward an optimal solution.
Individual sensitivity curves were not developed in this study, as all parameters were
varied simultaneously using a genetic-algorithm-based optimization approach, making
it difficult to isolate the effect of a single variable. These curves typically illustrate how a
response changes when one parameter varies while others are held constant. Future work
may consider one-variable-at-a-time studies to generate such curves and better quantify
parameter influence.

Figure 10. Fitness function vs. number of iterations.

Through the sensitivity analysis and GA optimization, the model calibration homed
in on a specific set of parameter values that produced the best agreement with the field
data. These optimized parameters were as follows:

• Young’s modulus (E): 1.918 × 1011 Pa. This value is about 4% lower than the nominal
2.0 × 1011 Pa for steel, suggesting a slight reduction in effective stiffness of the structure.
The reduction plausibly reflects the effects of long-term material degradation, residual
stresses, and non-ideal boundary or connection behavior in the century-old Cos Cob
Bridge. Factors such as fatigue damage, micro-cracking, and riveted joints may
contribute to a slight reduction in the effective stiffness of the structure.

• Density (ρ): 8100 kg/m3. This is higher than the typical steel density of 7850 kg/m3,
possibly accounting for additional structural and non-structural mass in the system
(for instance, track, fasteners, and other non-structural attachments like electrical
components not explicitly modeled). This calibration adjustment effectively lowers
the model’s natural frequencies, aligning better with field-measured responses.

• Cross-sectional area change (A%): −6.23%. A small uniform reduction (around 6%)
in the cross-sectional areas of members improved the match with observed deflec-
tions, consistent with minor section losses from corrosion over time, especially in
weather-exposed regions, or an overestimation of section sizes in the original as-built
documentation. It may also capture unmodeled eccentricities or fabrication tolerances
that reduce effective member stiffness.

• Longitudinal stiffness (k at support): 1.6493 × 105 N/mm. This value represents
the optimized stiffness of the west-end support. It indicates that the support is not
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completely rigid longitudinally; the optimized stiffness suggests a partially flexible
support that allows a small amount of movement. This flexibility can occur due to
bearing play or deformation of support elements, and adjusting this parameter was
important to match the measured deflection and vibration characteristics.

These parameters were obtained through the GA and then input into the ANSYS FE
model for verification. With the updated parameters, the FE model was re-run to predict
the bridge’s response under the same loading scenarios as the field tests.

4.3. Updated FE Model

Following the sensitivity analysis and GA optimization, the FE model of the Cos Cob
Bridge was updated with the optimized parameter values listed above. The final step was
to compare the updated model’s responses against the field measurements (and against the
initial model results) to quantify the improvements achieved through calibration.

The primary focus was on the vertical deflection responses at the three instrumented
locations (Vib 1, Vib 2, Vib 3) under the crossing of a Metro-North M8 train, as this scenario
was used to drive the optimization. Table 4 presents the peak vertical deflections at those
locations from the field test, the initial FE model, and the updated FE model for the M8 train
case. Figure 11 provides the full time–history curves of vertical deflection at Vib 1, Vib 2,
and Vib 3 from both the field test and the updated FE model (showing a close overlap).

Table 4. Comparison of Peak Vertical Deflection Results of the Cos Cob Bridge with Field Test, Initial
FE Model, and Optimized FE Model under Different Train Loadings.

Train Type Location Field Test Max
Deflection (mm) +

Initial FE Max.
Deflection (mm) +*

Updated FE Max
Deflection (mm) +*

Metro North M8
Vib 1 −3.38 −3.69 (9.17%) −3.24 (4.14%)
Vib 2 −3.04 −3.43 (12.82%) −3.13 (2.96%)
Vib 3 −2.61 −2.81 (7.66%) −2.58 (1.14%)

AMTRAK Acela Vib 2 −4.581 −6.131 (33.835%) −5.191 (13.315%)

AMTRK Regional Vib 2 −4.413 −5.889 (33.446%) −4.841(9.698%)
Note: + The negative values in columns 3, 4, and 5 represent the vertical downward deflection of the bridge. * The
percentage shown in columns 4 and 5 represents the percentage difference of the peak deflections from the FE
model predictions (initial and updated) with respect to the field test maximum deflection values.

 

(a) (b) 

Figure 11. Cont.
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(c) 

Figure 11. Vertical displacement results of the Cos Cob Bridge under MTNR M8 train loading at
(a) Vib 1 @ 64 kmph, (b) Vib 2 @ 58 kmph, and (c) Vib 3 @ 53 kmph.

As seen in Table 4, the updated FE model’s deflection predictions show a marked
improvement over the initial model at different locations at different speeds of trains.
For the M8 train, the initial model over-predicted the deflection at Vib 2 by about 12.8%,
whereas the updated model’s prediction is within 3% of the measured value. Similar
improvements were observed at Vib 1 and Vib 3: the initial errors of 9.2% and 7.7% were
reduced to about 4.1% and 1.1%, respectively. The direction of correction is consistent—the
initial model was generally too stiff (producing smaller deflections than measured), and
the calibration reduced the stiffness such that deflections increased and matched the field
values more closely. Figure 11a–c illustrate these comparisons graphically for the M8
train case at three different locations, with the updated model’s deflection curves nearly
overlapping the field curves.

After confirming the updated model’s accuracy for the M8 loading (which was used
for calibration), the model was further validated using the two Amtrak train cases (Amtrak
Regional and Acela Express) that were also recorded during field testing. These cases serve
as independent checks because they involve different total loads, axle spacing, and speeds.
The updated model was subjected to the Amtrak Regional and Acela load cases (using the
same calibrated parameters, with the only difference being the loading inputs). Figure 12a,b
show the axle load configurations for the Amtrak Regional and Acela trains that were used
in the analysis. The results, included in Table 4 for Vib 2, show that the updated model
also performed well for these scenarios. For the Amtrak Acela (a high-speed trainset with
a different axle configuration), the initial model’s peak deflection error at mid-span was
quite large (~33.8%), whereas the updated model cut that error to about 13.3%. For the
Amtrak Regional locomotive, the error dropped from ~33.4% to ~9.7% after calibration.
The larger initial errors for the Amtrak trains suggest that the initial model’s assumptions
(especially regarding dynamic amplification or support stiffness) might not have been
adequate for heavier or faster trains, but the updated model, calibrated primarily on the
M8 data, generalized well to these cases. Figure 13a,b compare the updated FE model and
field deflection time histories at Vib 2 for those trains. The updated model captures the
peak deflections and overall response shape reasonably for both train loading cases.
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(a) 

(b) 

Figure 12. Axle loading for Finite Element Modeling of (a) Amtrak Regional Train, (b) Amtrak Acela
Train [7].

 
(a) (b) 

Figure 13. Vertical displacement results of Cos Cob Bridge under (a) Amtrak Acela Train at Vib 2 @
64 kmph and (b) Amtrak Regional Train at Vib 2 @ 64 kmph.

In addition to deflections, the first few natural frequencies of the updated FE model
were computed and compared to the field-identified values (from Table 3). Table 5 sum-
marizes the comparison of the three primary modal frequencies before and after model
updating. The initial FE model frequencies are included along with the percentage errors
relative to the field values, and the same is performed for the updated model frequencies.
The updated model frequencies show much smaller errors, indicating that the model’s
dynamic characteristics have been successfully tuned.
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Table 5. Comparison Table of Natural Frequencies of the Cos Cob Bridge.

Mode
Natural Frequency (Hz)

Field Test Initial FE
Result % Difference * Optimized

FE Result % Difference *

1st Lateral 3.22 3.79 17.70 3.31 2.795
2nd Lateral 8.51 8.69 2.12 8.43 −0.940
1st Vertical 7.56 8.25 9.13 7.78 2.910

Note: * Column 4 and 6 display the % difference values of the initial and optimized FE results with respect to
those from the field tests, respectively. The negative (minus) sign in front of a % value indicates that the FE result
is less than that from the field test.

The improvement in frequency prediction can be attributed to the adjustments in
E (reducing stiffness) and ρ (increasing mass) in the calibration process. The slightly
increased density used in the model is justified by the cumulative mass of structural and
non-structural components not explicitly captured in the model. These include fasteners,
rivets, gusset plates, instrumentation cables, and additional steel components likely added
during the rehabilitation process over the years. The close agreement across both lateral
and vertical modes suggests that the calibration did not over-fit to just one mode but rather
achieved a balanced adjustment that benefits the overall dynamic behavior.

The results of this study confirm the effectiveness of the proposed updating method.
Unlike the digital twin approaches by Lai et al. [17], which use continuous SHM data for
Bayesian forecasting, and Nhamage et al. [13], which combine BIM and real-time fatigue
simulation, this study achieves similar accuracy through a simpler, data-sparse approach.
While those methods offer predictive capabilities and detailed visualization, our results
show that reliable model calibration is still possible without continuous monitoring, making
it well-suited for aging bridges with limited instrumentation.

Overall, the updated FE model of the Cos Cob Bridge shows significantly better
agreement with real behavior, both in static/dynamic deflections under trains and in free
vibration characteristics, compared to the initial model. These improvements validate the
effectiveness of the sensitivity-driven, GA-based updating framework in aligning simulated
and observed bridge responses. The calibrated model can now be used with more confi-
dence for further analysis, such as fatigue life estimation, load rating under various train
loadings, or studying the effects of hypothetical strengthening or deterioration scenarios.

5. Conclusions
The finite element model of the railroad bridge structure selected was successfully

calibrated against field test results through a sensitivity analysis and genetic-algorithm-
based updating procedure, yielding substantial improvements in predictive accuracy.
Quantitatively, the updated model reduced peak deflection prediction errors from initial
discrepancies of 7–34% down to within 1–14% across instrumented locations for different
train loadings. Similarly, errors in natural frequency predictions by the updated FE model
decreased from approximately 10–18% in the baseline model to under 3% after updating.
These gains were achieved by refining key parameters: the effective Young’s modulus was
reduced by approximately 4%, reflecting minor stiffness degradation; the modeled density
was adjusted upward by about 3%, capturing unmodeled mass contributions; and the
longitudinal support stiffness increased nearly twofold, reflecting actual restraint behavior
observed in the field. Together, these calibrated parameters enabled the model to closely
match measured deflection time histories and dynamic characteristics under multiple train
load cases, validating its robustness and transferability.

The updated model now serves as a reliable tool for structural response prediction,
load rating estimation, and fatigue life assessment, supporting informed maintenance
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decisions. Although this study focused on a specific steel truss railroad bridge, the overall
methodology, combining field measurements, sensitivity analysis, and model updating,
is broadly applicable to other aging structures. Since the approach relies on commonly
available structural data and does not require permanent monitoring systems, it can be
adapted to various bridge types or infrastructure systems where detailed modeling and
data-driven calibration are needed. Its computational efficiency and reliance on limited but
high-quality data make it suitable for application in scenarios where permanent monitoring
systems are not feasible.

However, it must be pointed out that the numerical model was developed primarily
to capture the global dynamic response of the bridge superstructure; therefore, details
about track-related components, such as rail cross-section geometry, fastening system
behavior, and longitudinal track resistance, were not explicitly included. These elements
can influence the overall system stiffness and dynamic behavior [38] but were excluded due
to limited field data and to maintain focus on primary structural parameters. Additionally,
due to equipment constraints, only a single LDV was used and repositioned across three
locations, which limits the spatial resolution of measured responses and may not fully
capture complex modal behaviors. Therefore, the methodology can be further improved in
the future by employing multi-point LDV systems and refined modeling of track, rail–track
structure, and connection-related parameters mentioned above.

Furthermore, developing localized FE sub-models near critical connections or gusset
plates could enhance the detection of fatigue-prone or damage-sensitive areas. Long-term
monitoring and fatigue analysis using cumulative loading histories could also provide
more comprehensive service life predictions. These additions would enhance model fidelity
while maintaining practical applicability for infrastructure resilience planning.
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