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Abstract

Aiming to address the problem of low efficiency in the traditional manual measurement
of the main arch rib components of concrete-filled steel tube (CFST) arch bridges, this
study proposes a digital measurement technology based on the integration of geometric
parameters and computer-aided design (CAD) models. In this method, first, we perform
the high-precision registration of the preprocessed scanned point cloud of the CFST arch rib
components with the discretized design point cloud of the standardized CAD model. Then,
in view of the fact that the fitting of point cloud geometric parameters is susceptible to the
influence of sparse or uneven massive point clouds, these points are treated as outliers
for elimination. We propose a method incorporating slicing to solve the interference of
outliers and improve the fitting accuracy. Finally, the evaluation of quality, accuracy, and
efficiency is carried out based on distance deviation analysis and geometric parameter
comparison. The experimental results show that, for the experimental data, the fitting error
of this method is reduced by 76.32% compared with the traditional method, which can
improve the problems with measurement and fitting seen with the traditional method. At
the same time, the measurement efficiency is increased by 5% compared with the traditional
manual method.

Keywords: concrete-filled steel tube (CFST) arch bridge; 3D laser scanning; point cloud
processing; bridge component measurement; computer-aided design (CAD)

1. Introduction
In recent years, with the rapid development of bridge construction in China, the

application of digital technology in this field has been continuously deepened [1]. However,
quality supervision in bridge engineering still mainly relies on 2D drawings and manual
measurement, with relatively lagging technical means. At present, for the convenience
of on-site operation by staff, traditional tools such as tape measures are commonly used
for dimensional acceptance at construction sites. Nevertheless, traditional tape measure
measurement is affected by multiple factors such as material deformation, temperature
changes, and manual operation, which is prone to large errors. For example, metal tape
measures are prone to thermal expansion and contraction at high temperatures, uneven
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tension, the limitation of only measuring component end faces, or non-straight measure-
ment paths, which may also affect accuracy. Errors are likely to accumulate, especially in
complex structures or large-scale scenarios.

Due to their special composite structure, higher cost-effectiveness, and lighter installa-
tion weight, CFST arch bridges have seen significant construction in China despite fierce
competition in bridge engineering. Incomplete statistics show that nearly 500 CFST arch
bridges have been built over the last three decades, with nearly 100 constructed in the
past four years alone, mainly used in long-span bridge projects such as river crossings and
mountainous canyon crossings [2]. This demonstrates the extremely wide application of
CFST bridges in China. However, the structures of CFST arch bridges are typically formed
by rolling and welding thick steel plates into cylindrical tubes, characterized by a large
wall thickness, large cross-sectional dimensions, and weights often exceeding dozens of
tons. During construction, formwork deformation can cause surface geometric deviations.
Taking the CFST arch bridge in this project as an example, relying solely on traditional
tools such as tape measures can lead to only collecting the edge information of compo-
nents, making it difficult to fully reflect their true geometric morphology and thus affecting
the accuracy of quality evaluation. Therefore, introducing efficient and precise intelli-
gent inspection technologies has become an urgent task to improve the level of quality
supervision [3–5].

At present, 3D laser scanning technology [6–8], with its high efficiency, high precision,
and multi-parameter detection capabilities, is widely applied in practical engineering, such
as in deformation monitoring [9] and 3D reconstruction [10]. Compared with the current
LiDAR SLAM digital measurement technology with centimeter-level accuracy, the accuracy
of 3D laser scanning technology can reach sub-millimeter levels [11], meeting the measure-
ment accuracy requirements of this bridge engineering project. Using 3D laser scanning
technology, we were able to accurately evaluate the geometric deviations of components,
making up for the shortcomings of traditional tape measure measurements in the structural
inspection of this CFST arch bridge. This not only improves the accuracy and efficiency
of acceptance work but also provides reliable technical support for construction quality
control in CFST arch bridges, with broad engineering application prospects. However,
when applying 3D laser scanning technology in the measurement of CFST arch bridges,
there are obvious problems to be solved in geometric parameter fitting. Specifically, when
using traditional methods to fit point clouds, the fitting is affected by sparse or uneven
massive point clouds, and these points are treated as outliers for elimination, which reduces
the measurement accuracy.

Therefore, this study proposes a digital measurement method for the main arch ribs
of CFST arch bridges based on laser point clouds. The overall process consists of five
steps, point cloud acquisition, data preprocessing, model registration, geometric parameter
extraction, and quality evaluation, as shown in Figure 1. First, the actual point cloud
data of the main arch ribs are collected through 3D laser scanning technology, and the
corresponding CAD point cloud is generated using a CAD model. The actual point
cloud is then preprocessed and precisely registered with the CAD point cloud. Second,
when performing cylindrical fitting on components to extract geometric parameters, the
measurement point cloud is segmented by axial slicing to overcome the noise interference
caused by massive unevenly distributed point cloud data, which effectively improves
the accuracy of component radius estimation and the overall geometric reconstruction
effect. Finally, key geometric parameters of the components and point-to-distance data are
extracted to achieve the quantitative evaluation of their dimensional deviations.
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Figure 1. Digital measurement process.

To verify the accuracy of the proposed method, the detection results were compared
and analyzed with manual measurement data. The results show that the method has
significant advantages in terms of accuracy and stability. The unique contributions of this
paper are as follows: (1) A digital measurement method for the main arch ribs of CFST arch
bridges based on 3D laser scanning technology is proposed. While ensuring the required
measurement accuracy, the 3D laser scanning technology can address the measurement
issues encountered in traditional methods, improve measurement efficiency, and reduce
costs. (2) A point cloud slicing processing method utilizing the geometric characteristics of
the main arch rib components of CFST arch bridges is proposed.

The structural overview of this paper is as follows: Section 2 introduces the relevant
research background. Section 3 presents the framework of the point cloud digital measure-
ment method. Section 4 presents the practical engineering application and verification.
Section 5 evaluates the dimensional quality results of the components. Finally, Section 6
summarizes the full text, analyzes the limitations, and proposes future research directions.

2. Research Background
In this section, Section 2.1 introduces the application of 3D laser scanning technology in

bridge engineering. Next, Section 2.2 provides a literature review of point cloud processing.
Finally, Section 2.3 presents the application of cylindrical fitting in point clouds.

2.1. The Application of 3D Laser Scanning Technology in Bridge Engineering

Shang et al. [12] proposed a method for measuring the geometric shape of concrete
arch bridge structures based on 3D laser scanning technology. A deep learning segmenta-
tion method using image–point cloud feature matching was employed to automatically
extract bridge components from reconstructed point clouds, enabling the rapid geometric
measurement of structural units to achieve the 3D geometric inspection and evaluation of
arch deformation and lateral inclination in arch bridges. Jian et al. [13] proposed fusing TLS
point clouds with UAV aerial point clouds to create 3D models of CFST arch bridges for
inspecting the condition of piers, arch ribs, and other components. Sun et al. [14] developed
an intelligent construction monitoring method for large complex steel structures such as
bridges, converting BIM into mesh and point cloud models and comparing as-built point
clouds obtained by 3D laser scanning with BIM design data to analyze distance deviations
for monitoring construction processes and quality. Chang [15] proposed an automatic
flatness evaluation method for precast concrete beams based on TLS, which intuitively
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evaluates flatness quality and measures the manufacturing quality and structural perfor-
mance of precast components through axis calibration, target surface segmentation, and
flatness deviation calculation. Yin et al. [16] presented a framework for virtual pre-assembly
performed among point clouds, BIM, and finite element methods, aiming to accurately
predict manufacturing deviations and structural stress states in concrete-filled steel tube
arch bridges after forced assembly. Zhang et al. [17] proposed a method for measuring the
geometric dimensions and defects of T-shaped bridge structures based on 3D laser scanning
technology, acquiring the geometric information of cross-sectional profiles to provide data
support for subsequent finite element simulation and structural inspection experiments.
Guo et al. [18] fused UAV images with 3D laser point clouds, calculated spatial transfor-
mation parameters through feature global registration and bundle adjustment models and
monitored bridge component deformation using a spherical node multi-rod center point
algorithm. Guo et al. [19] proposed a pipeline geometric parameter control method based
on 3D laser scanning and digital models, which can accurately extract component surfaces
or cross-sections through point cloud data processing to achieve effective geometric quality
control. Xia et al. [20] proposed a combined method based on local descriptors and machine
learning for automatically detecting bridge structural components from point clouds to
monitor the health status of existing bridges.

However, while the abovementioned TLS has been widely applied in the deforma-
tion monitoring, geometric dimension measurement, defect detection, and construction
monitoring of bridges, there remains a research gap in its application in shape and dimen-
sion measurements for the main arch ribs of CFST arch bridges. Most researchers have
primarily focused on the surface deviation analysis of bridge components, neglecting the
measurement and verification of the main radius parameters of CFST arch bridge main
arch ribs. Additionally, in practical project investigations, we have not found reports on the
application of three-dimensional laser scan point cloud technology for the digital dimension
measurement of a large number of steel tube bridge prefabricated components. Therefore,
we aim to propose a method for evaluating the surface and shape dimensions of numerous
steel tube bridge prefabricated components to overcome issues such as low measurement
efficiency, high costs, and insufficient fitting accuracy in practical engineering, where the
measurement accuracy of components still faces certain challenges.

2.2. Point Cloud Processing

As a key part of the measurement of the main arch ribs of CFST arch bridges, point
cloud processing technology mainly includes steps such as point cloud downsampling,
registration, and slicing, which can improve the efficiency and accuracy of subsequent
geometric fitting and model registration.

Although point clouds are a common representation of 3D data, they may contain
noise interference, so filtering is required before processing. Jin et al. [21] proposed a de-
noising method combining statistical filtering and bilateral filtering, which could effectively
remove outliers in laser point clouds. Zhao et al. [22] used an irregular triangular network
progressive encryption filtering algorithm to process point clouds fusing single and last
echoes, preserving more information on topographic detail. Li et al. [23] combined voxel
filtering with radius filtering to construct large-scale and small-scale models for adaptive
processing, and experiments showed a good suppression of drift noise. Wen et al. [24] stud-
ied point cloud data denoising in autonomous driving scenarios through bilateral filtering,
providing useful references for other application fields. Ren et al. [25] used Gaussian filter-
ing to process signal intensity values and introduced the DBSCAN algorithm to remove
noise points and boundary points. Chen et al. [26] proposed a multidimensional statistic
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denoising algorithm based on Gaussian mixture models, which can utilize multiple point
cloud statistics simultaneously and avoid the manual selection of denoising thresholds.

Point cloud downsampling is a core step in the point cloud processing pipeline, which
can effectively reduce the data volume, lower the computational complexity, and improve
the overall processing speed. Although deep learning-based downsampling methods
are still in their infancy, some studies have preliminarily verified their effectiveness. Yu
et al. [27] proposed the SIEV-Net network, introducing a height information compensation
module to reduce information loss during feature aggregation in voxel networks. Wang
et al. [28] constructed the SVGA-Net sparse voxel attention network, combining a voxel
graph module with a sparse density regression module to achieve efficient 3D detection
using LiDAR data. Fu et al. [29] proposed VoxelContext-Net for compressing static and
dynamic point clouds. Nguyen et al. [30] developed a point cloud geometric downsam-
pling method based on masked convolutional neural networks, learning voxel probability
distributions to achieve the sparse representations of static point clouds. Zhou et al. [31]
adopted a K-means-based clustering strategy, dividing majority-class samples into clus-
ters with sizes comparable to minority-class samples and selecting cluster centers as new
sampling points. Xiao et al. [32] proposed a downsampling strategy based on hierarchical
voxel segmentation, achieving the balanced compression of point cloud data by increasing
voxel division layers. In summary, point cloud downsampling methods cover multiple ap-
proaches such as deep learning, clustering, and voxel strategies. Considering the relatively
regular geometric morphology of the experimental data, it is more appropriate to prioritize
simple-to-operate voxel downsampling.

Point cloud registration plays a central role in the 3D point cloud processing frame-
work, aiming to determine a rigid spatial transformation that aligns datasets captured
from different viewpoints of the same object [33–36]. Common registration algorithms
include Random Sample Consensus (RANSAC), Signature of Histograms of Orientations
(SHOT), Iterative Closest Point (ICP), and their variants. Segal et al. [37] proposed the
Generalized ICP algorithm, which incorporates a probabilistic model into error metrics and
combines point-to-point and plane-to-plane strategies to enhance registration accuracy and
robustness while reducing iteration counts. Yang et al. [38] introduced the Globally Optimal
ICP (Go-ICP) algorithm, which achieves global optimality in registration through a branch-
and-bound strategy, avoiding local minima and improving the convergence reliability.

2.3. The Application of Cylindrical Fitting in Point Clouds

To efficiently detect cylindrical structures using point clouds, researchers have pro-
posed a variety of cylinder detection methods over the past decades [39,40]. Among them,
the Random Sample Consensus (RANSAC) algorithm is a widely used model fitting ap-
proach. Its core principle lies in randomly sampling a minimal subset of data points to
fit a geometric model [41,42]. Chaperon et al. [43] combined Gaussian sphere represen-
tation with the RANSAC method to detect cylinders within point clouds and estimate
their parameters. Their method divides cylinder extraction into two stages: first, a plane
is estimated on the Gaussian image to infer the orientation of the cylinder; then, random
sampling is applied to estimate the scale and position of the structure. Tran et al. [44]
incorporated a validation step within the RANSAC framework to enable the simultaneous
extraction of multiple cylindrical elements. Liu et al. [45] projected the point cloud onto
a 2D plane and identified circular contours on the projection to detect cylindrical shapes.
Araújo et al. [46] projected the point cloud onto a unit hemisphere from multiple directions,
detecting circular projections to extract cylindrical structures. Maalek et al. [47] simplified
the extraction of pipe-like structures by identifying circular contours on a 2D plane. Ahmed
et al. [48] proposed a method combining the sliced resampling of the point cloud with the
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Hough Transform for circle detection, demonstrating its feasibility and effectiveness in
detecting cylinders within 3D point clouds.

3. Research Method
3.1. Acquisition of Scan Point Cloud Data

The scan point cloud data was acquired using 3D laser scanning in a steel structure
prefabrication yard. To ensure accuracy and stability in data collection, the research team
conducted multiple rounds of precision comparison experiments on the components of
CFST arch bridges before undertaking the official data acquisition. These experiments
mainly focused on different scanning devices, scanning parameters, and acquisition envi-
ronments. Through comparative analysis, optimal equipment configurations and param-
eter settings were finally selected to minimize errors in measurement results caused by
environmental factors.

Considering the potential reflection interference on the CFST surface during laser
scanning, the component surfaces were meticulously cleaned in advance to ensure that
no impurities or oil stains were present. Additionally, as the materials used for the main
arch ribs of CFST arch bridges are highly sensitive to environmental temperature changes,
especially during the day, when solar radiation and temperature differences can easily cause
minor component deformations that affect the accuracy of point cloud data, the formal
scanning operations were scheduled for nighttime, specifically from 00:00 to 04:00. During
this period, the environmental temperature remained relatively stable, with fluctuations
controlled within ±1 ◦C, effectively avoiding error interference caused by temperature
changes and ensuring high precision and repeatability in the scan data.

3.2. Acquisition of CAD Point Cloud Data

According to the design drawings of the main arch rib, its 3D geometric model is first
constructed in SolidWorks 2019 to accurately restore the structural shape and geometric
features, serving as the basis for subsequent point cloud generation and registration. After
modeling, the model is meshed and exported in STL format for subsequent processing.
Then, the STL model is discretized using PCL (Point Cloud Library) to convert the con-
tinuous geometric surface into point cloud data with spatial distribution characteristics.
By adjusting the sampling density and distribution strategy, we ensure that the generated
point cloud fully reflects the details of the original model in shape while having good
visualization effects and geometric fidelity. Finally, the discretization result is exported
in PLY format to form the “CAD point cloud” defined in this paper, which is used for
registration and error analysis with the scan point cloud. The specific process is shown in
Figure 2.

Figure 2. CAD data processing.

3.3. Preprocessing

When 3D laser scanning equipment is used to collect the 3D point cloud data of the
main arch rib steel tube component area, the original point cloud data typically has high
density and rich spatial information but may also contain noise, voids, or areas irrelevant
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to the research objectives. Therefore, preprocessing operations on the originally collected
point cloud data are required to reduce the data volume and computational costs. The
preprocessing operations adopted in this paper mainly include steps such as data region
clipping, denoising, and downsampling. Specifically, the direct filtering algorithm is first
used to set the value range of the X, Y, and Z coordinates of the point cloud data of the
main arch rib steel tube components, effectively removing irrelevant point cloud data such
as the ground and sky outside the preset area. Then, the radius filtering algorithm is used
to process each point by setting a radius threshold based on the number of neighborhood
points within a specified radius to maintain the structural integrity of the component point
cloud data.

Traditional point cloud downsampling and simplification processes create a 3D voxel
grid from input point cloud data, approximating other points in each voxel using the voxel’s
center or centroid, with all points in the voxel ultimately represented by one centroid or
central point. While this achieves downsampling, the centroid may not be a point from
the original point cloud, potentially losing the fine features of the original point cloud.
Therefore, this paper proposes a voxel filtering method based on centroid-nearest points.
The method uses the KD-tree algorithm to replace the voxel centroid with the point closest
to the centroid in the original point cloud for point cloud simplification, preserving the
original surface features of the point cloud data. The schematic diagram is shown in
Figure 3.

Points closest to the center
 of gravity of the voxel

Voxel centroid point

Points within the voxel

Points outside the voxel

Figure 3. Downsampling principle.

3.4. Registration

Due to the different sources of the scanned point cloud data collected on-site and the
CAD point cloud, the two are usually in different coordinate systems in space, and direct
comparative analysis will cause large errors. Therefore, coordinate unification between
the two groups of point clouds, i.e., point cloud registration, must be performed first. The
registration process aims to accurately align the scanned point cloud with the CAD point
cloud in 3D space through rigid transformations (including rotation and translation). To
ensure accuracy and efficiency in registration, the registration process is divided into two
stages, coarse registration and fine registration, and the overall process is shown in Figure 4.

For the coarse registration stage, this paper employs the Fast Point Feature Histograms
(FPFH) descriptor [49] for feature matching. As an efficient local geometric feature de-
scription method, FPFH can extract the spatial structure information of key points in point
clouds to assist in establishing preliminary correspondence between point clouds. To
enhance the representativeness of feature points and the accuracy of initial registration
values, the Internal Shape Signature (ISS) algorithm [50] is further introduced to extract
key points from the two groups of point clouds, respectively. The ISS algorithm has good
stability and repeatability, which can effectively capture geometrically significant regions
on component surfaces and enhance the robustness of feature matching.

After extracting key points and calculating the corresponding FPFH descriptors, the
Sample Consensus Initial Alignment (SAC-IA) algorithm [51] based on sampling consensus
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is used for coarse registration. This algorithm, inspired by the RANSAC principle, searches
for the optimal rigid transformation among numerous candidate transformations to achieve
the rough overlap of two point clouds with large distances and significant pose differences,
providing a good initial condition for subsequent fine alignment.

In the fine registration stage, the Point-to-Plane Iterative Closest Point (ICP) algo-
rithm [52] optimized by the least squares method is used to further adjust the coarse
registration results. Compared with the traditional point-to-point ICP algorithm, Point-
to-Plane ICP pays more attention to the geometric relationship between points and their
corresponding planes during registration, thus demonstrating higher registration accuracy
and convergence speed in scenarios where components have obvious surface structures.

The entire registration pipeline adopts the Root Mean Square Error (RMSE) as the
evaluation metric to quantify the alignment error between the two point clouds. When the
RMSE falls below a predefined threshold and convergence criteria are satisfied, the optimal
transformation matrix (R, T) (Equations (1) and (2)) is output, enabling high-precision
alignment between the CAD point cloud and scan point cloud. This process establishes a
solid data foundation for subsequent deviation analysis, component quality assessment,
and precision control. x2

y2

z2

 = R

x1

y1

z1

+ T (1)

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

, T =

Tx

Ty

TZ

 (2)

R = the rotation matrix; T = the three-dimensional translation vector.

 Point cloud data

ISS algorithm

 FPFH feature 

 Feature points

Optimize parameters and generate point 
pairs

Optimal transformation matrix

Convergence 

Coarse registration Yes

No

No

Yes

KD-Tree Searches for the nearest point

Corresponding point pairs

Covariance matrix

Convergence 

Optimal transformation matrix

ICP  registration algorithm

No

Yes

Minimize the optimization error objective 
function

 

Figure 4. Registration process.

3.5. Slicing

The main arch rib structure of CFST arch bridges is typically composed of multiple
standard cylindrical segments sequentially spliced by straight-line substitution for curved
welding, forming a continuous curved shape overall while exhibiting obvious cylindrical
geometric features locally. If unified linear fitting is performed at the overall scale, the
fitted curve is often too smooth to reflect the independent geometric characteristics of each
cylindrical segment. Especially in the welded connection areas, structural mutation infor-
mation is easily ignored, affecting the accurate evaluation of component local morphology,
assembly errors, and manufacturing precision.
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To address this issue, this paper proposes a point cloud slicing method based on the
geometric structure characteristics of arch ribs, which uses a segmented processing strategy
to perform a refined analysis of point cloud data for higher-precision parameter extraction
and error analysis. The core idea is as follows: the point clouds of the main arch ribs are
sliced and segmented along the axial direction of the components, the geometric features of
each cylindrical segment are fitted segment by segment, and then local parameter features
are extracted and welding position differences are identified. This effectively avoids the
error accumulation caused by local distortion or noise in overall fitting, thereby improving
the local sensitivity and overall adaptability of detection. The specific implementation is
as follows:

1. First, the registered scan point cloud and CAD point cloud data are reduced di-
mensionally and projected parallel to the XOZ plane to obtain the two-dimensional
geometric distribution characteristics of the point cloud on the plane.

2. The Alpha shape [53] algorithm is used to extract the boundary point cloud of the
abovementioned point cloud data, and the value of the radius of the rolling circle is
determined by experimental comparison to extract the boundary line.

3. The fitting line is obtained using the least squares method by minimizing the per-
pendicular distances from the extracted boundary point cloud to the line, thereby
optimizing the direction vector.

4. Based on the calculated straight-line data of the boundary point cloud on both sides
of the bridge component, the average direction vector of the two lines is computed to
reduce errors. Using this vector and its projection onto the XOZ plane, the normal
vector of the plane is derived via cross-product calculation, thereby determining the
orientation of the bridge component’s end cross-sections and allowing us to obtain
the corresponding end cross-sections.

5. Based on the boundary point cloud and its average orientation, two planes (P1, P2)
can be constructed, with the distance between P1 and P2 representing the thickness of
the point cloud slice. By comparing the x-value fields, the point cloud data of each
slice can be extracted, so as to achieve the slicing processing of the point cloud.

6. Finally, taking the X-axis direction as an example, point cloud slicing is performed:
slicing planes are uniformly generated along the X-axis. The number of slices n, slice
thickness ∆, and plane specifications xi are as follows:

∆ =
(xmax − xmin)

n
(3)

xi =

{
xmin + id, 0 ≤ i ≤ n − 1

xmax, i = n
(4)

i ∈ n, x = f
[
(ymax − ymin)

d

]
(5)

xmax and xmin represent the maximum and minimum values of the point cloud along
the X-axis, d denotes the slicing interval, f is the floor function, and i indicates the
index of the point cloud slice.

3.6. Quality Assessment
3.6.1. Geometric Parameter Extraction

Aiming to elucidate the structural characteristics of multi-segment splicing and signif-
icant local distortion of CFST arch bridge main arch rib components, this paper proposes a
segmented cylindrical fitting method based on point cloud slicing to overcome a problem
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seen in traditional overall fitting, i.e., that it tends to ignore local features. Specifically,
combining the arch rib point cloud slicing method proposed in Section 3.5, the RANSAC
algorithm is used to fit the cylindrical model for local point clouds and extract key geomet-
ric parameters of each component segment, including the radius r, direction (dx, dy, dz),
and axis position (x, y, z). RANSAC has strong robustness, which can stably extract data
satisfying the model hypothesis from point clouds containing noise and outliers, effectively
eliminate interference, and ensure fitting accuracy. The model parameters are gradually
optimized through iterative sampling and consistency evaluation to obtain the optimal so-
lution. This method is particularly suitable for the cylindrical CFST arch bridge components
in this experiment, enabling each segment of point clouds to maintain geometric integrity
in space while having higher local responsiveness, especially for structural segments with
welds, bending, or elliptical deformation.

3.6.2. Dimensional Quality Assessment

After completing the spatial registration of the scan point cloud and CAD point cloud,
this paper further conducts dimensional quality evaluation and analysis based on distance
deviation and geometric parameters. First, the Mean Distance Deviation (MDE) index [54]
is used to quantitatively evaluate the geometric fitting accuracy of the overall component
morphology by calculating the average Euclidean distance between corresponding point
pairs after registration.

However, due to environmental noise, equipment blind spots, and changes in material
reflectivity, scan point clouds often have missing data and errors, limiting the stability and
accuracy of MDE in local area judgments. Therefore, relying solely on global deviation
indices cannot fully reflect the geometric status of components.

To improve the comprehensiveness of the evaluation, this paper introduces a geometric
parameter comparison method combined with the structural characteristics of the main arch
ribs to extract and analyze the axial direction and cross-sectional radius of key cylindrical
segments. By extracting corresponding cylindrical parameters from the registered measured
point cloud and CAD point cloud, a difference model between the axial direction vector and
radius is constructed to evaluate the deviation performance of components in dimensional
control and installation positioning.

Using a combination of global deviation and geometric parameter dual indices can
effectively identify overall deviation trends and local deformation issues in components,
providing data support for processing quality evaluation, error tracing, and construction
precision control. The comparison results of component geometric parameters are shown
in Figure 5.

 
 

 
  

(a) (b) (c) 

Figure 5. Geometric parameter comparison. (a) Scan point clouds to fit cylinders; (b) CAD point
cloud fits the cylinder; (c) geometric parameter comparison.
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4. Results
4.1. Engineering Background

The experiment conducted in this study is based on prefabricated components from
two CFST arch bridges with distinct structural configurations, both fabricated at a steel
structure plant in Guangxi, China. These bridges were selected to improve the applicability
of the proposed method and the reliability of the validation results, by reducing randomness
and enhancing representativeness. As shown in Figure 6a, Bridge 1 is a large-span CFST
arch bridge with a designed span of 180 m. Each arch rib is divided into six segments,
and each segment is welded from 28 cylindrical steel pipes with a diameter of 1300 mm,
representing a typical structure with high segment density and large-scale assembly. In
contrast, Figure 6b shows Bridge 2, a medium-span arch bridge with a span of 112 m.
Its arch ribs are divided into four segments, and each segment consists of 22 steel pipes
with a diameter of 1200 mm, featuring a more compact and simplified configuration. The
two bridges differ significantly in terms of segment quantity, pipe diameter, and welding
techniques. Experimental verification was conducted under these varying engineering
conditions, demonstrating the adaptability of the proposed method to different types of
CFST arch rib components. The selection strategy enhances the engineering relevance of
the validation process and provides a technical reference for the application of the method
to similar bridge types in future projects.

  
(a) (b) 

Figure 6. Experimental scene: (a) Bridge 1 experimental scene; (b) Bridge 2 experimental scene.

4.2. Preprocessing

The experimental hardware environment includes an Intel(R) Core(TM) i7-9700 pro-
cessor(Intel Corporation, Santa Clara, CA, USA), 16 GB of memory, and a 64-bit Windows
10 operating system. Point cloud data processing was completed on the Visual Studio 2022
platform, with data processing and algorithm implementation using PCL1.14.0. Three-
dimensional modeling was performed using SOLIDWORKS 2019, while point cloud clip-
ping and visualization relied on Cloud Compare 2.13 software to clearly display component
geometries and assist in quality evaluation and data verification.

This experiment utilized a RIEGL VZ-1000 high-precision portable 3D laser scan-
ner (RIEGL Laser Measurement Systems GmbH, Horn, Austria) was used in this study.
The equipment was provided by the authors’ institution., which features high-frequency
scanning capabilities at a speed of up to 1,000,000 points per second, a field of view of
360◦ × 100◦, and a scanning accuracy of 1 mm/10 m. It can cover large-scale 3D spaces
while ensuring the accurate capturing of detailed structures. Scanning parameters were
flexibly adjusted according to component shapes and on-site environments to obtain high-
quality point cloud data.

After the completion of the point cloud acquisition of the CFST arch rib components,
Cyclo REGISTER 360 PLUS 2023.0.3 was employed to align and register the raw point
cloud data collected from multiple scan stations, ensuring high-precision alignment with
a registration accuracy controlled within 0.3 mm. The registered point cloud for Bridge
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1 contained 45,097,601 points and required approximately 1 h for processing, while the
dataset for Bridge 2 consisted of 38,764,258 points and was processed in about 40 min.
These results demonstrate that the proposed point cloud processing workflow exhibits
strong engineering adaptability and high operational efficiency, capable of handling high-
density data from large-scale structural components in a time-effective manner. Following
registration, Cloud Compare software was used to segment and export the processed
point clouds, generating scan point cloud datasets for subsequent analysis. Given that
the CFST arch rib components were fabricated by welding cylindrical steel tubes, and
that Bridge 1 had completed trial lifting and was available for on-site validation, two
segments from Bridge 1 were selected for experimental verification. As Bridge 2 was still
under fabrication, one segment was selected for evaluation. The selected segments and
corresponding processing results are illustrated in Figure 7.

 

Figure 7. Experimental data.

After the relevant preprocessing steps of the point cloud, the final experimental data
were obtained. These data are sorted and listed in Table 1. Taking one of the segments as
an example, the processed point cloud data are visually displayed in Figure 8 to intuitively
understand the three-dimensional morphology and geometric characteristics of the actual
components.

 
Figure 8. Point cloud processing.
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Table 1. Point cloud processing.

CAD Data (PLY) Scan Data (PLY)

Numbers Size (kB)
Before Processing After Processing

Numbers Size (kB) Numbers Size (kB)

592,172 19,617 4,630,145 234,941 592,507 28,821
488,522 17,176 2,883,016 166,801 501,397 28,948
320,908 11,494 1,856,841 99,733 516,584 25,729

4.3. Registration

The main parameter settings of the ISS algorithm used in this experiment [55] are
shown in Table 2.

The RMSE accuracies obtained from the registration of the two segments are 1.668
mm, 1.568 mm, and 1.897 mm in sequence. Figure 9 shows the flow chart of the registration
example for the first group of point cloud data, and the optimal transformation matrix
(R, T) obtained is as follows:

(R, T) =


−0.953 0.292
−0.096 −0.022

−0.086 −35.698
0.945 4.546

0.288 0.957
0 0

0.049 7.342
0 1

 (6)

 

Figure 9. Registration process.
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Table 2. ISS key points and main parameters.

Data Meaning of the Main Parameters Value (m)

Source
The radius for non-maximum suppression 4 pr* 0.0164/0.0185/0.0178

The radius used for computing the salient features of each point 6 pr* 0.0246/0.0277/0.0267

Target The radius for non-maximum suppression 4 pr* 0.0246/0.0261/0.0289
The radius used for computing the salient features of each point 6 pr* 0.0369/0.0391/0.0433

pr* represents the point cloud resolution.

4.4. Slicing
4.4.1. Boundary Extraction

The Alpha shape algorithm adopted in this paper performs boundary recognition on
registered point cloud data, with its basic principle being as follows: setting a rolling circle
(Rolling Ball) with a radius of α to roll on the 2D projection plane of the point cloud. When
the circle slides between points, any point that can be externally contacted by the circle is
considered a boundary point.

Considering that the main arch rib components have obvious regular geometric
structures and complex local features, this paper conducted multiple groups of experiments
on the rolling circle radius parameter. The boundary extraction effects of the three groups
of point cloud data under different radius settings are shown in Table 3.

The experimental results show that the selection of the rolling circle radius α has a
significant impact on the boundary point extraction effect. When the rolling circle radius α

is set to be too large, the algorithm tends to ignore local features at smaller scales during
boundary point extraction, causing the extracted boundary lines to become overly smooth
and the number of boundary points to decrease significantly, which fails to accurately
reflect the true shape of the component contour. Conversely, when the rolling circle radius
α is set to be too small, although more details can be extracted, it is prone to misidentifying
some non-boundary internal points as boundary points, leading to noise interference in the
boundary extraction results and reducing the overall recognition accuracy.

Figure 10 analyzes the variation trends of boundary extraction effects under different
parameter settings for the first group of point cloud data. By comprehensively considering
the balance between the retention degree of boundary features and computational efficiency,
the final determined parameters α = 0.02 can significantly improve the processing speed
on the basis of ensuring contour recognition accuracy.

 

Figure 10. Comparison map of point cloud boundary extraction.

Table 3. Projection point cloud boundary extraction test.

No. α Extract Numbers Time (s)

1 0.005 72,599/96,607/39,228 3.73/3.91/3.82
2 0.01 1842/2739/2658 3.69/3.72/3.80
3 0.02 1765/1786/1956 3.65/3.66/3.90
4 0.04 1103/1304/1509 3.71/3.61/3.62
5 0.08 880/962/1025 3.70/3.84/3.81
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4.4.2. Slicing Results

The number of slices has a significant impact on the fitting accuracy of the main arch
rib cylinder, which is particularly critical when using the RANSAC algorithm for parameter
extraction. Considering that the designed radius of the main arch rib in this project is 650
mm and the dimensional inspection accuracy needs to be controlled at the millimeter level,
the fitting radius should be accurate to two decimal places.

To determine the optimal slicing scheme, this paper comprehensively evaluates the
fitting accuracy and computational efficiency under different segmentation methods. On
one hand, the error between the fitted radius in each segment and the actual end-face
measurement value is compared; on the other hand, the point cloud of the CAD model
is compared with the parameters of the design drawings to verify the fitting accuracy.
Meanwhile, a trade-off analysis is conducted by combining the number of slices with the
processing time (see Table 4 for details).

Experiments show that dividing the point cloud into five segments can significantly re-
duce the calculation time while ensuring fitting accuracy, demonstrating good engineering
applicability. This scheme not only enhances the responsiveness to local deformation and
welding deviations but also effectively avoids the error diffusion problem in overall fitting,
improving the accuracy and stability of dimensional evaluation. Figure 11 shows the slicing
processing and fitting effects, verifying that the method can highlight local features while
maintaining the continuity of the overall structure.

 

Figure 11. Point cloud slicing processing result.

4.5. Geometric Parameter Extraction

Taking the component G2 in segment I of Figure 12 as a representative for analysis, the
cylindrical fitting algorithm for point clouds calculates the fitted radius of the CAD point
cloud as 649.71 mm, with only a minor difference of 0.29 mm from the 650.00 mm specified
in the design drawings. This indicates that the algorithm has high reliability and practicality
in fitting accuracy, effectively approximating the design dimensions. Meanwhile, the fitted
direction vector is (−0.99984, 0.00460271, −0.0167597), showing that the component axis
is basically consistent with the theoretical direction, further verifying the method’s high
adaptability to CAD point clouds.
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Table 4. Slice fitting results.

n
Scan Data CAD Data

Absolute Deviation
of Radius (mm) Time (s) Absolute Deviation

of Radius (mm) Time (s)

1 0.35/0.18/0.31 19.12/18.73/18.85 0.32/0.33/0.07 20.81/21.35/15.25
2 0.34/0.23/0.28 31.09/30.21/30.54 0.27/0.28/0.12 33.73/34.20/26.89
3 0.32/0.20/0.35 42.11/41.40/41.98 0.24/0.25/0.09 45.53/46.50/38.02
4 0.52/0.18/0.41 53.42/52.86/52.97 0.23/0.22/0.23 57.52/58.67/50.28
5 0.09/0.16/0.16 64.70/63.95/64.78 0.21/0.09/0.05 69.70/70.84/66.92
6 0.24/0.22/0.18 77.37/75.91/74.90 0.27/0.26/0.14 83.22/83.45/82.88
7 0.16/0.17/0.29 89.39/87.34/84.81 0.46/0.44/0.10 96.15/96.71/92.67
8 0.12/0.14/0.13 100.13/99.08/101.46 0.25/0.26/0.06 107.52/108.30/96.73
9 0.39/0.21/0.46 111.50/110.76/104.89 0.27/0.29/0.27 119.76/120.55/101.85
10 0.54/0.26/0.51 122.78/121.85/115.58 0.53/0.25/0.19 131.78/133.13/113.71

Figure 12. RANSAC sample diagram of fitting geometric parameters.

In the same region, a cylindrical fitting was performed on the actual scanned point
cloud data. The results show a fitted radius of 653.54 mm and a direction vector of
(−0.99986, −0.000610437, −0.0166092), indicating a certain deviation from the design
parameters. This reflects potential dimensional and alignment errors introduced during
the fabrication or installation processes of the actual components. The comparison not only
intuitively reveals the geometric discrepancies between the as-built component and the
design model, it also provides quantitative support for subsequent deviation analysis and
quality assessment. The fitting results for the main arch rib components for the remaining
segments are summarized in Table 5.

Table 5. Measured radius of bridge member (mm).

Member
I II

Scan Data CAD Data Scan Data CAD Data

G1 652.09/649.76/598.24 649.79/650.09/599.95 650.58/651.05/599.47 650.28/649.77/599.93
G2 653.54/652.90/599.76 649.71/650.11/599.92 649.48/649.92/597.86 649.76/650.06/599.94
G3 653.98/651.96/600.83 650.23/649.88/599.92 647.78/652.35/598.52 649.84/649.85/599.93
G4 652.96/652.18/601.14 649.78/649.73/599.92 646.47/650.21/601.36 649.83/650.12/599.94
G5 653.19/651.42/600.62 650.15/649.80/599.96 646.65/651.73/602.01 649.75/649.90/599.95
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To verify the accuracy and reliability of the proposed point cloud-based geometric
dimension detection method, traditional measurement tools—namely, tape measures and
total stations—were selected as comparative references. Manual measurements were con-
ducted on key cross-sections for validation purposes, and the results are summarized
in Table 6. Tape measure measurement, as one of the most commonly used traditional
methods, offers advantages such as simplicity and low cost. However, it is limited to linear
distance measurements at specific locations, suffers from low efficiency, and is constrained
by structural obstructions and spatial limitations, making it unsuitable for measuring
arbitrary positions. In contrast, the total station enables high-precision coordinate measure-
ments and is applicable to spatial localization at selected key cross-sections. Nevertheless,
it also faces limitations due to the restricted density of measurement points, which makes
it difficult to achieve a full coverage of the entire component surface. For cross-sectional
areas that could not be accessed by tape or total station measurements due to structural
complexity or environmental obstructions, a “—” symbol is used in the results table to
indicate that no valid measurements could be obtained using traditional methods.

Table 6. Tradition method radius measurement (mm).

Member
Tape Measure Total Station

I II I II

G1 652.00/649.60/598.40 650.50/650.90/599.60 652.02/649.58/598.42 650.48/650.91/599.58
G2

— —
653.31/652.88/599.92 649.62/649.75/598.05

G3 654.01/651.68/600.75 647.83/652.64/598.31
G4 653.22/652.31/601.04 646.32/650.03/601.18
G5 653.00/651.30/600.50 646.50/651.60/602.20 652.99/651.29/600.49 646.52/651.61/602.18

To verify the feasibility and accuracy of the fitting method proposed in this paper,
taking the actual tape measure values at the G1 position of Segments I and II of data1
as references, comparative analyses were conducted using multiple typical point cloud
cylindrical fitting algorithms (Table 7 for details). When partial data suffered from occlu-
sion, edge defects, and other issues, the least squares-based KASA algorithm was overly
sensitive to anomalies, yielding significantly smaller fitting results that struggled to ef-
fectively characterize local geometric features. In contrast, robust fitting methods such
as LMedS, RMSAC, and RANSAC improved the fitting conformity to actual structures
to some extent but still exhibited large deviations. The primary reason is that weld areas
often involve local distortion, sparse point clouds, or data gaps, causing these regions to be
misclassified as outliers and excluded at the point cloud scale of this experimental data,
thereby affecting the overall cylindrical radius fitting effect. The angle-projection-based
method [56] demonstrated strong performance in fitting cylindrical radii from large-scale
and unevenly distributed sparse point clouds, effectively overcoming the impacts of sparse
or missing point clouds. However, local distortions caused by multiple thick welds led
to excessively large projections of point cloud data, compromising fitting accuracy and
ultimately resulting in the overestimation of cylindrical parameters.

Table 7. Comparison results for algorithm radius fitting (mm).

Bridge Data KASA LMedS Projection RANSAC Proposed Practical

I
Scan data 584.28 654.68 656.74 652.38 652.09 652.00
CAD data 657.22 649.37 650.23 649.36 649.79 650.00

II
Scan data 596.36 649.13 651.86 649.98 650.58 650.50
CAD data 649.78 649.78 650.12 649.78 650.28 650.00
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Compared with the overall fitting method, the segmented processing strategy in this
paper demonstrates better improvements in structural decoupling, error control, and fitting
accuracy enhancement. Taking segment I as an example, the fitting error of the proposed
algorithm is only 0.09 mm under the same data conditions, compared with the traditional
RANSAC fitting method (error: 0.35 mm), representing a 74.29% error reduction rate and
improving the accuracy of cylindrical parameter extraction and fitting performance.

5. Discussion
According to the Technical Code for CFST Arch Bridges (GB 50923-2013)[57], the allow-

able diameter deviation of bridge components should be controlled within D/500, where
D refers to the design diameter of the component. In practical engineering applications,
the allowable deviations for Bridges 1 and 2 should not exceed ±2.6 mm and ±2.4 mm,
respectively, to meet the required precision standards. As shown in the analysis results in
Table 8, the Maximum Diameter Error (MDE) of the arch rib components investigated in
this study was controlled within 1.6 mm, which fully demonstrates the reliability of the
proposed method in practical applications. To further validate the accuracy of the proposed
measurement method, we conducted a comparative analysis using measurements obtained
from both tape measures and a high-precision total station. The comparison results are
presented in Tables 8 and 9.

Table 8. Bridge member measurement results.

Member
Absolute Deviation of Radius (mm) Orientation (◦)

MDE (mm)
I II I II

G1 2.30/0.33/1.71 0.30/1.28/0.46 0.05/0.18/0.15 0.29/0.24/0.30 1.45/1.39/1.50
G2 3.83/2.79/0.16 0.28/0.14/2.08 0.20/0.20/0.18 0.28/0.10/0.16 1.40/1.41/1.32
G3 3.75/2.08/0.91 2.06/2.50/1.41 0.16/0.17/0.22 0.26/0.25/0.10 1.55/1.37/1.34
G4 3.18/2.45/1.22 3.36/0.09/1.42 0.19/0.14/0.23 0.39/0.19/0.20 1.39/1.40/1.56
G5 3.04/1.62/0.66 3.10/1.83/2.06 0.19/0.18/0.14 0.34/0.22/0.13 1.49/1.38/1.48

Table 9. Measurement results for traditional method bridge components (mm).

Member
Tape Measure Total Station

I II I II

G1 2.00/0.40/1.60 0.50/0.90/0.40 2.02/0.48/1.58 0.48/0.91/0.42
G2

— —
3.31/2.88/0.08 0.38/0.25/1.95

G3 4.01/1.68/0.75 2.17/2.64/1.69
G4 3.22/2.31/1.04 3.68/0.03/1.18
G5 3.00/1.30/0.50 3.50/1.60/2.20 2.99/1.29/0.49 3.48/1.61/2.18

As shown in the comparative analysis in Table 10, the average fluctuation radius calcu-
lated using the proposed slicing-based fitting method was significantly less than ±0.3 mm
when compared with traditional measurement approaches. This result fully verifies the
accuracy and reliability of the proposed method for geometric dimension inspection. It
indicates that the slicing-based fitting approach not only meets high-precision measurement
requirements but also has the potential to effectively replace manual measurements in
practical engineering scenarios, thereby improving the automation and efficiency of arch
rib component inspection for CFST arch bridges.
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Table 10. Method accuracy calibration and comparison.

Member
Tape Measure Total Station

I II I II

G1 0.30/0.07/0.11 0.20/0.38/0.06 0.28/0.15/0.13 0.18/0.37/0.04
G2

— —
0.52/0.08/0.08 0.10/0.11/0.13

G3 0.26/0.40/0.16 0.11/0.14/0.28
G4 0.04/0.14/0.18 0.35/0.06/0.24
G5 0.04/0.32/0.16 0.40/0.23/0.14 0.05/0.33/0.17 0.38/0.22/0.12

It is worth noting that some measurement data exhibited fluctuations slightly ex-
ceeding 0.3 mm. This is primarily attributed to the high sensitivity of steel structures to
ambient temperature variations. Changes in environmental conditions such as sunlight
exposure and wind speed can lead to thermal expansion or contraction, resulting in minor
dimensional variations in the components. Such deviations fall within the expected range
of normal physical responses.

As shown in Figure 13, a comparative analysis was conducted between the sliced
fitting data of the main arch rib components obtained from 3D laser scanning and the
corresponding CAD point cloud. The following conclusions were drawn: for Bridge
1, according to data 1, in segment I, member G1 met the current inspection standards
and satisfied the design requirements, while members G2, G3, G4, and G5 exhibited
manufacturing errors and failed to meet the standards, thus requiring a rework. In segment
II, members G1, G2, and G3 met the inspection standards, whereas members G4 and G5
did not and also required a rework. According to data 2 for Bridge 1, segment I, members
G1, G3, G4, and G5 met the current inspection standards, while member G2 showed
manufacturing deviations and failed to meet the requirements, thus requiring a rework.
In segment II, all sections from G1 to G5 met the standards and required no rework. Ijn
Bridge 2, both segment I and segment II satisfied the current inspection standards, and no
rework was necessary.

Figure 13. Bridge 1 and Bridge 2 analysis of radius measurement results.
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To evaluate the stability of point cloud data fitting accuracy, this paper calculates the
mean value, standard deviation, and 95% confidence interval for the above fitting results.
For the point cloud experimental data collected in this study for Bridge 1, the fitting average
value is 2.02 mm, the standard deviation is 1.24 mm, and the confidence interval at the 95%
confidence level is [1.44 mm, 2.60 mm]. For the point cloud experimental data collected
in this study for Bridge 2, the fitting average value is 1.21 mm, the standard deviation is
0.66 mm, and the confidence interval at the 95% confidence level is [0.74 mm, 1.68 mm].
This indicates that the fitting method has certain fluctuations within the sample, and
combined with the comparison data from traditional tape measures, the overall stability
and confidence level are of reference value.

In addition, to quantitatively assess the measurement efficiency of the proposed
method, the total measurement time for Bridge 1 (comprising 28 welded segments) and
Bridge 2 (comprising 22 welded segments) was recorded and compared with that of tra-
ditional measurement approaches. Taking Bridge 1 as an example, conventional tape
measurements require three-directional measurements at both ends of each segment, with
each direction taking approximately 40 s. As a result, the total time required for a single seg-
ment is around 240 s, and the cumulative time for all 28 segments reaches 6720 s (Table 11).
In contrast, the automated point cloud-based measurement method proposed in this study
required a total of 6383.94 s, representing an approximate 5% improvement in efficiency.
Although total stations offer higher measurement precision, their reliance on manual sta-
tion setup and point-by-point data acquisition significantly reduces the overall efficiency
compared to both the tape measurements and the proposed method. Overall, the analysis
demonstrates that the proposed method significantly enhances the measurement efficiency
while maintaining an acceptable accuracy, indicating strong engineering adaptability and
practical application value.

Table 11. Measurement efficiency comparison (s).

Time
Proposed Tape Measure Total Station

Bridge 1 Bridge 2 Bridge 1 Bridge 2 Bridge 1 Bridge 2

Splicing 3600.00 2400

6720 5280 43,680 34,320
Preprocessing 132.30 85.84
Registration 761.04 517.22

Geometric extraction 1890.60 1453.67
Total 6383.94 4456.73 6720 5280 43,680 34,320

6. Conclusions
This paper takes the main arch rib components of CFST arch bridges as the research

object and proposes a digital measurement method based on geometric parameters to
accurately evaluate the geometric accuracy of arch bridge components. In this method,
we first perform the precise registration of the actually scanned point cloud data with
the CAD point cloud to ensure they are in the same coordinate system. The method uses
projection slicing for point cloud geometric parameter fitting to reduce the impact of sparse
and uneven massive point clouds and improve the measurement accuracy of traditional
algorithm fitting. Through comparative experiments among multiple groups, the optimal
number of slices is determined to achieve the segmented processing of the main arch rib
components. Finally, cylindrical fitting is performed on the sliced point cloud data to
extract the radius information of each segment, which is used to compare and analyze
whether the scanned main arch rib components meet the design standards. Based on the
experimental analysis of this study, the following conclusions are drawn:
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(1) During actual scanning, there are regions with a certain degree of noise and
poor point cloud quality. Traditional fitting methods such as the RANSAC algorithm are
affected by outliers. Although their fitting effects are not poor, they struggle to meet the
measurement accuracy requirements for subsequent experiments in this study. To address
this issue, this paper proposes a segmented cylindrical fitting method based on point cloud
slicing. By dividing the main arch rib components into multiple small segments for separate
fitting, this method effectively reduces the impact of noise on fitting results. Compared with
traditional algorithms, the fitting error using this method under the same data conditions
is 0.09 mm, representing a 76.32% reduction in error and a significant optimization of the
measurement results.

(2) Through comparison with traditional manual tape measure methods, the digital
measurement method proposed in this paper demonstrates higher accuracy in measuring
the radius of main arch rib components, with radius deviation fluctuations less than
±0.3 mm, fully meeting the measurement accuracy requirements. Meanwhile, the MDE
value of the main arch ribs ≤ 1.6 mm, further indicating that the point cloud data of
each sliced segment from scanning highly matches the point cloud data of the design
CAD model. Additionally, in terms of efficiency, our method improves upon traditional
tape measure methods by 5%, verifying the reliability and effectiveness of this method in
practical applications.

In our future research, we plan to introduce higher-precision spatial SLAM (Simul-
taneous Localization and Mapping) techniques to enhance the integrity and consistency
of point cloud data acquisition. Additionally, we will address the issue that current scan
point clouds still contain partially irrelevant regions, semantic segmentation, and region
recognition technologies fused with deep learning, to achieve the automatic identification
and elimination of non-target areas, thereby effectively improving the data processing
efficiency and component recognition accuracy.

In summary, this paper proposes and implements a digital measurement method
for CFST arch bridge main arch ribs based on laser point clouds. This method not only
significantly improves the measurement accuracy but also provides an efficient and reliable
technical means for the component inspection of CFST arch bridges. It can effectively
replace traditional manual measurement methods and has broad application prospects for
future engineering practices.
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