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Abstract: The paper innovatively studies the impact of dual randomness of structural
parameters and seismic excitation on the seismic reliability of highway pile–slab structures
using the probability density evolution method. A nonlinear stochastic dynamic model
was established through the platform, integrating, for the first time, the randomness of
concrete material properties and seismic motion variability. The main findings include the
following: Under deterministic seismic input, the displacement angle fluctuation range
caused by structural parameter randomness is ±3%, and reliability decreases from 100% to
65.26%. For seismic excitation randomness, compared to structural parameter randomness,
reliability at the 3.3% threshold decreases by 7.99%, reaching 92.01%. Dual randomness
amplifies the variability of structural response, reducing reliability to 86.38% and 62%,
with a maximum difference of 20.5% compared to single-factor scenarios. Compared
to the Monte Carlo method, probability density evolution shows significant advantages
in computational accuracy and efficiency for large-scale systems, revealing enhanced
discreteness and irregularity under combined randomness. This study emphasizes the
necessity of addressing dual randomness in seismic design, advancing probabilistic seismic
assessment methods for complex engineering systems, thereby aiding the design phase in
enhancing facility safety and providing scientific basis for improved design specifications.

Keywords: highway pile–plate structure; nonlinear response analysis; stochasticity; seismic
reliability; probability density evolution method

1. Introduction
At present, the supply of land resources in highway construction is becoming increas-

ingly tight, and the prominent contradiction of having no land to occupy and no soil to rely
on has been observed. A pile–plate structure, which is a frame structure system composed
of a factory prefabricated plate girder and pipe pile, exhibits several advantages such as
resource saving, cost reduction, and high industrialization. As opposed to the traditional
fill roadbed, it features large stiffness and small settlement after construction, effectively
addressing issues related to difficult land acquisition and large quantities of fill. Neverthe-
less, many pile–plate structures pass through regions with high seismic intensity, thereby
exposing them to the risk of major engineering safety problems resulting from seismic
hazards. In seismic disasters, the severe damage to bridge engineering not only causes
enormous economic losses and social impacts but also severs the transportation lifelines
in the affected areas. For instance, the 1989 Loma Prieta earthquake resulted in hundreds
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of casualties, economic losses of USD 7 billion, and the collapse of the Cypress Freeway
overpass. The 1995 Great Hanshin (Kobe) earthquake in Japan caused nearly 6300 fatalities,
economic losses of a record USD 100 billion, severed transportation networks, and required
nearly USD 100 billion and 2 years for post-disaster recovery and reconstruction [1]. Thus,
there is an urgent practical need for carrying out in-depth seismic analysis and reliability
research of pile–plate structures.

Currently, the seismic analysis of pile–slab structures has not adequately considered
the influence of randomness on their structural behavior. In fact, both the physical parame-
ters of such structures and seismic excitations possess stochastic characteristics. Concrete,
as a multiphase composite material, exhibits stochastic mechanical properties primarily
due to the coupling effects of construction environments, construction sequences, and the
random spatial distribution of aggregates. The random distribution of aggregates is a key
factor causing stochastic variations in concrete materials, affecting the formation of initial
microcracks, the propagation of damage, and subsequent changes in mechanical proper-
ties [2–5]. According to research studies by Feng et al., the randomness of concrete results in
significant fluctuations in the nonlinear response of reinforced concrete frames [6]. During
strong earthquakes, this unpredictability of concrete materials leads to various collapse
modes, significantly influencing seismic design [7,8]. To address this issue, Zeng et al. [9]
proposed a stochastic prediction model for the crack extension process of concrete that
investigates the effect of concrete inhomogeneity on crack opening displacement, fracture
process, and crack extension trajectory. Additionally, Feng et al. [10] developed a multi-scale
stochastic damage model for concrete and applied it to the stochastic response analysis
of reinforced concrete shear wall structures, reflecting the effect of stochasticity from the
material level to the structural level. On the other hand, seismic excitation is inherently
stochastic due to variations in its source, propagation path, and site environment [11–13].
An earthquake can be considered a highly intricate stochastic process with non-stationary
time and frequency features. The limited artificially selected ground-shaking simulations
fail to cover the stochastic behavior of naturally occurring earthquakes. Currently, most of
the analyses on seismic performance of structures rely on a particular natural seismic wave
and use the finite element method to solve the problem [14–16], which poses challenges in
objectively and comprehensively characterizing such performance as well as the dynamic
damage mechanisms of presiding structures [17–19]. In a previous study conducted by
Li J et al. [20], a method was proposed to generate ground-shaking samples based on a
random function model with probabilistic description of the generated ground-shaking
samples using “source–propagation path–local site” mechanism that considers the vari-
ability of the used source parameters. Based on this, the stochastic seismic response and
reliability of structures were evaluated using a non-stationary ground-shaking stochastic
process orthogonal expansion model and probability density evolution theory [21,22].

To ensure the disaster-resistance safety of engineering structures, it is necessary to con-
duct nonlinear response and reliability analyses of engineering structures with stochastic
parameters under stochastic dynamic excitations. Specifically, classical stochastic simula-
tion methods and their improvement techniques have gained attention from scholars both at
home and abroad [23,24]. Progress has been made in the examination of stochastic reactions
of linear and nonlinear multi-degree-of-freedom structural systems, computing dynamic
and system dependability and reliability-based regulation [25–27]. Although these studies
have indeed improved the computational efficiency of the Monte Carlo method, there are
still unresolved difficulties in the analysis of non-stationary responses of general nonlinear
dynamic systems. The theory of stochastic structural analysis has generally formed three
types of stochastic structural analysis methods: stochastic perturbation theory, stochastic
simulation methods, and orthogonal expansion theory [28]. All these methods reflect the
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probabilistic characteristics of structural responses by grasping the numerical features of
structural response quantities, but they fail to comprehensively reflect the probabilistic
information of structural response quantities and encounter difficulties in dealing with the
coupling of nonlinearity and stochasticity, thus being unable to effectively solve the problem
of nonlinear stochastic dynamic response analysis of structures. Based on the fundamental
concept of physical stochastic systems, the probability density evolution theory holds
promise for solving a series of problems in the analysis and control of nonlinear stochastic
dynamic systems. Li and Chen [29–33] have made noteworthy contributions to probability
density development of stochastic systems by deriving a generalized probability density
evolution equation based on the principle of probability conservation. Furthermore, they
proposed a numerical solution method to calculate structural dynamic reliability through
the imposition of boundary conditions. This method presents a brand-new avenue for the
resolution of the stochastic vibration problem, boasting high accuracy and efficiency. Con-
sequently, it can significantly improve the computational efficiency of structural dynamic
reliability analysis of large complex projects while efficiently resolving many problems in
the analysis and control of current nonlinear stochastic dynamic systems [34–37].

In the design of pile–slab structures, the existing literature is mostly limited to single-
factor analysis and lacks quantitative assessments of the coupling effects of composite
stochasticity. Research on the dual stochasticity of highway pile–slab structures remains a
void, yet fully considering the stochasticity of concrete materials and seismic excitations is
significant for the seismic analysis of pile–slab structures. To address this, this paper, for the
first time, implements the nonlinear dynamic response and reliability analysis of pile–slab
structures under dual stochasticity using the probability density evolution method and
elucidates the mechanism by which the superposition of stochasticity leads to a significant
decrease in reliability, thereby aiding in enhancing facility safety at the design stage and
providing a scientific basis for improving design specifications.

2. Methodology
Li J and Chen J B have proposed a probability density evolution theory based on

the study of physical stochastic systems, employing the generalized probability density
evolution equation as the core [38,39]. This approach unifies randomness arising from
internal and external parameters in physical stochastic dynamical systems, yielding more
accurate descriptions of the propagation law of randomness in engineering systems. Addi-
tionally, this theory provides a perspective for tackling reliability problems that arise due
to stochastic factors in complex engineering structures. Compared with specific determin-
istic analysis, this method can accurately predict the response of pile–plate structures to
seismic forces, reduce the possibility of structural failure during earthquakes, and prevent
or minimize damage caused by earthquakes.

2.1. Probability Density Evolution Equation

Considering the influence of internal and external stochastic factors, the motion equa-
tion of a multi-degree-of-freedom nonlinear dynamic system can be expressed as shown in
Equation (1):

M(Φ)
..
U(t) + C(Φ)

.
U(t) + f (Φ, U(t)) = F(Φ, t) (1)

In this formula, M is the mass matrix, C is the damping matrix, f (Φ, U) is the
restoring force vector, and F(Φ, t) is the external load vector.

..
U(t),

.
U(t) and U(t)

are the acceleration, velocity, and displacement vectors of the system reaction, respec-
tively, Φ = (Φ1, Φ2, · · · , Φn) denotes the vector of random parameters in the system,
X = (X1, X2, · · · , Xm)

T denotes the physical response of the system to be found, (X, Φ)
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denotes the vector of incremental states in the system, and its joint probability density
function satisfies the following equation [40,41]:

∂pXΦ(x, φ, t)
∂t

+
m

∑
i=1

.
Xi(φ, t)

∂pXΦ(x, φ, t)
∂xi

= 0 (2)

The initial condition of Equation (2) is:

pXΦ(x, φ, t)|t=0 = δ(x − x0)pΦ(φ) (3)

In this formula, pXΦ is the transition probability density function, ∂
∂t is the derivative,

and x0 is a deterministic initial value.
This is solved to obtain Equation (4):

pX(x, t) =
∫

Ω0 pXΦ(x, φ, t)dφ (4)

where ΩΦ denotes the probability space of Φ.
Equation (1) can be simplified to a one-element partial differential equation when only

a random physical quantity is considered:

∂ρXΦ(x, φ, t)
∂t

+
.

X(φ, t)
∂ρXΦ(x, φ, t)

∂x
= 0 (5)

By employing the probability density evolution equation, it is possible to relate the
stochastic factors inside and outside the structure with deterministic parameters. On this
basis, solving the probability density evolution equation for structural reliability analysis
can be achieved.

2.2. Solution of the Evolution Equation of Probability Density

Generally, by combining the physical Equation (1) with the probability density evo-
lution Equation (2) and solving them, the probability density function of the structural
response during a certain period of time can be obtained. The specific solution process
includes the following steps:

Firstly, the probability interval of the basic random variable Φ is partitioned to obtain
the subdomain Ωφq of the probability space. In the subdomain Ωφq , discrete representative
points φq =

(
φ1,q, φ2,q, · · · , φs,q

)
, q = 1, 2, · · · , nsel , are selected. Here, nsel is the number of

chosen discrete representative points, and this step can be used to ensure the uniformity of
the selected representative point set. The assigned probability of each representative point
can be determined by Pq =

∫
Vq

pΦ(φ)dφ, where Vq is the representative volume.
Then, the deterministic dynamical system is solved for the given Φ = φq and the time

inverse of the corresponding physical quantity
.

Xi
(

φq, t
)
, i = 1, 2, · · · , m, is obtained. After

determining the selected discrete representative points and the corresponding assigned
probabilities for each point, Equation (2) becomes:

∂pXΦ
(

x, φq, t
)

∂t
+

m

∑
i=1

.
Xi

(
φq, t

)∂pXΦ
(
x, φq, t

)
∂xi

= 0 (6)

The corresponding initial condition (3) becomes:

pXΦ
(
x, φq, t

)∣∣
t=t0

= δ(x − x0)pq (7)
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The joint probability density function pXΦ
(
x, φq, t

)
of (X, Φ) is obtained by substitut-

ing the time inverse of the relevant physical quantities
.

Xi
(

φq, t
)

obtained previously into
Equation (6) and solving it using the TVD finite difference method.

Finally, all pXΦ
(
x, φq, t

)
, q = 1, 2, · · · , nsel obtained in the previous step are summed

cumulatively to obtain the numerical solution of the joint density function pX(x, t) of X(t)
as follows:

pX(x, t) =
nsel

∑
q=1

pXΦ
(
x, φq, t

)
(8)

The process described above is the point evolution method for solving the generalized
probability density evolution equation. This method reveals the mechanism by which the
evolution of the probability density depends on the evolution of the physical state, i.e., the
physical mechanism is the driving force of the stochastic propagation.

2.3. Structural Seismic Reliability Analysis Methods

Structural dynamic reliability refers to the probability that a structure can meet the
expected response under specific time intervals, specific conditions, and the effects of
random dynamic loads. The first-order reliability method is an important and effective
criterion used to determine the structural dynamic reliability under different conditions. In
the first-order reliability method, structural failure is defined as a random event, and the
definition of structural dynamic reliability is the probability that the physical quantities
(such as shear force, displacement, stress–strain, etc.) that cause structural failure within a
specific time period do not exceed the safety threshold.

R(t) = Pr{X(τ) ∈ ΩS, 0 ≤ τ ≤ t} (9)

Here, X(τ) is the physical quantity causing the structural failure; ΩS is the safety region,
and it is assumed that the safety domain boundary ∂ΩS does not change with time.

For the first time, the destructive criterion is exceeded: after crossing the failure
boundary, the probability carried by the structural response irreversibly flows from the
safe domain to the failure domain. At this point, the dynamic reliability of the structure is
determined by the probability of random events staying within the safe domain. To assess
this, the probability density evolution equation is solved using the absorption boundary
conditions, resulting in the probability density function of the structure within the safe
domain. Through integration, the dynamic reliability of the structure can be calculated.

According to the above definition, in a stochastic dynamic system (X, Φ), when the
structural dynamic response X(t) exceeds its allowable value [X] for the first time, the
probability of the system undergoing dissipation will occur. In calculating the structural
reliability using different failure criteria, the probability density evolution equation of the
probabilistic dissipation system below can be used:

∂pXΦ(x, φ, t)
∂t

+
m

∑
i=1

.
Xi(φ, t)

∂pXΦ(x, φ, t)
∂Xi

= −H[X(t)] · pXΦ(x, φ, t) (10)

where H(·) is the sieve operator and represents the probability dissipation factor:

H[X(t)] =

{
0 X(t) ∈ ΩS

1 X(t) ∈ ΩD

}
(11)
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where ΩS is the structural safety domain, i.e., the region bounded by the allowed value [X]

of X(t); and ΩD is the structural failure domain, i.e., the probability dissipation domain;
the probability density function of the system after probability dissipation occurs as:

pX(x, t) =
∫

ΩΦ

pXΦ(X, φ, t)dφ (12)

Integrating the density function yields the probability that the system retains after
dissipating energy at time t, which represents the dynamic reliability of the structure.

R(t) =
∫ +∞

−∞
pX(x, t)dx (13)

The probabilistic structural reliability analysis based on the Probability Dissipation
System is a universal method. As long as effective structure failure criteria are introduced
as the physical mechanism driving the probability dissipation, the dynamic reliability of
any structural system can be obtained. By combining the first exceedance failure criterion
with the probability density evolution theory, the reliability of pile–plate structures can
be calculated.

3. Seismic Reliability Analysis of Pile–Slab Structure Considering
Randomness of Concrete
3.1. Random Structure Analysis Model of Pile–Plate Structure

The standard longitudinal length of the pile–plate structure for this highway is
8 × 8 m per unit, with a total length of 64 m. It adopts a double-sided, two-lane form,
with a single lane full width of 13.82 m. It is composed of six precast T-beams made of
reinforced concrete and five longitudinally cast wet joints with a width of 0.453 m. The
lower pile is rigidly connected to the upper structure, with self-restoring nodes providing
intermediate connections, which together with the core-filling concrete inside the pile
form a load-bearing structure. The structural diagrams are shown in (a), (b), and (c) in
Figure 1, while (d) shows the form of the self-restoring node structure. In the self-restoring
node structure of the pile–plate structure, the steel pipe-filled fixed pile is connected to
the upper beam–plate, and a prestressed threaded steel bar is designed at the center of
the node to enhance its energy consumption capacity. The steel pipe sleeve, as well as
the steel hoop that connects it to the lower core-filled concrete, functions to restrain the
concrete, improving the strength and reliability of the connection between the pile and
beam–plate nodes.

This significantly improves its bearing capacity. Figure 1d shows the detailed struc-
ture composition of the node, including beam plates, rubber strips, core-filling concrete
materials, outer steel pipes, pile sleeve hoops, corner welds, temporary steel clamps, piles,
core-filled concrete support plates, and prestressed threaded steel bars.

To investigate the dynamic response law of random pile–plate structure under strong
earthquake action and taking into account the calculation accuracy and speed, the structural
finite element model was established by using the fiber beam element of the OpenSees
finite element platform. When modeling, considering the complex, nonlinear mechanical
behavior of concrete under the action of force, the ConcreteD concrete stochastic constitutive
model in the OpenSees material library is selected. Considering the Bauschinger effect and
material hardening, the steel 02 steel constitutive model is selected. According to the site
type of the pile–plate structure, an El-Centro seismic wave is selected as the input seismic
wave, the acceleration amplitude is modulated by 0.4 g, and the input is consistent along
the longitudinal bridge direction.



Infrastructures 2025, 10, 131 7 of 30

(a) Cross-section of a pile–plate structure 

(b) Elevation of pile–plate structure 

 
(c) Center sill cross-section (left) and center sill cross-section (right) 

 
(d) Schematic diagram of node structure 

Figure 1. Structure diagram.

Our team successively employed ANSYS and OpenSees to conduct simulations on the
pile–slab structure designed in this study and performed comparative analysis by applying
cyclic loading in the form of horizontal displacement, as shown in Figure 2. Simulated
vertical loads from the superstructure were applied to the beam ends of the pile–slab
structure, and horizontal displacement loads were imposed on control points for regulation.
The displacement levels were set at 1/800, 1/500, and 1/250, with six cycles at each level; at
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1/150, four cycles; and at 1/100 and 1/80, with two cycles per level. As shown in Figure 1,
the shapes and trends of the hysteresis curves from the two simulations are consistent,
with the maximum difference in hysteresis loop area being 0.55%, all less than 1%. The
results indicate that the curve fitting between the two is highly accurate, thus validating
the reliability of the nonlinear analysis model for pile–slab structures based on OpenSees.

Figure 2. Multi-scale model and fiber beam element model.

The pile–slab structure was modeled in ANSYS, with the initial model established
using Space Claim. The core concrete at the pile–slab node connections uses vibration-
mixed steel fiber-reinforced concrete, with a matrix strength of CF40 and a steel fiber
volume fraction of 2%, while the remaining parts use C50 concrete. The pile–slab structure
employs a separated assembly of pipe piles and precast beams and slabs, with all solid
contacts being face-to-face bonded contacts of type conta174, defining that no relative
separation or sliding occurs between faces. Reinforcing bars and concrete are connected
via coupled nodes, with the specific implementation achieved through the pinball radius
in the bonded contact and without considering relative sliding between the reinforcing
bar and concrete elements. Steel sleeves are used to protect the nodal concrete, with the
sleeve modeled as shell elements and a thickness of 0.05 m. The upper part of the pipe pile
is connected to the core concrete, while the lower part is a hollow pipe pile, and during
load application, the bottom of the pipe pile is supported by a fixed support. The pile–slab
structure was modeled in OpenSees using fiber beam elements. During modeling, the
complex, nonlinear mechanical behavior of concrete under load was considered, with the
concrete material modeled using Concrete01 based on the Kent–Park modified model,
as well as the Mander constitutive model considering the confinement effect of stirrups
on the core concrete. The reinforcing bars consider the Bauschinger effect and material
hardening issues, using the constitutive model Steel02 that accounts for fatigue effects. The
main body of the model uses fiber beam elements, divided into precast beams, nodes, core
concrete, steel sleeves, prestressed threaded rebar, rebar cages, and the underlying pipe
piles, with the rendered image of the node model shown below. Zero-length elements are
used to simulate the self-centering nodes. A rigid element is placed inside the precast beam
and slab holes, with its length set to the height of the self-centering node. The nodes at
both ends of the element are connected to the nodes at the corresponding positions on
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the foundation through zero-length elements. Nonlinear properties are then reflected by
assigning material attributes.

Utilizing the Pushover analysis method, a maximum lateral linear displacement of
5 cm was applied to the pile–slab structure within 10 s. The resulting equivalent stress
contour and plastic strain diagrams are shown in the Figure 3. The relative displacement
was obtained by calculating the difference in displacements between the top and bottom
surfaces of the nodes. A Pushover curve for the nodes was plotted with relative displace-
ment (m) on the x-axis and shear force (kN) under lateral pushing on the y-axis, as shown in
the figure below. Referring to the Code for Seismic Design of Buildings (GB50011-2010) [42],
which specifies a limit of 1/30 for the elasto-plastic inter-story drift angle of reinforced
concrete frame structures to determine whether the structure has reached a critical state of
failure under seismic action, this study sets the top displacement angle of the pier beam, Rµ,
as the damage indicator. The damage states of the pile–slab bridge structure under different
pier top displacement angle thresholds were determined to provide clear quantitative
standards for seismic design and reliability assessment of the structure. I. No-damage state:
When the pier top displacement angle is less than 1.0%, the nodes and pipe piles of the
pile–slab structure remain in the elastic stage, with no visible cracks in the concrete. The
prestressed steel bars and steel fiber-reinforced concrete work well together, and the overall
stiffness does not significantly degrade, indicating that the structure remains functional and
does not require repair under rare earthquakes. II. When the displacement angle reaches
2.0%, the steel fiber-reinforced concrete in the nodes locally enters the plastic stage due to
vibration, with microcracks appearing. However, the outer steel casing and prestressed
steel bars still provide effective restraint, and the residual deformation can self-recover. The
structural function is essentially intact, and the damage can be restored through local repair.
III. Moderate-damage state: After the displacement angle exceeds 3.3%, the core concrete
in the nodes cracks and extends, the steel casing undergoes local buckling, and part of the
prestressed steel bars yield, with the hysteresis curve showing a significant pinching effect.
IV. Severe-damage initiation state: When the displacement angle reaches 4.0%, the plastic
hinges in the pile–slab connection nodes are fully formed, the steel fiber-reinforced concrete
is crushed and spalls off, the outer steel casing deforms significantly, the structural stiffness
drops sharply, and the repair cost is high and technically complex. V. Collapse-warning
state: After the displacement angle exceeds 7.0%, the pile–slab structure as a whole forms a
mechanism, with the bottom of the pipe piles breaking, the prestressed steel bars breaking,
and the core concrete completely failing, resulting in the loss of load-bearing capacity.

3.2. Calculation of Seismic Reliability of Random Structure of Pile–Plate Structure

In order to investigate the dynamic response characteristics of pile–plate random
structures under strong earthquake loads while considering both the accuracy and speed
of calculations, a finite element model of the structure was established using fiber beam
elements in the OpenSees finite element platform. During modeling, the complex, nonlinear
mechanical behavior of concrete under stress was considered, and the Concrete01 concrete
stochastic constitutive model in the OpenSees material library was selected. The Steel02
steel constitutive model was used to consider Bauschinger effect and material hardening
issues for steel bars under stress. Four structural parameters, including the compressive
strength of pipe-pile concrete, beam–plate concrete, and joint concrete and the damping
ratio ζ of the structure, were selected as basic random variables, and their mean values
and coefficients of variation were determined. The node-filled core concrete was made of
vibratory-mixed steel fiber concrete with a matrix strength of CF40 and a steel fiber volume
rate of 2%. Based on the test data and statistical analysis data, the mean value of its cubic
compressive standard strength was determined to be 56.5 MPa, and this random variable
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conformed to a normal distribution with a coefficient of variation of 0.15. The statistical
information and distribution types of the above random variables are shown in Table 1 and
Figure 4, and all variables were assumed to be statistically independent.

Figure 3. Pushover testing of pile–plate–node model.

Table 1. Structural random variables.

Random Variables Mean Coefficient of Variation Distribution Type

Concrete strength of pipe pile f r,v1 (C60) 60 MPa 0.17 Normal distribution
Concrete strength of beams and slabs f r,v2 (C50) 50 MPa 0.17 Normal distribution

Concrete strength of joints f r,v3 (CF40) 56.5 MPa 0.15 Normal distribution
Damping ratio ζ 0.05 0.2 Lognormal distribution
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Figure 4. Four-dimensional random variables of the structure.

The main process of seismic reliability analysis of pile–plate random structures using
the probability density evolution method is as follows: first, the basic random variables
of the structure are determined. Based on the GF deviation point selection method [43],
100 sets of discrete representative points for the structural random parameters are gener-
ated, and the assigned probability for each group of point sets is determined to generate
a sample set of pile–plate random structures. The point selection method can ensure the
uniformity and accuracy of the selected point set, thereby effectively reflecting the distribu-
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tion characteristics of random variables. Then, the selected earthquake waves are input
to obtain the seismic response results of the pile–plate random structure samples, and the
Newmark-β is used in the implicit algorithm to solve the motion equation of the structure
under deterministic earthquake excitation. After that, the TVD difference algorithm is used
to solve the probability density evolution equation, which can obtain the probability density
evolution information of the structural response in the solving time interval. Finally, based
on the first surpassing failure criterion, the seismic reliability of the pile–plate random
structure is calculated by absorbing boundary conditions with different threshold values.
The specific solution process is shown in Figure 5.

 

Begin

Select representative 
point set 

Calculate assign 
probability

Random structure 
analysis sample

Nonlinear analysis platform 
based on damage mechanics

Random structure 
analysis of aqueduct

Certain earthquake excitation

Probability density of response of aqueduct structure

Probability density evolution 
method

Seismic reliability of aqueduct 
structure

Absorbing boundary structure

End

＋

GF deviation method

Implicit integration algorithm

Figure 5. Seismic functional reliability analysis process for pile–plate random structures.

In order to obtain the complete probability density evolution information of pile–plate
structures under seismic action, the response of the pile–plate structure under strong
earthquake action was analyzed, and the improvement of the seismic reliability of the
pile–plate structure by self-resetting nodes was explored. After generating all pile–plate
structure samples using the GF bias method, El-Centro earthquake waves with the same
type II site as the pile–plate structure were used, and the acceleration modulation value was
increased to 0.4 g, inputting them simultaneously along the transverse and longitudinal
directions of the pile–plate structure. The acceleration time history of earthquake motion
and the corresponding response spectrum are shown in Figure 6.

Starting from the perspective of deformation angles, the displacement angles of edge-
span beams and columns of pile–plate structures are selected to analyze the stochastic
evolution process of the structure. Considering these factors, such as the study’s objectives,
available computational resources, and the desired level of result confidence, 100 seismic
response analyses were performed on the generated random structural samples, and the
time history curve of Rµ, which represents the displacement angle of the top of edge-
span beams and columns of pile–plate structures, as shown in Figure 7. According to
Figure 7, due to the stochasticity of structural parameters, under the same seismic action,
the structural responses of pile–plate structures also exhibit randomness, manifested as
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fluctuations within the limit range of −3% to 3% for Rµ. The obtained structural response
information was combined with given probabilities to calculate the statistical mean and
standard deviation of structural Rµ responses, as shown in Figure 8. It can be seen that due
to the influence of the stochasticity of structural parameters, the seismic response of the
structure has variability, further illustrating the importance of considering the stochasticity
of structural parameters in seismic response analysis of pile–plate structures.

Figure 6. Earthquake acceleration time interval and acceleration response spectrum.

Figure 7. Time course curve of the displacement angle of the top of the pier of the structure under the
action of earthquake.
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Figure 8. Statistical mean and standard deviation of structural displacement angle.

By using the TVD differencing algorithm, joint Equations (1) and (2) were used to
solve the probability density evolution equation of Rµ for the pile–plate structure. Based on
the results obtained from the probability density evolution equation, surface plots, contour
plots, and probability density function curves of Rµ for typical time periods were drawn,
as shown in Figure 9. The undulations of the surface plot in Figure 9a reflect the evolution
of the probability density function of the displacement angle of the pile–plate structure
with time, while the range of displacement angle also evolves with the loading process of
earthquake. The probability density contour map of Rµ, i.e., the contour plot of probability
density in Figure 9b, provides a more intuitive representation of the random fluctuations of
Rµ over time. By analyzing the probabilistic information on the structural response under
seismic action, we can better understand and grasp the variation rule of the displacement
angle at the top of the pier over time, which lays the foundation for the reliability analysis
of the pile–plate structure. At t = 8.2 s, 11.1 s, and 14.1 s in Figure 9c, the probability density
function curves of Rµ are selected, and the differences among the three curves indicate that
the range and probability density function of Rµ have also been constantly changing over
time under the same seismic action.

All these results indicate that the randomness of material parameters of the pile–plate
structure leads to complex random evolution processes in its seismic response. Therefore,
when conducting seismic response analysis and seismic reliability research on pile–plate
structures, the randomness of structural parameters should be fully considered to make the
research results closer to engineering reality. Furthermore, through the probabilistic density
evolution method, rich probabilistic information on structural response can be obtained,
providing a foundation for studying the nonlinear seismic response rules of pile–plate
structures and then carrying out seismic reliability evaluation.

After obtaining the probability density information of Rµ of pile–plate random struc-
ture under seismic action, based on the first-exceeding failure criterion and by absorbing
boundary conditions of different failure thresholds, the seismic reliability of a pile–plate
random structure is calculated, as shown in Table 2. The variation curves of earthquake-
proof reliability of pile–plate structure with different thresholds over time are shown in
Figure 10.



Infrastructures 2025, 10, 131 14 of 30

(a) Probability density surfaces 

(b) Probability density contours 

(c) Typical moment probability density function 

Figure 9. Information on the probability of seismic action Rµ for pile–plate random structures.
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Table 2. Seismic reliability of pile–plate structures under different failure thresholds.

Rµ/% Reliability

3.3 100.00%
2.1 98.05%
2.0 90.17%
1.0 65.26%

Figure 10. Random structural seismic reliability curve.

As shown in Figure 10, the seismic reliability curve of pile–plate structures undergoes
a step change over time and eventually stabilizes. Under different failure thresholds, there
are significant differences in the seismic reliability of pile–plate structures. When the
failure threshold is 1.0%, the seismic reliability of the pile–plate structure is only 65.26%.
However, when the failure threshold is set to 3.3%, the seismic reliability of the pile–plate
structure reaches 100%, with a difference of 34.74%. Concurrently, this 100% numerical
performance also serves as the rationale for conducting a multi-point value analysis of the
failure threshold below 3.3% rather than continuing to take values upward.

The failure threshold determined through reliability analysis refers to a single-layer
reinforced concrete frame column of steel-reinforced concrete racks, which has the closest
structural form to the pile–plate structure specified in the “Code for Seismic Design of
Buildings” (GB50011-2010)[42]. The limit value of the inter-story drift angle of ductility-
based design, 1/30, for steel-reinforced concrete frame structures is taken as the limit for the
beam displacement angle of the edge span of the pile–plate structure when determining its
seismic performance under an earthquake with a PGA of 0.4 g, resulting in an earthquake
resistance reliability of 100% for this random pile–plate structure. Although there are
differences between steel-reinforced concrete frame structures and pile–plate structures,
it should be noted that there are some errors in using this failure limit value to assess the
reliability of pile–plate structures, and this method provides a new idea for studying the
reliability of pile–plate structures.

4. Reliability Analysis of Structures Under Random Earthquake Excitations
According to earthquake disaster statistics, the main reason for building damage and

destruction in seismic disasters is the lack of understanding of the seismic performance
and dynamic damage mechanism of structures [44,45]. Due to the randomness of earth-
quake excitation, pile–plate structures will suffer structural damage or collapse under
strong seismic action. The location of the damage is uncertain. It is greatly limited to use



Infrastructures 2025, 10, 131 16 of 30

determinate natural earthquake waves or artificially synthesized earthquake waves for
seismic reliability analysis of pile–plate structures, as this cannot fully reflect the structural
seismic performance [46]. Therefore, accurately assessing the reliability of pile–plate struc-
tures under random seismic action is of great significance for improving their ability to
defend against seismic disasters. Based on the established fiber beam element model of
pile–plate structures and combining it with a physical model of random ground motion,
nonlinear dynamic analysis and seismic reliability analysis of pile–plate structures under
random seismic action were carried out using the probability density evolution method in
this section.

4.1. Physical Stochastic Function Model of Engineering Ground Shaking

Due to the unpredictability of the time, location, and intensity of earthquakes, it is
difficult to describe the randomness of earthquake motion in a specific way. The modeling
method of using random earthquake motion based on the viewpoint of physical random
systems determines the relevant physical earthquake motion model parameters by statis-
tically analyzing the physical elements that affect the randomness of earthquake motion
(propagation path, source characteristics, and site conditions where buildings are located)
in order to describe the randomness of earthquake motion, being an effective method for
establishing engineering random earthquake motion physical models [47].

The classical power spectrum model describes the second-order statistical charac-
teristics of earthquake motion based on the assumptions of stationarity and ergodicity,
but this earthquake motion modeling method has certain limitations. Li J et al. [48] pro-
posed an engineering random earthquake motion physical model but did not conduct
in-depth research on the impact of source characteristics, propagation paths, and site con-
ditions where buildings are located on earthquake motion. Ding et al. [49–53] analyzed
recorded earthquake motions through the K-means algorithm to obtain the probability
density function of basic parameters that affect earthquake motion in the physical modeling
of engineering random earthquake motion, further improving the physical modeling of
engineering random earthquake motion.

The time course of ground-shaking acceleration can be expressed as follows:

aR(t) = − 1
2π

∫ +∞

−∞
AR(Θα, ω)× cos[ωt + ΦR(Θα, ω)]dω (14)

where AR(Θα, ω) is the Fourier amplitude spectrum (see Equation (15)); ΦR(Θα, ω) is the
Fourier phase spectrum (see Equation (16)); and Θα is the random parameter vector of
ground shaking (see Equation (17)).

AR(Θα, ω) =
A0ωe−KωR√
ω2 + (1/τ)2

×

√√√√√ 1 + 4ξg
(
ω/ωg

)2[
1 −

(
ω/ωg

)2
]2

+ 4ξg
(
ω/ωg

)2
(15)

ΦR(Θα, ω) = arctan
(

1
τω

)
− R · ln[aω + 1000b + 0.1323sin(3.78ω + ccos(dω))] (16)

Θα =
(

A0, τ, ξg, R, a, b, c, d
)

(17)

Here, A is the amplitude factor; τ is the seismic source coefficient; ξg is the site equivalent
damping; and ωg is the remarkable periodic circle frequency.

The research results indicate that the statistical analysis of the above four basic phys-
ical random variables can quantify the unpredictability of seismic ground motions. The
propagation coefficient K and the distance from the epicenter R are deterministic variables,
generally selected based on actual engineering conditions. The empirical stochastic param-
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eters a, b, c and d describe the propagation path and can be identified through parameter
recognition. ωg and ξg determine the probability distribution based on field testing, thus
reducing the variability of random ground motion. This stochastic ground motion physical
engineering model can describe the random ground motion sample through probabilistic
source parameters. A and τ both approximately conform to the basic characteristics of the
lognormal distribution, and ξg and ωg approximately conform to the basic characteristics
of the gamma distribution. Based on this physical ground motion model and parameter
identification of existing ground motion records, the distribution types and statistical pa-
rameters of the four basic random variables of the physical stochastic ground motion model
are given in Table 3.

Table 3. Parameters for physical stochastic ground-shaking model, with values [52].

Physical Random
Parameters

Distribution
Type Probability Density Function Parameter Value

A0 Lognormal

Venue type µ σ α

I −1.4306 0.9763 0.05
II −1.2712 0.8267 0.05
III −1.1047 0.7388 0.15
IV −0.9280 0.6380 0.25

τ Lognormal

Venue type µ σ α

I −1.3447 1.4724 0.10
II −1.2403 1.3436 0.05
III −1.1574 1.1341 0.10
IV −0.9712 1.0553 0.20

ξg
Gamma

distribution

Venue type k 1/θ α

I 3.9368 0.1061 0.05
II 5.1326 0.0800 0.05
III 6.1838 0.0689 0.05
IV 6.4089 0.0658 0.25

ωg Gamma
distribution

Venue type k 1/θ α

I 2.0994 9.9279 0.10
II 2.2415 7.4136 0.05
III 2.0866 5.6598 0.25
IV 1.9401 5.5265 0.20

Accordingly, the parameters of the physical stochastic ground-shaking model are used
to generate stochastic ground-shaking samples for the stochastic seismic response analysis
of pile–plate structures based on the probability density evolution method.

4.2. Stochastic Seismic Response Analysis and Seismic Reliability Assessment of Pile–Plate Structures

Earthquake excitations possess a high level of randomness and uncertainty, making it
difficult for the existing scientific technological level to accurately predict seismic motions,
which complicates the reliability analysis of pile–plate structures. Therefore, accurately
assessing the seismic reliability of pile–plate structures under strong earthquakes is of great
significance to improve structural safety. Based on this, nonlinear dynamic analyses of
pile–plate structures with either self-centering or conventional rigid connections are carried
out under stochastic earthquake excitations to describe the stochastic dynamic response
characteristics of pile–plate structures, obtain probability density evolution information
of pile–plate structures under stochastic earthquake excitations, and calculate structural
dynamic reliability under different failure thresholds.

The process of seismic reliability analysis of pile–plate structures under stochastic
earthquakes is shown in Figure 11. A point-set method using GF deviation is used to
select representative points with discretization, generating seismic motion samples with
assigned probabilities to analyze the seismic responses of pile–plate structures. The implicit
Newmark-β method is used to solve the motion equations, calculating the displacement
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responses of pile–plate structures, followed by solving the probability density evolution
equation, obtaining the probability density information of pile–plate structures under
stochastic earthquake effects. Overall seismic reliability analyses of pile–plate structures
are then conducted by absorbing boundary conditions with different thresholds.

Begin

Selet representative point 
set

Calculate assign 
probability

Earthquake model sample Nonlinear analysis plantform 
based on damage mechanics

Random seismic response of 
aqueduct structure

Implicit integration algorithm

Probability density of response of aqueduct structure

Probability density evolution 
method

Seismic reliability of aqueduct 
structure

Absorbing boundary conditions

End

＋

GF deviation method

Physical random earthquake model

Figure 11. Seismic reliability analysis process of pile–plate structure with random seismic excitation.

Using the GF bias point selection method and based on the values of the four random
seismic physical model parameters for type II sites in Table 3, earthquake motion samples
with assigned probabilities were generated by selecting a discrete representative point set of
these four random parameters. Figure 12 shows the four typical earthquake acceleration
time–history curve samples generated, named a, b, c and d, respectively, all with an ampli-
tude of 0.4 g. Figure 13 shows the corresponding response spectra for these four earthquake
acceleration time–history curve samples when the damping coefficient is set to 5%.

Figure 12. Typical ground-shaking acceleration time scale (0.4 g).
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Figure 13. Typical ground vibration acceleration response spectrum (0.4 g).

By inputting the obtained engineering physics random seismic samples into the
pile–plate structure analysis model, the displacement angle time history curve shown in
Figure 14 is obtained. It can be seen that due to the coupling amplification effect caused by
the nonlinearity of the concrete material and the randomness of the seismic excitation, the
displacement response of the pile–plate structure is more stochastic.

Figure 14. Time course curve of displacement angle at the top of pier under 0.4 g random earthquake.

By combining the structural response information with assigned probabilities, statisti-
cal mean and standard deviation curves of the displacement angle are obtained, as shown
in Figure 15. By comparing the statistical mean and standard deviation, it is known that
the randomness of earthquake excitation results in more than a five-fold increase in the
variability of the displacement angle response [35].

The probability density evolution method is used to analyze the nonlinear dynamic
response of pile–plate structures under random seismic action and obtain complete proba-
bility information about the structural response over a certain time period. This information
is used to describe the overall performance of the structure over a period of time and to
apply it to the reliability assessment of the pile–plate structures. By absorbing the boundary
conditions of different failure thresholds, the dynamic reliability of the pile–plate structure
is calculated.
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Figure 15. Statistical mean and standard deviation of pier top displacement angle under 0.4 g random
earthquake.

The finite difference method (TVD) is used to solve the probability density evolution
equation, and the relevant probability information of the displacement and angle response
is obtained, as shown in Figure 16. It can be seen that the probability density evolution in-
formation is similar to the Rµ probability density evolution surface of the pile–plate random
structure. Under the random seismic action, the probability density surface and contour
map of the pier top displacement and angle also show significant stochastic fluctuations
with time extension. However, by comparing the relevant probability information of Rµ

under the pile–plate random structure (Figure 9) and the relevant probability information of
Rµ under random seismic action on the pile–plate structure (Figure 16), it can be concluded
that the stochastic fluctuation effect of seismic response caused by seismic randomness is
more significant than that caused by structural parameter randomness, and the distribution
of the probability density function is more dispersed.

By incorporating the probability density information of the dynamic response of
pile–plate structures and adding absorbing boundary conditions that correspond to failure
thresholds, the seismic reliability of the pile–plate structures was calculated, as shown in
Table 4. The seismic reliability curves under different thresholds are shown in Figure 17.

The seismic dynamic reliability of structures using displacement angles as a limit
threshold changes significantly with the modification of failure threshold, and as the
displacement angle threshold increases, the seismic dynamic reliability gradually improves
over time and ultimately stabilizes. Similarly, an interlayer displacement angle of 1/30 is
selected as the limit threshold for the displacement angle failure of the pile–plate structure.
The seismic reliability of the pile–plate structure with self- resetting nodes under random
seismic excitation with a PGA of 0.4 g is 92.01%, which is 7.99% lower than that of a random
structure. Compared to the 100% reliability of the random pile–plate structure, the structure
is no longer entirely reliable under the action of random seismic movements. This indicates
that the randomness of seismic excitations has a greater impact on the seismic response of
the pile–plate structure compared to the randomness of structural parameters.



Infrastructures 2025, 10, 131 21 of 30

(a) Probability density surfaces 

(b) Probability density contours 

(c) Typical moment probability density function 

Figure 16. Probabilistic information of Rµ under random seismic action of pile–plate structures.
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Table 4. Seismic reliability of pile-slab structures under stochastic seismic excitation with different
failure thresholds.

Rµ/% Reliability

7.0 98.49%
4.0 96.38%
3.3 92.01%
2.0 83.74%
1.0 56.82%

Figure 17. Seismic reliability of pile–plate structures.

4.3. Seismic Reliability Analysis of Pile–Plate Structure Considering Parameter–Excitation
Composite Randomness

In the previous study, random nonlinear dynamic response analysis and seismic re-
liability research of pile–plate structures were conducted by separately considering the
randomness of structural parameters and seismic excitation. However, in practical situ-
ations, both randomness factors often coexist, and when the pile–plate structure enters
the nonlinear dynamic response stage under seismic action, the randomness factor often
combines with the nonlinear factor, thereby amplifying the dynamic response of the struc-
ture. Based on this, considering the above two types of random factors, nonlinear dynamic
analysis and seismic reliability research of the pile–plate structure under composite random
factors are carried out.

4.3.1. Analysis and Evaluation Method for Composite Random Seismic Response of
Pile–Plate Structure

The stochastic seismic response and seismic reliability of pile–plate structures un-
der composite stochastic action are studied and analyzed using the probability density
evolution method, and the stochasticity of the structural parameters is noted as:

M
..
X(Θ1, t) + C

.
X(Θ1, t) + KX(Θ1, t) = IΓ(Θ2, t) (18)

or written in the form of the following equation of state:

.
Y(Θ, t) = A(Y(Θ), t) (19)
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The randomness of the excitation is characterized by a specific decomposition algo-
rithm. We consider a real zero-mean process {X(t), 0 ≤ t ≤ T} by introducing the standard
set of orthogonal functions:

φj(t), j = 1, 2, · · · s.t. < φi, φj >=
∫ T

0
φi(t)φj(t)dt = δij (20)

On the interval [0, T], X(t) can be expanded as:

X(ξ, t) =
∞

∑
h=1

ξh φh(t) (21)

ξh can be calculated from Equation (20):

ξh =
∫ T

0
X(ξ, t)φk(t)dt, k = 1, 2, · · · (22)

Equation (21) is usually a finite truncation order, if taken as:

X(ξ, t) =
N

∑
h=1

ξh φh(t) (23)

Then, the random orthogonal coefficients are defined as ξ = {ξh, h = 1, · · · , N},
given its covariance matrix as:

C =


c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 (24)

where each matrix element satisfies:

Xcij = E
[
ξiξ j

]
(25)

A decomposition of the random vector yields

ξ =
N

∑
j=1

ζ j

√
λjψj (26)

where λj is the eigenvalue of the covariance matrix; ψj is the eigenvector corresponding to
the covariance matrix; and ζ j is the standard random variable.

Substituting Equation (26) into Equation (23) yields:

X(ξ, t) .
=

N
∑

h=1

N
∑

j=1
ζ j

√
λjψjh φh(t) =

N
∑

j=1
ζ j

√
λj f j(t)

f j(t) =
N
∑

h=1
ψjh φh(t)

(27)

When N → ∞ , the above equation is equivalent to the K-L decomposition.
Equation (27) can be modified for a non-zero mean stochastic process as:

X(ζ, t) = X0(t) +
∞

∑
j=1

ζ j

√
λj f j(t) (28)
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Therefore, the stochastic process can be represented by a finite random variable Θ.
Since the sources of randomness are different, i.e., the source of random variable Θ1 is the
random parameters of the structure, which is caused by the properties of concrete materials
and their inherent material mechanics characteristics, while the source of random variable
Θ2 is the random characteristics of earthquake excitation, generated by complex physical
mechanisms. Let Θ denote the union of Θ1 and Θ2 to expand the probability space; then,
partition the extended probability space Ωθ to solve the above problem.

4.3.2. Composite Random Seismic Reliability Analysis of Pile–Plate Structure

To conduct comparative analysis, the fiber beam element model of the pile–plate
structure described in the previous section was adopted, and the analysis was conducted
under consistent working conditions. In this study, 100 random samples were selected
for analysis, but the basic random variables of the structure became eight-dimensional,
including four structural random parameters: the compressive strength of concrete for the
pile, beam, and slab, the compressive strength of concrete for nodes, and the structural
damping ratio; the other four were random seismic physical model parameters. By using
the GF bias sampling method, the pile–plate structure was obtained under the compound
effect of random structural parameters and random seismic excitation. The seismic motion
amplitude obtained was adjusted to 0.4 g. Deterministic dynamic response analysis was
performed on 100 samples, and the Rµ time history curve obtained is shown in Figure 18.
It can be seen that under the case of considering the compound effect of parameters and
excitation randomness, the structural response still exhibits a high degree of randomness
under earthquake excitation, and as time progresses, some samples produce irrecoverable
residual deformation, and the structural response exceeds the displacement response under
a single random factor. This indicates that when considering the compound effect of
multiple random factors, the original randomness is amplified, the seismic response of the
pile–plate structure is significantly enhanced, and substantial randomness accompanies it.

Figure 18. Time course curve of displacement angle of pier top of pile–plate structure under com-
pound random action.

The probability density information of Rµ obtained using the probability density
evolution method is shown in Figure 16. Comparing the probability information related to
Rµ under the compound random effect and the single random effect (Figures 9, 15 and 19),
it can be seen that under the compound random effect, the iso-density lines of Rµ are more
irregular, and the probability density information is also more abundant. The differences
in the probability density functions obtained under the three random factor conditions
indicate the huge variability of the seismic response of the pile–plate structure under a
compound random effect. This is due to the fact that when considering the compound
effect of parameters and excitation randomness, the multi-mode and multi-modal features
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of the structure amplify the combined effect of structural randomness, seismic excitation
randomness, and material nonlinearity, which enhances the stochastic evolution effect of
the seismic response of the pile–plate structure.

(a) Probability density surfaces 

(b) Probability density contours 

Figure 19. Probabilistic information of pile–plate structure Rµ under composite random action.

The reliability of the seismic resistance of the pile–plate structure under different
thresholds is solved using the same solution ideas as before in Table 5, and the reliability
curves are shown in Figure 20.

Table 5. Seismic reliability of pile–plate structures under different failure threshold conditions.

Rµ/% Reliability

7.0 98.18%
4.0 93.24%
3.3 86.38%
2.0 71.65%
1.0 36.62%
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Figure 20. Seismic reliability curve of pile–plate structure.

It can be seen that under the compound random effect, the range of seismic reliability
variation of the pile–plate structure with self-recoverable nodes is between 36.62% and
98.18% at different failure thresholds, which is greater than the seismic reliability of the
structure considering a single random factor. This indicates that under the compound
random effect, the variability of the seismic response of the structure is stronger.

4.4. Comparative Study of Seismic Reliability of Pile–Plate Structure

The comparison of the seismic reliability of the pile–plate structure under compound
randomness and single randomness is shown in Figure 21. The point-line chart shows
the differences in reliability between single stochasticity and compound stochasticity at
different thresholds. The seismic reliability of pile–slab structures shows significant dif-
ferences under the influence of various stochastic factors. When the failure threshold is
3.3%, the seismic reliability considering only the stochasticity of structural parameters is
100%, while considering only the stochasticity of seismic excitation reduces it to 92.01%,
and under combined stochasticity, it further decreases to 86.38%. This indicates that the
influence of material parameter stochasticity on the seismic reliability of pile–slab bridge
structures is less than that of seismic excitation stochasticity. Further comparison between
the effects of combined stochasticity and single seismic excitation stochasticity shows that
when the failure threshold is relatively high (7.0%), the seismic reliability values are 98.18%
and 98.49%, respectively, with a difference of only 0.31%. As the threshold decreases, the
difference gradually increases, reaching 3.14% at a 4.0% threshold and 5.63% at a 3.3%
threshold. When the threshold is reduced to 2.0% and 1.0%, the differences are 12.09% and
20.2%, respectively.

It is evident that in the nonlinear dynamic analysis of structures, the impact of com-
bined stochasticity on structural response is significantly greater than that of a single
stochastic factor. Particularly at lower thresholds, the effect of combined stochasticity on
reducing reliability is more pronounced. Therefore, in seismic design, it is crucial to attach
great importance to the issue of combined stochasticity and fully consider the combined
effects of multiple stochastic factors to ensure the safety and reliability of structures.



Infrastructures 2025, 10, 131 27 of 30

Figure 21. Comparison of seismic reliability of pile–plate structures.

5. Conclusions
This paper addresses the seismic reliability of highway pile–slab structures by con-

structing a nonlinear stochastic dynamic model based on the probability density evolution
theory, systematically revealing the impact of combined stochasticity on structural dynamic
response and reliability. It provides a new method for the seismic optimization design and
reliability analysis of highway pile–slab structures, with the main research achievements
as follows:

(1) A nonlinear numerical analysis model for pile–slab structures was established.
Multi-scale modeling and analysis of pile–slab structures were conducted, including
Pushover and cyclic loading analyses, to determine the damage indicators and five stages of
damage development for pile–slab bridges, and the top displacement angle of the pier beam
at the edge span was proposed as the core damage indicator. Based on the first-passage
failure criterion, the sensitivity of reliability to failure thresholds of 7%, 4%, 3.3%, 2%, and
1% was quantified.

(2) The independent effects of structural parameter stochasticity and seismic excitation
stochasticity on pile–slab bridge structures were separately analyzed. By establishing a
four-dimensional parameter stochastic model, it was found that in the elasto-plastic stage,
the coupling of material nonlinearity and parameter stochasticity causes the reliability
curve to exhibit a steep drop followed by a gradual stabilization. When the threshold
decreases from 3.3% to 1.0%, the reliability drops by 34.74%, highlighting the critical role of
construction quality control in nonlinear response. Through 100 sets of four-dimensional,
non-stationary seismic motion models, it was found that at a 3.3% threshold, the seismic
reliability is 92.01%, which is 7.99% lower than when considering the stochasticity of
structural parameters. This indicates that the stochasticity of seismic motion is more
significant than that of structural parameters in causing seismic response in pile–slab
structures. It was also demonstrated that traditional single-wave analysis underestimates
the risk of non-stationarity in seismic motions.

(3) An eight-dimensional combined stochastic space model was developed to achieve
efficient coupled solution and seismic reliability analysis of the pile–slab bridge structural
system. The generalized probability density evolution equation-driven efficient reliability
analysis framework was applied to the fiber beam element model of pile–slab bridges,
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overcoming the computational bottleneck of the traditional Monte Carlo method in high-
dimensional stochastic spaces. When the threshold decreases from 3.3% to 1.0%, the
reliability drop under combined stochasticity reaches 35.64%, significantly higher than that
of a single factor. This result indicates that under low-threshold conditions, the weakening
effect of combined stochasticity on reliability is more pronounced, revealing the necessity
of setting dynamic threshold correction factors for rare extreme events in seismic design.
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