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Abstract: The optimisation of road construction planning and design prioritises safety,
comfort, cost-effectiveness, and sustainability by aligning with sustainable development
goals (SDGs) and integrating life cycle assessment (LCA)-based criteria. Asphalt mixture
compaction is a critical construction-phase process that requires careful monitoring due
to its significant impact on fuel consumption, CO2 emissions, and pavement performance.
However, characterising the compaction process during the design stage is challenging
due to the unavailability of primary data, such as the compaction energy applied by the
roller on-site. This study addresses this gap by developing a methodology for deriving
compaction-energy-related data at the laboratory stage. An algorithm is proposed to
estimate key compaction parameters, specifically the locking point and compaction curves,
based on aggregate grading. Equations to improve the design of bituminous mixtures based
on compaction targets were derived. The findings support more sustainable planning,
the optimised selection of construction equipment, and improved competitive equilibria
between different pavement technologies by promoting low-carbon and energy-efficient
strategies aligned with SDGS.

Keywords: compaction; compaction energy; sustainable development goals (SDGs); aggregate
gradation; locking point; energy efficiency

1. Introduction
In the road construction sector, the optimisation of planning and design criteria

requires a systematic and comprehensive approach that prioritises safety, comfort, and
cost-effectiveness while also aligning with sustainable development goals (SDGs). These
factors play a crucial role in ensuring that road networks not only facilitate safe and efficient
transportation but also contribute to creating healthy and more sustainable environments
(SDG 11: Sustainable Cities and Communities). The need for infrastructures that reduce
environmental impacts and mitigate the effects of their operations on the surroundings is
part of the overall goal of improving the well-being of communities and the environment
(SDG 3: Good Health and Well-Being). Based on the above, sustainability criteria should be
integrated throughout the entire life cycle of road infrastructure, in particular during early
project stages, such as planning and design. At these stages, a sustainability assessment that
implements life cycle assessment (LCA)-based criteria becomes paramount [1,2]. One of
the most common challenges in carrying out a sustainability assessment during the design
phase is the availability of accurate data that allow for the realistic modelling of each life
cycle process. The lack of specific data presents an obstacle to achieving the high level of
detail of real-world conditions. Particularly when dealing with new pavement technologies,
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the unavailability of primary data concerning the most important life cycle processes, such
as asphalt mixture manufacturing-related processes, i.e., in-plant operations and on-site
construction-related processes, becomes a critical limitation. Indeed, the use of generic data
cannot offer a proper realistic magnitude of the effects, in particular when comparing new
materials and technologies at the design stage.

The negative impact is twofold. Indeed, not only does compaction affect environmen-
tal emissions (e.g., energy and carbon footprint), but it also governs the expected life, the
latter being crucial in the life cycle assessment and the acceptance procedures.

In this study, the focus is on the construction phase, specifically on the compaction
process. In fact, the ability to accurately assess the compaction process during the design
phase is constrained by the lack of essential data, such as the actual compaction energy
applied by the rollers in the field. In general, the on-site compaction energy density
should align with the compaction energy density achieved in the laboratory [3]. Existing
equations in the literature allow for estimating the on-site compaction energy density by
considering specific roller-related variables. Zhao et al. [3], for example, carried out an
experimental study and derived theoretical equations to quantify the compaction energy
density provided by different types of rollers (e.g., pneumatic tire roller, vibratory roller,
static steel wheel roller). These relationships take into account roller-related variables, such
as the rolling speed and time, vibration period, and physical features (including the roller
mass and the wheel width).

On-site construction processes could be less impactful compared to the production of
input materials, asphalt mixture manufacturing, and transportation-related processes [4].
Some studies report that on-site activities account for approximately 10% of the CO2 emis-
sions generated during cradle-to-gate processes, which include raw material production,
transportation, and construction operations [5]. In the specific case of asphalt pavement con-
struction, on-site construction-related impacts can primarily be attributed to the operations
of different types of mechanical equipment, including pavers, rollers, milling machines,
and trucks. Paving and rolling processes are often associated with significant fuel and
electricity consumption, so they should be carefully monitored from a technical perspective
to support low-carbon and energy-efficient construction practices. Furthermore, asphalt
mixture compaction is one of the most important processes in the pavement construction
phase. The relevance of on-site compaction-related activities is directly related to the final
performance of the pavement layer, influencing its service life and its resulting mechanical
properties [6].

When analysing the compaction of asphalt mixtures, several factors must be taken
into account:

• On-site variables. Some variables, such as asphalt mixture properties, can be controlled
during the design phase. Others, such as aspects of the construction process, are managed
by contractors during the construction phase. The factors include the following: (1) The
type and density of the underlying base course material (when on-site compaction is
concerned). To this end, it is noted that the compaction energy depends on the type
of underlayer material (e.g., subgrade soil, aggregate base course, cold mix asphalt
layer, cracked friction course, new asphalt concrete layer, or a Portland cement concrete
pavement layer). (2) The thickness of the asphalt layers. Indeed, thinner asphalt layers
could cool faster than thicker layers. It is noted that for finer-density graded mixes (above
the 0.45-power chart maximum density line), the minimum lift thickness should be three
times the nominal maximum aggregate size. However, for a coarse-graded mix (below
the maximum density line), the lift thickness should be at least four times the nominal
maximum aggregate size. (3) The environmental conditions at the time of placement
(see below). (4) The on-site procedures and machines, including the type of rollers, the
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number of rollers, and the rolling patterns used during the compaction process. (5) The
mix temperature.

• Environmental conditions. Environmental conditions (e.g., ambient temperature, wind
speed) also play a crucial role [7]. For the environmental conditions at the time of mix
placement, note that air temperature, base temperature, wind velocity, and solar flux
or cloud cover influence the compaction and the cooling rate of the mix.

• Bitumen. Asphalt binder percentage (lubricating effect) and type, where different
methods of classifications are given (penetration-based, viscosity-graded, AC, and
performance-graded, PG) and different strategies are followed, including polymer-
modified binders (using either elastomeric- or plastomeric-type materials) and crumb
rubber + binder blends (including asphalt rubber).

• Aggregate. Aggregate grading plays a pivotal role in determining the compaction
behaviour of asphalt mixtures [8,9]. In more detail, aggregate type, grading, and
characteristics, including angularity (cf., fine aggregate angularity, FAA, and coarse
aggregate angularity, CAA) are important. There are many aggregate types, including
sedimentary rocks (e.g., limestone), igneous rocks (e.g., basalt and granite), and their
properties (e.g., absorption, soundness, angularity, surface texture, degree of flat
and/or elongated particles, and percentage of crushed rocks) affect the compactability
of the resulting mixture.

• Filler. The filler percentage and type affect compaction. Furthermore, the dust propor-
tion (the filler to bitumen ratio) may also affect compaction.

• Type of mixture. The type of bituminous mixture, e.g., dense-graded mixes, DG, (fine-
graded, coarse-graded, densely-graded mixes), gap-graded mixes, open-graded mixes,
OG, (as a friction course or as a base layer), and stone matrix asphalt, SMA, mixes,
influences the final result. Importantly, several factors may cause mixtures to be stiff or
tender, including the following: (1) An excessive moisture content. (2) Excessive light
ends in the asphalt cement. (3) An excess bitumen percentage. (4) Rounded aggregate
particles (cf., FAA and CAA parameters). (5) An excess percentage of fine aggregate
(0.3–0.6 mm). (6) An insufficient filler percentage (<0.075 mm). (7) Poor bonding to
the underlayer pavement. (8) An excessive mix temperature. (9) Poor compaction
techniques (quick stops and starts by a steel-wheeled roller, need for pneumatic tyre
rollers). (10) Contamination with petroleum products.

Finally, it is noted that compaction results can be analysed in terms of Volumetric
Properties, including the air void content, AV, voids in mineral aggregate, VMAs, and voids
filled with asphalt, VFAs.

1.1. Compaction Energy in the Laboratory and On-Site: An Analysis of the Literature

As mentioned above, the compaction energy provided by the rollers during the rolling
process should be consistent with the compaction energy density obtained in the laboratory
according to a specific compaction procedure, such as the Superpave gyratory.

The significance of gyratory compaction and how it relates to on-site procedures
was studied by many authors [10–13]. The parameters that provide information on the
compaction of asphalt mixtures in the laboratory and the related main information are
summarized below.

• Nini.

For the initial gyration (Nini), note that the values of gyrations in the range 1–8 are
supposed to pertain to the compaction energy applied by the paver screed [14].

Based on AASHTO 2000 [12], the Nini ranges from six to nine (based on ESAL traffic,
where lower values correspond to less than 0.3 million ESALs in 20 years, while higher
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values correspond to a 20-year traffic loading of more than 30 million ESALs). It represents
a tenderness control, where the required density should be lower than 89–91.5%Gmm.

• Ndes.

For Ndes, it is noted that Ndes corresponds to the design density (and air void content
(AV)), which is the same as that expected in the field after the indicated amount of traffic.
Ndes corresponds to a content of 4% air voids for dense-graded friction courses. It is noted
that Ndes may correspond to a content of about 20% air voids for porous asphalt concretes
and to 10–14% for semi-dense (“grenu”) mixtures (cf., [15]).

• Compaction energy index (CEI).

The CEI refers to the area between the eighth gyration and 92%Gmm [11,16,17]. Previous
studies have referred to the density prerequisite of 92%Gmm at the completion of construction
works (before traffic opening) [10]. To achieve this density requirement, the CEI can be evaluated
from the densification curve (%Gmm vs. the number of gyrations) obtained from the output of
the gyratory compactor. As defined by [10], the CEI is the area under the densification curve
between the eighth gyration and the number of gyrations corresponding to the specified target
density of 92%Gmm. This area represents the construction effort required in laying operations.
The first value in the range of gyrations (eighth gyration instead of the first gyration) simulates
the pre-compaction effort provided by the paver action during the laydown of the mixture [10].
It is worth noting that a preliminary compaction effort should be considered prior to the first
roller pass, taking into account the effort provided by the paver during laydown operations [11].
This compaction energy density could also be simulated by the compaction energy density
applied during the first i-gyrations, where i-th is identified by the Nini (the first 10 gyrations
according to Italian main specifications) [18,19]. It should be noted that a higher value of the CEI
is associated with greater difficulty in compacting the mixture, whereas mixtures with lower
CEI values demonstrate improved workability [10,20]. In study [16], the CEI is estimated to
range from 333 to 613, with higher values recorded for open-graded mixtures. Also, the authors
of [17] report values about two times higher for mixtures presenting high percentages of coarse
aggregate compared to dense-graded mixtures.

• Locking Point (LP).

The Ndes and locking point concepts somehow overlap. The locking point is the
number of gyrations where the sample being gyrated loses less than 0.1 mm in height
between successive gyrations [21]. According to Mohammad and Shamsi [11], the locking
point is reached when, for three consecutive gyrations, the height change rate stabilizes
at or falls below 0.05 mm. This value represents the threshold beyond which further
compaction may lead to aggregate damage [20,22]. Other methods to determine the LP are
used by [16,22,23].

• Compaction densification index (CDI).

The CDI is the area under the densification curve from the first gyration to the LP.
This parameter provides information about the compactability of the asphalt mixture [11].
In study [24], the CDI is estimated as the area under the compaction curve from N = 8 to
92%Gmm. Ref. [25] refers to the CDI as the area from the eighth gyration to 92%Gmm. The
authors of [9] assess the CDI as the area from 88%Gmm to 92%Gmm.

• Traffic densification index (TDI).

The traffic densification index (TDI) represents the integral of the densification curve
from the LP to the number of gyrations associated with 98%Gmm [10,26]. Ref. [11] defines
this index as the area under the densification curve from the LP to N = 205, whereas other
studies [9,27] refer to the area from 92%Gmm to 98%Gmm.
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This index correlates with the stability of the mixtures under traffic-induced stress.
Higher TDI values are associated with the greater stability of the mixture [11]. For this
parameter, the values found in the literature are estimated to range from about 200 [26] to
more than 5000 [20].

• Nmax.

Nmax refers to the laboratory density that should never be exceeded in the field (exces-
sively low air voids and potential rutting). At Nmax, the AV should never be below 2%.

Table 1 reports the ranges for the abovementioned parameters and the ranking of
in-lab compaction levels.

Table 1. Approximate ranking of in-lab compaction levels.

N = 1 N = 8 Nini N@92%Gmm Ndes LP N@98%Gmm Nmax

(*) (**) 6–10 (***) 50–140 30–100 (****) 75–230

Constraints AV@Nini
AV@Ndes,
VMA@Ndes,
VFA@Ndes

∆h AV@Nmax

Energy-related
indicators

CEI

CDI

TDI

Symbols. N = number of gyrations. Gmm: theoretical maximum density. LP: locking point. AV: residual air voids.
VMA: voids in mineral aggregate. VFA: voids filled with asphalt. ∆h: height change rate. CEI: compaction energy
index. CDI: compaction densification index. TDI: traffic densification index. Notes: (*) N = 1: This number is
used in the indicator CDI (compaction densification index). (**) N = 8: This number is used in the indicator CEI
(compaction energy index). (***) Nini: 6–9: [12]; 10: [18]. (****) This number is used in the TDI. LP: [9,11,16,20,22,23].
AV@Nini = 11–15 (BAC, BIC, DGFC); ≥28 (PA) [18]; >8.5–11 (AASHTO, 2000). Ndes: 100–120 (BIC, BAC, ANAS);
120–140 (DGFC, ANAS); 50 (PA, ANAS); 50–125 (AASHTO, 2000). AV@Ndes: 4% (AASHTO, 2000); 3–6% (BAC,
BIC, DGFC, ANAS); ≥22% (PA, ANAS). VMA@Ndes: ≥11–15% (AASHTO, 2000). VFA@Ndes: 65–80 (AASHTO,
2000). VFA@Ndes: 65–80 (AASHTO, 2000). Nmax: 180–200 (BIC, BAC, ANAS); 210–230 (DGFC, ANAS); 130 (PA,
ANAS); 75–205 (AASHTO, 2000). AV@Nmax: ≥2% (BAC, BIC, DGFC, ANAS, AASHTO, 2000); ≥20% (PA, ANAS).
BAC = base course, BIC= binder course, DGFC = dense graded friction course, PA = porous asphalt.

• On-site versus in-laboratory compaction

In-lab compaction aims at simulating on-site compaction, and the reasonableness of
this relationship was demonstrated (cf., [28]). Anyhow, many factors interpose between
on-site and in-lab compaction and the pertaining energy density. The degree of compaction
(%) is proportional (nonlinear proportionality) to the compaction energy density (kJ/kg)
and the number of roller passes (cf., [3,15]). Methods to relate the number of passes of a
given roller type to the energy and then to the obtained level of compaction were set up
in [3,15]. Furthermore, the frequency response functions of the pavement structure emerge
as a key factor of compaction and performance when dealing with different infrastructure
types (e.g., roads, bridges, and tunnels, cf., [29–31]).

1.2. Objectives of the Study

Based on the above, the primary objective of this study is to develop a method to derive
compaction energy-related data at the laboratory stage (cf., Figure 1). This approach addresses
the lack of primary data that limits the accurate modelling of the compaction process and its
related energy consumption during the design phase. To this end, a methodology is set up to
estimate key compaction parameters, specifically the locking point and compaction curves,
based on aggregate grading and related parameters, e.g., the percentages of dust and sand,
the distance of the curve from the maximum density curve (dist), and the coarse aggregate
percentage. The final scope includes balancing the need for adequate compaction against
the risk of over-compaction (damaging the aggregate structure) or insufficient compaction
(reducing life expectancy) and supporting the assessment of the sustainability of competing
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solutions (i.e., competitive equilibria in terms of Global Energy Requirement, GER). In simpler
terms, the study seeks to translate laboratory data into more sustainable field practices
(e.g., better equipment selection and improved planning of operations) by optimising the
compaction process at the laboratory stage.

 

Composition

•Dust
•Sand
•dist
•Coarse

Compaction 
curves

•Parameters
•Locking 

Point

In-lab energy

•CEI
•CDI
•...

On-site energy

•Paver
•Roller
•...

Mechanics and 
sustainability

•Over-
compaction

•Low 
compaction

•GER

Figure 1. Scopes and objectives.

2. Materials and Methods
2.1. Modelling

Figure 2 illustrates the rationale behind the method. As mentioned above, the method
aims at setting up an algorithm to predict the LP based on aggregate gradation (G). Based
on the relationship between the LP and Ndes, pieces of information about the compaction
energy (E) and competitive equilibria (CE) are derived. This allows for the selection of the
best pavement technology.

Figure 2. The algorithm for the prediction of the compaction effort at the design stage. Symbols. G:
aggregate gradation; LP: locking point; Ndes: design gyrations; ϕ: objective function; E: in-lab and
on-site compaction energy; CE: competitive equilibrium.

By referring to the objective function, ϕ, the following can be noted:

• Reaching Ndes (i.e., the corresponding AV content, e.g., 4% for a dense mixture) is the
main aim of the compaction effort. This implies that the LP should be higher than
Ndes. On the contrary, the constraint at Nmax does not conflict with having the LP
between Ndes and Nmax, nor with having the LP higher than Nmax.

• Having the LP in between Ndes and Nmax could allow reaching the required require-
ments through lower energy.

• The fact that the LP must be higher than Ndes implies that the function min abs
(LP-Ndes) could not fulfil the rationale behind the compaction effort.

• On the other hand, having, as an objective, the function min (LP-Ndes) could be
fallacious because of the need to have LP > Ndes.

• Based on the above, the objective function max (LP-Ndes), with LP-Ndes > 0 as a
threshold value, is here tentatively set up (Equation (1)).

ϕ = max (LP−Ndes) (1)
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For the rationale behind Equation (1), it is noted that from an energy standpoint, the
objective function above refers to the minimisation of the first derivative of AV as a function
of the compaction energy, where if the energy increases, AV decreases.

This corresponds to the maximization of the Gmm%, where the latter is the ratio
of Gmb and Gmm, with Gmb being the bulk-specific gravity and Gmm the theoretical
maximum specific gravity.

As is well known, N > LP (where N is the number of gyrations and LP is the locking
point) represents a quasi-zero condition of the first derivative of Gmm%, a condition in
which the first derivative (speed) of the compaction process is negligible, and further
compaction efforts are ineffective.

This implies that the physical and engineering rationale behind the max (LP-Ndes)
function is to avoid this “ineffective” energy status, where, despite energy increases (i.e.,
gyrations), it would be very difficult to match the target air void content.

By referring to the derivation of the in-lab compaction energy from the LP, the follow-
ing is noted:

• The in-lab compaction energy can be estimated by using key compaction parameters
derived from the compaction curve, such as the CDI and the LP.

• The CDI is proportional to the compaction effort applied in the laboratory (and thus
to the energy needed to achieve a given density). It is a useful measure for predicting
on-site compaction efforts from laboratory data.

• The LP is a key indicator in this derivation as it translates into the optimisation of
aggregate packing without the risk, for example, of over-compaction, which could
lead to aggregate damage.

• By integrating the CDI and LP into the analysis, the in-lab compaction energy can be
used to predict the energy required for on-site compaction. This prediction accounts
for factors such as the mixture composition and design requirements, allowing for the
optimisation of both the mixture and the pavement design.

By referring to the derivation of the on-site compaction energy from the in-lab com-
paction energy, the following is noted:

• The on-site compaction energy density (Joule/kg), which is provided by the rollers
during the rolling process, should be consistent with the compaction energy density
obtained in the laboratory (see [3]).

• On the one hand, the relationship between the energy density associated with com-
paction and the CDI is mixture-specific because of the many variables involved in both
the production and construction processes; on the other hand, the on-site compaction
energy can be derived by considering roller-specific parameters (i.e., type, weight) and
the number of passes required to obtain the specific degree of compaction.

• Based on the above, the on-site compaction energy should be scaled from lab-derived
values using mixture-specific coefficients and field parameters to ensure that the field
compaction process meets the density and structural integrity requirements.

By referring to the derivation of the framework of competitive equilibria, note the following:

• Under the hypothesis of having different pavement technologies to compare, where
the grading and the additives are different but comply with the contract specifications,
the method set up herein could have the potential to allow the derivation of a further
key performance indicator (KPI) useful for both energy estimation and sustainability
assessment. Competitive equilibria among different technologies can be analysed by
considering the environmental impact and expected life of each concurrent pavement
technology (cf. [4]).
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2.2. Derivation of the Parameters of the Model

The following main steps were implemented to develop the model:

1. The selection of materials and data collection. Twenty-two asphalt mixtures were
designed and tested. This dataset was increased using data from the literature to
extend the range of the analysis.

2. The compaction curve analysis. The Superpave Gyratory Compactor (SGC) was
used to compact cylindrical specimens for each mixture. By analysing the resulting
compaction curves, the LP was determined for each mixture.

3. The correlation Analysis. Pearson correlation coefficients were analysed to assess
the relationship between compaction-curve-related parameters and the aggregate
grading and between the LP and the aggregate gradation parameters (e.g., passing
percentages for different sieve sizes, fine content, and dust content).

4. Regression modelling. A multivariable regression analysis was carried out to develop
a predictive model for both the compaction curve parameters and the LP, based on
aggregate-grading-related variables. The accuracy of the model was evaluated by
comparing the predicted values against the observed data.

5. The Ndes and LP analyses. For each mixture, the relationship between the LP (pre-
dicted values) and the Ndes (the values set up in the contract specifications as a part
of the job mix formula) was analysed. The model set up above, where the proximity
of the LP to Ndes from the right is an indicator of the energy efficiency of the mixture,
was implemented and validated.

6. Remaining steps. The remaining steps are as follows: (6.1) The estimation of the in-lab
and on-site compaction energy. (6.2) The analysis of competitive equilibria and the
derivation of the targets for the optimisation of the mixtures.

Concerning the aggregate-grading-related variables, the following were considered:

• The percentage passing (Pi) through the following sieves (i): 20, 16,12.5, 9.5, 4.75, 2.36,
1.18, 0.6, 0.3, 0.15, 0.075 mm.

• The squared distance from the maximum density line, dist (Equation (2)), defined as
the square of the average distance between the maximum density curve and the actual
gradation (considering the following sieves 31.5, 20, 16, 12.5, 8, 4, 2, 0.5, 0.25, and 0.075 mm).

dist =
Nmax

∑
0.075

(Pi −
(

Si
Smax

)0.45
)2


i

(2)

where Pi is the percentage passing through the sieve size i, Si is the sieve size i, and
Smax is the maximum sieve size where the passing percentage is 100%.

• Sand or fine percentage, sand (the percentage passing through the 2.36 mm sieve and
retained on the 0.075 mm sieve).

• Dust (or filler) percentage, dust (the percentage passing through the 0.075 mm sieve).
• Coarse aggregate, coarse (obtained as 100 − P2.36).

2.3. Materials

In order to derive the relationship between gradation and the locking point, 22 mix-
tures were produced and tested in the laboratory. The summary of the mixtures investigated
in the study is reported in Table 2.
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Table 2. A summary of the mixtures produced and tested. Symbols. Mixture ID: mixture identifier.
b: binder content expressed in %; a modified asphalt binder was used, type 50/70. NMAS: nominal
maximum aggregate size. Tmix: mixing temperature. Ndes: design gyrations.

Mixture ID b [%] NMAS [mm] Tmix [◦C] Ndes

M_1 5.56 9.8 180 130

M_2 4.20 14.8 180 50

M_3 4.20 14.8 180 50

M_4 4.80 12.8 180 50

M_5 6.31 5.8 140 130

M_6 6.98 7.2 180 130

M_7 6.98 7.2 180 130

M_8 6.98 7.2 180 130

M_9 6.98 7.3 180 130

M_10 7.24 7.1 180 130

M_11 6.35 7.0 140 130

M_12 6.35 7.0 140 130

M_13 6.35 7.0 140 130

M_14 6.35 7.0 140 130

M_15 6.35 7.0 140 130

M_16 6.35 7.0 140 130

M_17 4.83 14.2 160 50

M_18 4.70 14.2 160 50

M_19 3.91 14.0 160 50

M_20 3.83 14.3 160 50

M_21 4.85 13.9 160 50

M_22 4.97 14.5 180 130

Furthermore, in order to improve the amount of data, the data from Pouranian and
Haddock [16] were considered.

Figures 3 and 4 illustrate the following:

• The gradation of the mixtures produced and tested in this study (Figure 3);
• The gradation of the mixtures from Pouranian and Haddock [16] (Figure 4).

 

Figure 3. Aggregate gradations of the mixtures produced and tested in this study.
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Figure 4. Aggregate gradations of the mixtures collected from the literature [16].

The Superpave Gyratory Compactor was used to compact the material into 100 mm
specimens. For each mixture, the height curve as a function of the number of gyrations
was derived, and the locking point was assessed based on the definition by Mohammad
and Shamsi [11]. According to these authors, the locking point is defined as the number
of gyrations after which the change in height is equal to or less than 0.05 mm for three
consecutive gyrations.

3. Results and Discussion
3.1. Compaction Curves

The following types of equations were used to fit the %Gmm curve:

• The power law (Equation (3)):
%Gmm = a·Nb (3)

• The logarithm law (Equation (4)):

%Gmm = c·lnN + d (4)

• The three-parameter quotient (Equation (5)):

%Gmm = (h + l·N)/(m + N) (5)

• The Moutier model (Equation (6)):

%Gmm =
[
C0 + C∞·β4·Nβ3·(−C0 +C∞)

]
/
[
1 + β4·Nβ3·(−C0+C∞)

]
(6)

where N is the number of gyrations, and a, b. . .m, C0, C∞, β3, and β4 are the fitting
parameters. Note that

• The first and second models are the ones commonly used.
• The three-parameter quotient is herein set up to properly account for %Gmm variabil-

ity, where two theoretical requirements should be fulfilled: (1) Having a reasonable
upper limit of %Gmm for an N that tends to infinity (i.e., l ≤ 100%). (2) Having a
reasonable behaviour close to zero (e.g., h/m ∼= 55–90%).

• The Moutier model [32] has four parameters. It has an upper limit (when N tends to
infinity) and a lower limit different from 0 (when N tends to 0). Unfortunately, the
exponent is linked to the difference between the upper and lower levels, and this could
cause issues when fitting real curves.
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Table 3 illustrates the results obtained when applying the four models above to the
mixtures considered (three cases are reported).

Table 3. Parameters of the compaction curves.

Parameters/Outputs M_3 M_4 M_22

Power law:
%Gmm = a·Nb

a 68.63 64.48 79.33

b 0.06 0.05 0.04

%Gmm@0 - - -

%Gmm@8 77.33 71.60 86.07

%Gmm@Ndes 85.91 78.53 96.01

%Gmm@∞ 121.17 106.22 116.97

Logarithm law:
%Gmm = c·lnN + d

c 4.84 3.90 3.58

d 67.16 63.43 78.57

%Gmm@0 NA NA NA

%Gmm@8 77.23 71.53 86.02

%Gmm@Ndes 86.11 78.67 96.00

%Gmm@∞ 115.14 102.01 114.03

Three-parameter quotient:
%Gmm = (h + l·N)/(m + N)

h 2638.41 2389.59 2787.04

l 96.19 86.69 99.83

m 36.51 35.44 33.96

%Gmm@0 72.27 67.42 82.06

%Gmm@8 76.57 70.97 85.45

%Gmm@Ndes 86.10 78.69 96.15

%Gmm@∞ 96.15 86.65 99.80

Moutier model

C0 53.48 48.14 62.06

C∞ 111.47 119.21 130.97

b3 0.01 0.00 0.00

b4 0.33 0.30 0.34

%Gmm@0 53.48 48.14 62.06

%Gmm@8 76.87 71.54 86.02

%Gmm@Ndes 86.07 78.55 96.02

%Gmm@∞ 106.38 101.29 113.19

Moutier model where C∞ is
constrained (C∞ ≤ 100%)

C0 69.99 51.21 79.86

C∞ 100.00 100.00 100.00

β3 0.02 0.01 0.04

β4 2867.66 0.35 0.06

%Gmm@0 69.99 51.21 79.86

%Gmm@8 99.99 71.39 85.37

%Gmm@Ndes 100.00 78.72 95.98

%Gmm@∞ 100.00 95.30 99.93

Based on the results, the following is noted:

• The power law and the logarithm law fail to represent what happens at the beginning of
the compaction procedure, where, as a result of gravity (as well as the normal pressure
applied), the density has a given finite value, different from zero. Here, it is noted that
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not only do the two models fail to represent what happens (cf., “–” and “NA” in Table 3),
but, at the same time, what happens in the laboratory could be quite different from what
happens on-site. Indeed, the initial pressure (600 kPa) exerted by the head of the gyratory
compactor does not seem to represent the action of gravity + paver bar well. Further
studies will be needed. From a practical standpoint, this issue at N = 0 could have more
theoretical than practical consequences, simply considering what happens at N = 1 or
N = 8.

• The power law and the logarithm law fail to represent what happens for a high number
of gyrations. Indeed, when N increases for sample heights, it should be hmin ≤ h(N)
and for air voids, AV = 1 − Gmb/Gmm ≥ 0. Consequently, for %Gmm, it should be
%Gmm = Gmb/Gmm = hmin/h(N) ≤ 100%. For the sake of comprehensiveness, slight
deviations from the equations above could happen because of a change in Gsb due to
aggregate pulverisation, but these inconsistencies of the two models above remain clear.

• For the Moutier model mentioned above, in contrast with the aim (i.e., having a
reasonable upper limit when N tends to infinity), for actual curves, the boundary
condition for %Gmm (i.e., C∞ ≤ 100%) is usually not fulfilled (cf., Table 3). Importantly,
values higher than 100% for C∞ were also obtained by [33]. The theoretical problem
was here solved by imposing C∞ ≤ 100% in the optimisation process, even if the
values obtained at Ndes for M_3 are quite far from the reality.

Figure 5 illustrates the compaction curves obtained for the 22 mixtures designed and
tested (M_1–M_22).

 

Figure 5. Compaction curves.

By modelling the compaction curves using a power law (%Gmm = a·Nb), the values
of “a” and “b” were obtained for the 22 mixtures. The values are reported in Table 4.

Based on K-means clustering, the curves in Table 4 essentially fall into four distinct
groups: (1) M_20, M_19, M_18, M_17, M_4, M_21, M_2, M_3, where the centroid (a, b) is
(66, 0.04). (2) M_11, M_16, M_14, M_15, M_13, M_12, where the centroid is (76, 0.05); (3) M_9,
M_22, M_7, M_8, M_10, M_1, M_6, where the centroid is (80, 0.04). (4) M_5.

However, the following further observations should be taken into account (cf., Figure 5):
(1) M_2 and M_3 have volumetric and compaction characteristics that differ from the remaining
mixtures of the group 1 for a high number of gyrations. This would suggest splitting the first
group into two different sets. (2) Even if groups 2 and 3 cluster differently, they are basically
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dense-grade mixtures, and this appears evident when N increases, and the compaction curves
tend to AV values below 10%. This would suggest treating groups 2 and 3 above together.

Table 4. Parameters of the compaction curves (power law).

Mixture ID a b

M_1 80.16 0.04

M_2 67.91 0.06

M_3 68.63 0.06

M_4 66.70 0.04

M_5 86.56 0.01

M_6 80.33 0.04

M_7 79.42 0.04

M_8 79.50 0.04

M_9 78.11 0.04

M_10 79.86 0.04

M_11 75.61 0.05

M_12 76.37 0.05

M_13 76.24 0.05

M_14 75.74 0.05

M_15 76.08 0.05

M_16 75.63 0.04

M_17 66.54 0.03

M_18 66.41 0.04

M_19 65.70 0.03

M_20 64.79 0.04

M_21 66.84 0.04

M_22 79.33 0.04

Based on the above and considering the gradation of the mixture (dense or porous),
the following four groups can be identified:

• The OG group (M_4, M_17, M_18, M_19, M_20, M_21), identified above as the main
part of cluster 1.

• The intermediate group IN (M_2, M_3), identified above as a part of cluster 1.
• The DG group (M_1, M_6, M_7, M_8, M_9, M_10, M_11, M_12, M_13, M_14, M_15,

M_16, M_22), assembling clusters 2 and 3 above.
• The one-datum cluster M5 (M_5, cluster 4 above).

This separation highlights the significant influence of aggregate gradation on com-
paction behaviour. In particular, the lower values of “a” and the slightly lower values of
“b” recorded for open-graded mixtures can be associated with the following:

• A higher initial AV (air void content). Indeed, y (1) = a = Gmb (1)/Gmm = −AV(1) + 1;
then, AV(1) = 1 − y(1) = 1 − a/100, resulting in about 34% for the OG cluster versus
22% for the DG cluster;

• A slower compaction “response”. In contrast, dense mixtures show higher val-
ues of the compaction parameters, reflecting a more rapid compaction process. In-
deed, y′(50) = a·× b·× (50)ˆ(b − 1) = a·× b/(50)ˆ(1 − b), resulting in a slope of about
0.06 (OG) versus about 0.08 (DG).

The characterisation of the four groups is summarised in Table 5.
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These findings are in line with the results obtained by Leiva and West [17], who observed
improved compactability behaviour in fine-graded mixtures. Their study concluded that
gradation is one of the most influential factors affecting mix compaction in the laboratory.

Furthermore, as reported by [34], it should be noted that mixtures with the same NMAS
but different gradation types require different levels of compaction effort to achieve the target
density. A clear example is M_22, which has an NMAS of 14.5 mm, placing it within the range
of the OG mixture cluster (these mixtures have an average NMAS of 14 mm). However, its
compaction curve is included in the DG cluster behaviour, indicating that, despite similar
NMAS values, gradation type significantly impacts the compaction behaviour.

Table 5. Average values for compaction curves.

Parameter Group

OG Intermediate DG M5

a 66.16 68.27 77.88 86.56

b 0.037 0.060 0.043 0.012

%Gmm@1 66.16 68.27 77.88 86.56

AV@1 [%] 34 32 22 13

y′@1 2.46 4.12 3.37 1.06

%Gmm@50 76.51 86.45 92.26 90.79

AV@50 [%] 23 14 7 9

y′@50 0.06 0.10 0.08 0.02

Taken together, these considerations suggest how the gradation type plays a crucial
role in characterising the compaction process of asphalt mixtures, directly influencing the
degree of compaction required or achievable.

3.2. The Analysis of the Relationship Between the Aggregate Grading and a, b

As is well known, the compaction curve is affected by composition factors (including
aggregate grading and properties), involved processes (including temperatures), and other
minor effects (including sample heights), where the complexity increases when considering
on-site versus in-lab production. In the pursuit of investigating the main variables that
affect in-lab compaction curves, in order to improve the number of cases for the analysis of
LP dependence on grading, three sets were used:

• The dataset of 22 mixtures produced and tested at UNIRC.
• The dataset of 17 mixtures studied by Pouranian and Haddock [16].
• The dataset of 39 mixtures, including both the sets above.

Table 6 provides the Pearson correlation coefficients for the three datasets (17 mixtures,
22 mixtures, and 17 + 22 mixtures). This analysis allows us to understand the relationships
between the compaction curve parameters (where a is the constant and b is the exponent of
the power law, herein denoted as a and b, respectively) and the aggregate-grading-related
variables and, thus, how the latter affect the compaction behaviour. The grading-related
variables are dist, sand, dust, and coarse, as defined in Section 2.2.
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Table 6. Pearson coefficients for compaction curve parameters (a and b) vs. grading-related variables.
Average values for compaction curves. Note: correlations between parameters a and b and the “dust”
variable for the 17-mixture dataset cannot be considered significant, as the mixtures in this dataset
contain little to no filler.

Parameter of the
Compaction Curve

Dataset
Aggregate-Grading-Related Variables

Dist Sand Dust Coarse

a
17 mixtures −0.95 0.93 - −0.93

22 mixtures −0.90 0.91 0.71 −0.91

17 + 22 mixtures −0.80 0.63 0.32 −0.63

b

17 mixtures 0.85 −0.97 - 0.97

22 mixtures 0.08 −0.52 0.06 0.52

17 + 22 mixtures 0.38 −0.76 0.34 0.76

These results confirm that aggregate gradation particularly affects the early stages of
compaction, as also concluded by previous studies [35]. In fact, from Table 6, for parameter
“a”, which represents the initial (N = 1) compaction level of the mixture, the following is noted:

• There is a strong negative correlation with the squared distance from the maximum
density line “dist” (−0.95 for the 17-mixture dataset, −0.90 for the 22-mixture dataset,
and−0.80 for all the data). This implies that when the gradation curve deviates more from
the maximum density line (i.e., there is a higher squared distance), the initial compaction
percentage decreases. This condition translates into a lower initial compaction for poorly
graded mixtures. This result reflects the cluster separation (e.g., DG and OG clusters)
noted in Section 3.1. Specifically, it is noted that the %Gmm@1 for the DG cluster is
higher than that obtained for the OG cluster (77.88% vs. 66.16%).

• There is a positive correlation with the “sand” variable. The coefficients range from
0.63 to 0.93, indicating that as the sand percentage increases, the initial compaction
increases as well. The sand content improves the density at early stages.

• For the “dust” variable, a strong positive correlation is recorded for the 22-mixture
dataset, while for the entire database, a weak positive correlation is observed. The first
value suggests that, for some mixtures, filler can facilitate quicker densification during
the early compaction stages.

• As a consequence of the results discussed above, a strong negative correlation was
obtained with the coarse aggregate content.

Given that lower “b” values indicate a slower response as the number of gyrations in-
creases, for all the data taken together (17 + 22), it can be noted that the negative correlation
of b (exponent) with the sand content (−0.76) indicates that higher sand contents reduce
the rate of compaction with increased gyrations. This complies with the sphere packing
model from [36], where the contact points in a sphere pack model (non-overlapping balls)
in a given, ideal configuration are a given number depending only on the dimension of the
Euclidean space (e.g., 12, cf., [37]).

The weak correlations with the other grading-related parameters suggest that these
factors do not consistently affect compaction with increased gyrations, indicating that other
factors could play a more significant role at higher gyration levels (e.g., particle shape
and binder). This observation encourages further investigation into additional factors
and multiple regression models (with more than one explanatory variable). Furthermore,
a higher number of samples, including various types of mixtures, is needed to better
investigate the compaction behaviour and improve the significance of the findings.
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The regression models developed to predict a and b based on aggregate grading are
expressed as follows:

a = β1 ×·sand + β2·× dust + β3 (7)

b = β4·× sand + β5·× dust + β6 (8)

where β1. . .β6 are the regression coefficients.
Table 7 reports the values of the regression coefficients. It is noted that these values

were calibrated using the entire dataset (17 + 22) due to the limited variability in the values
of parameter b. The latter appears to be basically governed by the known coefficient and is
slightly affected by the sand percentage.

Table 7. Regression coefficients for the prediction of a and b based on aggregate grading.

Regression Coefficients

a b

β1 β2 β3 β4 β5 β6

0.34 1.33 59.70 −4.5 × 10−4 −5.0 × 10−5 0.05

The following plots refer to the analysis of the abovementioned two-variable function.
The Y-axis reports the predicted values, while the observed values are reported on the
X-axis. Figure 6 refers to parameter a, while Figure 7 refers to parameter b. Dashed lines
refer to the equality line, while dotted lines refer to the linear regression.

 

Figure 6. The two-variable regression analysis for the observed vs. predicted values for parameter a.

 

Figure 7. The two-variable regression analysis for the observed vs. predicted values for parameter b.
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As can be seen from these results, the multiple linear regression model provides a good
fit to the experimental data, with determination coefficients of greater than 0.6 (R2 ranges
from 0.58 to 0.89).

3.3. The Analysis of the Relationship Between the Aggregate Grading and the LP

Table 8 reports the Pearson coefficients that refer to the 39-mixture full dataset. Of the
mixtures, 17 were derived from study [16], while the remaining 22 are from the present
study. It is noted that the data from Pouranian have a quasi-null content of filler.

Table 8. Pearson coefficients for LP vs. grading-related variables. Dataset: 17 + 22-mixture dataset.

Grading-Related Variables r

Pi

20 0.26

16 −0.03

12.5 −0.15

9.5 −0.15

4.75 −0.46

2.36 −0.65

1.18 −0.66

0.6 −0.63

0.3 −0.04

0.15 0.61

0.075 0.69

dist 0.24

sand −0.72

dust 0.69

coarse 0.72

In the analysis, the gradation-related variables defined in Section 3.2 were considered.
The data reported in Table 8 show that the most significant correlations with LP refer

to sand, dust, and coarse percentages. In particular, the strong negative correlation between
the LP and the fine aggregate content suggests that higher sand/fine percentages are
strongly associated with a lower LP. This condition indicates that, during the compaction
process, mixtures with a high fine aggregate content tend to reach the locking point more
quickly. From a technical point of view, these mixtures can resist further compaction earlier
in the process.

Strong positive correlations can be observed between the dust (filler) content and the
LP, as well as between the coarse aggregate content and the LP (with Pearson coefficients
of 0.69 and 0.72, respectively). This indicates that mixtures containing more particles of
these sizes require more gyrations to reach the LP.

These results can be summarised as follows:

• Higher sand/fine percentages correspond to lower locking points. Specifically, the
regression analysis indicated that sand percentages can explain about 52% of the
variance of the LP.

• Higher dust/filler percentages correspond to higher locking points. Dust percentages
can explain about 48% of the variance of the LP.

This behaviour is better detailed below (cf. Figures 8–14, where dotted lines refer to
linear regressions).
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Figure 8. Sand percentage (X-axis) vs. locking point (Y-axis). Note: the 17-mixture dataset [16].

 
Figure 9. Sand percentage (X-axis) vs. locking point (Y-axis). Note: the 22-mixture dataset (from the
present study).

 
Figure 10. Sand percentage (X-axis) vs. locking point (Y-axis). Note: the 39-mixture dataset (17 + 22).

 
Figure 11. Squared distance (X-axis) vs. locking point (Y-axis). Note: the 17-mixture dataset [16].
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Figure 12. Squared distance (X-axis) vs. locking point (Y-axis). Note: the 22-mixture dataset (from the
present study).

 
Figure 13. Squared distance (X-axis) vs. locking point (Y-axis). Note: 39-mixture dataset (17 + 22).

  
(a) (b) (c) 

Figure 14. Two-variable regression analysis for LP.

Case 1. When the data from [16] are considered, the following equation applies (see
Figure 8):

LP = −0.60·sand + 69.75

R2 = 0.74
(9)

where LP stands for locking point, and “sand” refers to the percentage passing through the
2.36 mm sieve and retained in the 0.075 mm sieve.
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Case 2. When the results of the experiments carried out in the present study are
considered, the negative correlation between the LP and sand is confirmed, even if lower
determination coefficients are obtained (see Figure 9):

LP = −0.39·sand + 71.14

R2 = 0.08
(10)

Case 3. When all the data are considered (17 + 22), the following results are obtained
(see Figure 10):

LP = −0.64·sand + 73.51

R2 = 0.53
(11)

In terms of distance (dist), the following applies (y = LP; x = dist):
Case 4. For the dataset from [16] (see Figure 11),

LP = 0.07·dist + 32.09

R2 = 0.60
(12)

Case 5. For the results obtained in the present study (the 22-mixture dataset) (see
Figure 12),

LP = −0.01·dist + 67.92

R2 = 0.03
(13)

Case 6. For the entire dataset (17 + 22-mixture dataset) (see Figure 13),

LP = 0.02·dist + 50.90

R2 = 0.06
(14)

3.4. Regression Model Analysis for LP

The regression model developed to predict the LP based on aggregate grading is
expressed as follows:

LP = A·sand + B·dust + C (15)

where A, B, and C are the regression coefficients.
Table 9 reports the values of the regression coefficients for each dataset.

Table 9. Regression coefficients for the prediction of LP based on aggregate grading.

17-Mixture Dataset 22-Mixture Dataset 39-Mixture Dataset

A −0.84 −0.89 −0.45

B 31.03 5.35 2.27

C 78.72 44.61 59.93

R2 0.90 0.70 0.69

It is noted that while the dataset containing 17 mixtures includes mixtures without
filler (cf., Section 3.3), the remaining data refer to cases with a given percentage of filler. This
could explain the variations of the coefficient B. This point calls for further investigations.
The following plots (Figure 14) refer to the analysis of the abovementioned two-variable
function. The Y-axis reports the predicted values, while the observed values are reported
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on the X-axis. The scatterplot (a) refers to the data from [16], plot (b) refers to the data
herein derived, while plot (c) refers to the entire dataset.

3.5. Analysis of LP-Ndes Data

Figure 15 refers to the LP data (predicted) and Ndes data (as per contract specifications)
for the 22-mixture dataset.

 
Figure 15. LP-Ndes for the 22-mixture dataset.

For the 22-mixture dataset, the average observed LP is 65, the average predicted LP is 67,
while the Ndes ranges from 50 to 130.

For the 17-mixture dataset, the average observed LP is 43, the average predicted LP is 40,
while the Ndes cannot be assessed, being only research-related mixtures.

For the samples that refer to the experiments carried out, LP-Ndes has an average of −34,
while for the set from Pouranian and Haddock [16], this value reaches a value of −57. This
means that these mixtures are often not able to achieve the desired level of compaction.

The following analysis examines in more detail what happens in two selected scenarios.
For the mixture M_1 (basically a DGFC), LPobserved = 50 and %Gmm = 93%, LPpredicted = 67

and %Gmm = 94, Ndes = 130 and %Gmm@Ndes = 95%. This condition illustrates that even if
the first derivative of %Gmm as a function of N is quite low, M_1 is able to achieve the target.

For the mixture M_4 (basically a PA), LPobserved = 98 and %Gmm = 82%, LPpredicted = 72
and %Gmm = 81%, Ndes = 50 and %Gmm@Ndes = 80%. This condition illustrates that M_4 is
able to achieve the target at Ndes, well before tending to the less efficient dominion of gyrations
(where the increase in %Gmm of 1% is obtained through about 30 supplementary gyrations).
Even if more studies are needed, this confirms that having set it up as the objective function,
ϕ = max (LP-Ndes) could fit the desirable condition.

4. Conclusions
The optimisation of road construction planning and design prioritises safety, comfort,

cost-effectiveness, and sustainability by aligning with SDGs and integrating LCA criteria.
The compaction of asphalt mixtures is a critical construction phase process. This process re-
quires careful monitoring due to its significant impact on fuel consumption, CO2 emissions,
and pavement performance. However, the characterisation of the compaction process at
the design stage is limited by the unavailability of primary data, such as the compaction
energy applied by the roller on-site. To this end, this study aims to develop a method to
derive compaction-energy-related data at the laboratory stage.

To address this, the primary objective of this study was to set up an algorithm to predict
the LP, based on aggregate gradation. To this end, the following objective function was set up
and then validated: ϕ = max (LP-Ndes). This process involved the following steps:
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1. The laboratory production and testing of 22 mixtures. Furthermore, in order to
improve the amount of data, 17 additional mixtures were collected from the literature.

2. Define grading-related variables, such as the squared distance from the maximum
density line, sand content, dust (or filler) percentage, and coarse aggregate.

3. Analyse the relationships between compaction curve parameters and aggregate grad-
ing to observe how these factors affect compaction behaviour.

4. Develop a regression model to predict the compaction curve parameters based on
aggregate grading information.

5. Analyse the relationship between aggregate grading and the LP.
6. Develop a regression model to predict the LP based on the aggregate gradation.
7. Validate the objective function by analysing the LP-Ndes data, where LP refers to the

LP predicted and Ndes data refer to contract specifications.
8. Derive information on the compaction energy at the laboratory stage by using the

predicted compaction curve parameters and the LP (i.e., the assessment of the CDI for
each mixture).

The conclusions drawn from the study include the following:

1. Compaction curves can be modelled through a number of curves. A higher number of
parameters allows for a better fit, but attention should also be focused on the intrinsic
meaning of parameters and on what happens for very low and very high numbers
of gyrations, where the constraints must be considered. The analyses carried out
demonstrated that linking the theoretical maximum and the theoretical minimum
with the exponents of the curve could lead to a bias between the supposed meaning
of the parameter (e.g., maximum %Gmm) and its value as a result of a regression
procedure (e.g., 102). The two-parameter and the three-parameter models used herein
appeared quite consistent for the cases under analysis.

2. Compaction curves can be modelled in terms of the power-law relationship expressed
as %Gmm = a·Nb, where “a” represents the initial compaction of the mixture, and
the exponent “b” is a measure of the rate of compaction as the number of gyrations
increases. From the analyses and the study of the experimental mixtures designed
and tested, it was observed that a higher value of the parameter “a” indicates a
lower initial AV content, which was identified to be typical of dense-graded mixtures.
Specifically, an average AV@1 of 22% was estimated for DG mixtures compared to
34% for OG mixtures. The slightly lower values of “b” recorded for OG mixtures can
be associated with a slower compaction “response”, with slopes of approximately
0.06 for OG mixtures compared to 0.08 for DG mixtures.

3. New relationships are herein derived to predict compaction curves through composition-
related factors. The analysis of the relationship between the compaction curve parameters
(a and b) and the aggregate-gradation-related parameters shows how the latter partic-
ularly affect the early stage of compaction (i.e., parameter “a”). The most significant
correlations are identified between “a” and the squared distance from the maximum
density line, indicating that when the gradation curve deviates more from the maximum
density line, the initial compaction percentage decreases. This condition translates into a
lower initial compaction for poorly graded mixtures. There is also a positive correlation
between “a” and the sand content, indicating that as the sand percentage increases,
the initial compaction increases as well. Obviously, this condition means that the sand
content improves the density at early stages. In contrast, it was found that a higher sand
content negatively affects the rate of compaction with increased gyrations. However, the
weak correlations observed between “b” and other grading-related variables suggest that
other factors, such as the particle shape and the binder, may play a more significant role
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in influencing compaction at higher gyration levels. For this reason, in future research,
attention will be focused on including other mixture-related variables.

4. New relationships are herein derived to predict the LP through composition-related
factors. Pearson coefficients for the LP vs. grading-related variables show that the
most significant correlations with the LP are the sand, filler, and coarse percentages.
Higher sand/fine percentages correspond to lower locking points. Specifically, the
regression analysis indicates that sand percentages can explain about 52% of the
variance of the locking point. In contrast, higher dust/filler percentages correspond
to higher locking points. Dust percentages can explain about 48% of the variance of
the locking point. The regression model analysis demonstrated that the combined
influence of the sand and dust contents explains a significant portion of the variance
in the LP.

5. On average, LP-Ndes= −34. The analysis of the trend LP-Ndes allows us to confirm
the reasonability of the objective function set up herein.

Taken together, these findings suggest the following key aspects:

• Aggregate grading control is critical for optimising the compaction process.
• The prediction of the LP at the design stage, based on aggregate-grading-related

parameters, allows for better planning and the optimisation of compaction practices.
• The characterisation of the compaction processes allows for the selection of the ap-

propriate compaction equipment at the laboratory stage, which ensures that the com-
paction energy applied during the construction phase is effective.

• Low-carbon and low-energy strategies and practices can be implemented by optimis-
ing the compaction process at the laboratory stage. In fact, the study findings allow for
translating lab data into more sustainable on-site compaction practices. It is notewor-
thy to observe that even with a negligible decrease in terms of the compaction energy,
slight increases in the expected life due to the achievement of the correct compaction
(e.g., 10%) yield appreciable savings in terms of the environmental impact per year.

• Algorithms allow for the better analysis of competitive equilibria, where competing
technologies are compared at the laboratory stage.

The following limitations and opportunities for further study apply:
This is a prototypical study. Insights and correlations herein derived for the relation-

ship between a mixture composition and its compaction- and energy-related behaviour
and quantitative outputs should be considered as a foundation and not as a final output.
To this end,

• The diversity among the mixtures that were considered (including dense-graded fric-
tion courses and open-graded friction courses) suggests that the conclusions above
could have quite a wide applicability, and the replicability of the study could be quite
high. Anyhow, a higher number of samples and a higher number of compaction-
related variables would be needed in order to improve the significance of the findings.
Indeed, the analysis should be extended to other mixture-related variables and addi-
tional factors to investigate the compaction behaviour of various mixtures better.

• This also applies to the objective function. Future research should explore more mix-
tures with different gradations and material types, considering the Akaike information
criterion (AIC), the Bayesian Information Criterion (BIC), and Cross Validation (CV)
for better selecting the best number of parameters.

• The objective function herein set up and the analyses carried out mainly refer to
sustainability (energy-related) issues. A broader spectrum of instances should be in-
volved, and the same definition of the objective function emerges as an opportunity for
further refinement towards having an objective function that includes more equations.
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• The validation of the clustering of mixtures into groups (e.g., OG, DG), the comparison
of in-lab and on-site energy densities, and the editing of guidelines for practitioners are
supplementary priorities for further research. This also includes finding a parametric
way to deal with the issues deriving from the transition from laboratory conditions to
on-site conditions (weather conditions, the actual temperatures of mixtures, and the
layer thickness).
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Abbreviations
The following abbreviations are used in this manuscript:

SDGs sustainable development goals

LCA life cycle assessment

FAA fine aggregate angularity

CAA coarse aggregate angularity

AV air void content

VMA voids in mineral aggregate

VFA voids filled with asphalt

DG dense-graded mixes

OG open-graded mixes

CEI compaction energy index

LP locking point

CDI compaction densification index

TDI traffic densification index

N number of gyrations

Gmm theoretical maximum density

GER Global Energy Requirement

G aggregate gradation

E compaction energy

CE competitive equilibrium
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KPI key performance indicator

SGC Superpave Gyratory Compactor

NMAS nominal maximum aggregate

DGFC dense-graded friction course

PA porous asphalt
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