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Abstract: This manuscript proposes a methodology to leverage digitalisation to efficiently
generate an overview of required condition-based railway track interventions, possession
windows, and expected costs for railway networks at the beginning of the intervention
planning process. The consistent and efficient generation of such an overview not only helps
track managers in their decision-making but also facilitates the discussion among other
decision-makers in later phases of the track intervention planning process, including line
planners, capacity managers, and project managers. The methodology uses data of different
levels of detail, discrete state modelling for uncertain deterioration of components, and
component-level intervention strategies. It dynamically updates the condition estimates of
components by capturing the interaction between deteriorating components using Bayesian
filters. It also estimates the risks associated with different types of potential service losses
that may occur due to sudden events using fault trees as a function of time and the condition
of components. An implementation of the methodology is conducted for a 25 km regional
railway network in Switzerland. The results suggest that the methodology has the potential
to help track managers early in the intervention planning process. In addition, it is argued
that the methodology will lead to improvements in the efficiency of the planning process,
improvements in the scheduling of preventive interventions, and the reduction in corrective
intervention costs upon the implementation in a digital environment.

Keywords: infrastructure management; railway systems; digitalisation; deterioration
modelling; maintenance planning; intervention strategies

1. Introduction

Track managers currently estimate intervention requirements qualitatively in the initial
phases of the intervention planning process based on the synthesis of visual inspection
and measurement train results by a group of track engineers [1,2]. The current practice,
however, is time-consuming, labour-intensive, and cognitively demanding for engineers.
Moreover, the biases and subjectivity of experts’ judgments may result in the sub-optimal
scheduling of interventions. This could eventually result in higher intervention costs
and more frequent service disruptions [3]. Consequently, a systematic approach that can
generate a quantitative and comprehensive outlook of intervention requirements for all
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tracks over the future planning periods, considering all crucial factors and criteria, would
be beneficial for track managers.

The current intervention planning process can be improved through the integration
of a digital tool, leveraging recent technological advancement and the accumulation of
extensive data on track component characteristics, their condition, the evolution of their
condition over time, and the costs associated with their maintenance and replacement. This
tool can improve the ability of track managers to plan effectively [3,4].

This manuscript proposes a methodology to automatically generate a consistent
overview of component-level interventions, costs, possession windows, and the evolution
of failure risks for all track sections located in a railway network over future planning
periods. This includes considering the interaction between deteriorating components using
Bayesian filters, the impacts of the residual damages to the components due to the imperfect
execution of maintenance interventions using non-homogeneous transition probabilities,
and the evolving risks associated with different types of potential service losses that may
occur due to the sudden and gradual deterioration events connected to the time and the
condition of components using fault trees. The methodology uses data of different levels
of detail, probabilistic discrete state modelling for uncertain deterioration of components,
and component-level intervention strategies.

The methodology enables the use of both qualitative and quantitative data collected
from several sources such as visual inspections, approximate and detailed estimates of
failure risks, intervention costs and impacts on service. An application of this methodol-
ogy is demonstrated by estimating a complete overview of component-level intervention
requirements for track sections on a 25 km railway network in Switzerland.

The remainder of this manuscript is organised as follows: Section 2 provides a brief
overview of the research on estimating the intervention requirements for railway assets.
Section 3 includes a detailed description of the proposed methodology. Section 4 includes a
detailed explanation of the example railway network, along with a detailed description of
results from the implementation of the proposed methodology. Section 5 explains how to
enable the use of the methodology in infrastructure management firms. Section 6 includes
the discussion of the results, strengths and limitations of the presented methodology.
Finally, the manuscript is concluded in Section 7.

2. Literature Review

State-of-the-art methodologies aim to improve intervention planning for different
infrastructure assets by addressing the concerns of different asset managers. A selection of
these methodologies is summarised in Tables 1 and 2. These methodologies are based on
either deterministic or probabilistic modelling approaches.

Deterministic models mainly assume that the condition of a railway asset evolves over
time as a (non-)linear function of the asset age. For example, Giunta et al. [5] developed
maintenance strategies for the bitumen-stabilised ballast using a deterministic model as a
function of the age of the ballasts. While these models ensure the ease of comprehension
and implementation in the existing asset management systems, they do not account for the
uncertain behaviour of railway assets throughout their life cycle [6].

Probabilistic models, on the other hand, consider the uncertainties associated with the
evolution of railway assets’ condition subject to several deterioration processes over time.
For example, Fecarotti, Andrews, and Pesenti [7] determined the optimal track intervention
strategies with the help of probabilistic modelling of deterioration processes to account for
the uncertain evolution of track assets throughout their life cycle.

In addition, many state-of-the-practice methodologies use probabilistic modelling;
for example, AASHTOWare in the USA, Kuba and SwissTamp in Switzerland, and the
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Network Rail bridge-management system in the UK [8,9]. These systems estimate inter-
vention requirements over future planning periods by classifying the damage indicator
measurements, determined by the inspectors, into appropriate Condition States (CSs) and
probabilistically modelling their evolution over time.

Although these methodologies can be used to generate an overview of intervention
requirements, they often lack the detail and considerations required by track managers,
such as service loss risks and the granularity of intervention estimates. To address this
limitation, some researchers suggested incorporating the sudden deterioration processes,
such as the occurrence of natural hazards, into the probabilistic methodologies. For exam-
ple, Lethanh et al. [10] developed a Markov model for determining optimal intervention
strategies taking into account both gradual and sudden deterioration processes using two
sets of non-failure and failure CSs. Similarly, Kobayashi et al. [11] used Bayesian estimation
and the Markov Chain Monte Carlo method to estimate how assets evolve over time. These
works, however, did not consider the interaction between deteriorating asset components.
Therefore, some researchers proposed to consider such interactions in the construction of
the models. For example, Fecarotti and Andrews [12] incorporated the risks associated
with railway track failure into their probabilistic modelling to determine the optimal track
intervention strategy. Although not explicitly, they considered the interaction between de-
teriorating railway assets. In addition, others suggested considering the dynamic changes
in the deterioration modelling to account for the impact of the residual damages after the
execution of maintenance interventions. For example, Mehranfar et al. [1] incorporated
the dynamic changes in the deterioration rate of each asset component after each mainte-
nance intervention into their probabilistic deterioration modelling to have more realistic
estimates of intervention requirements using non-homogeneous transition probabilities.
Some suggested conducting the deterioration modelling at the element level instead of the
component level, meaning that the analysis is to be conducted for each element, such as
each bolt in a fastening system. For example, Kaewunruen et al. [13] proposed a risk-based
intervention planning methodology for fastening systems. This level of detail, however,
requires a vast amount of high-quality data and computing capacity.

Unfortunately, these cutting-edge methodologies are not often deemed desirable by
track managers, despite their potential benefits. There are two major reasons for this. First,
the implementation of these methodologies increases the efforts needed by track managers
and the inspectors to generate an early-phase overview of track interventions. This is
considered by many as a major barrier, e.g., collecting and analysing element-level data
on all track sections requires a significant amount of time and effort since a detailed study
must be conducted on all track sections in a network. Second, from the management point
of view, it is more likely that an intervention is executed on all components of the same type
in a track section, rather than targeting only a single element in that track section. Indeed,
the likelihood might not be the same based on the specific characteristics of the components.

Ultimately, this manuscript presents a methodology to generate an efficient and
complete overview of intervention requirements, their possession windows, and costs. It
contributes to the state-of-the-art by the following;:

. estimating intervention requirements and the failure risk at the component level, since
this is considered to establish an appropriate trade-off between the required effort to
implement the methodology and the provided level of detail.

* using non-homogeneous deterioration rates coupled with Bayesian filters to provide
an improved modelling of the components” deterioration, since the deterioration
rate of the components changes over time due to both the imperfections in the ex-
ecution of the maintenance intervention and the interaction between deteriorating
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components [14]. For example, a fresh ballast does not behave the same as a ballast
that has been rehabilitated three times.

*  incorporating the service loss in the estimation of intervention requirements in addi-
tion to the structural failure, since the highest risks associated with railway tracks in
a well-managed railway infrastructure are the service loss, and not total structural
failure.

Table 1. Summary of a selection of literature related to railway intervention estimation.

Source Theme Detail Level
. Life cycle cost assessment of bitumen stabilised ballast: A novel maintenance
Giunta et al. [5] . Element
strategy for railway track-bed
Kobayashi et al. [11] A competing Markov model for cracking prediction on civil structures Asset
Fecarotti and Andrews [12] Producing effective maintenance strategies to control railway risk Asset
Kaewunruen et al. [13] Risk-Based Maintenance Planning for Rail Fastening Systems Element
Adey and Hajdin [15] M.ethodolc.)gy for determination of financial needs of gradually deteriorating Asset
bridges with only structure level data
Allah Bukhsh et al. [16] Multi-year maintenance .planmng framework using multi-attribute utility Asset
theory and genetic algorithms
. Optimization of maintenance strategies for railway track-bed considering
Bressi etal. [17] probabilistic degradation models and different reliability levels Element
Chiachio et al. [18] A knowlfadge-based prognostics framework for railway track geometry Asset
degradation
Consilvio et al. [19] A data-driven prioritisation framewgrk to mitigate maintenance impacton
passengers during metro line operation
o On Applying Machine Learning and Simulative Approaches to Railway
Consilvio etal. [20] Asset Management: The Earthworks and Track Circuits Case Studies Asset
Fecarotti and Andrews [21] A P'etrl'n.et approach to assess the effects of railway maintenance on track Component
availability
Hidirov and Guler [22] Reliability, availability and maintainability analyses for railway infrastruc- Component
ture management
Irfan et al. [23] Framewor'k for airfield pavements management—an approach based on Asset
cost-effectiveness analysis
Prescott and Andrews [24] Investigating railway track asset management using a Markov analysis Asset
Prescott and Andrews [25] A track ballast maintenance and inspection model for a rail network Component
Rta et al. [26] A top-down approac.h f(.)r a .mulh—scale identification of risk areas in infras- Asset
tructures: particularization in a case study on road safety
Sadeghi et al. [27] Improvement of I'allWE.iy ballas’f maintenance approach, incorporating bal- Element
last geometry and fouling conditions
Sancho et al. [2] Optimizing Maintenance Decision in Rails: A Markov Decision Process Asset
Approach
Sasidharan et al. [29] A whole hfe? cycle approach under uncertainty for economically justifiable Asset
ballasted railway track maintenance
Sharma et al. [30] Data-driven optimization of railway maintenance for track geometry Asset
Soleimanmeigouni et al. [31] Prediction of railway track geometry defects: a case study Asset
Railway infrastructure maintenance efficiency improvement using deep
Sresakoolchai and Kaewunruen [32]  reinforcement learning integrated with digital twin based on track geometry =~ Component
and component defects
Usman et al. [33] Railway track subgrade failure mechanisms using a fault chart approach Element
Using Probabilistic Fault Tree Analysis and Monte Carlo Simulation to Ex-
Usman et al. [34] amine the Likelihood of Risks Associated with Ballasted Railway Drainage  Asset
Failure
Vale and Simos [35] Pred1ct10n. of Railway Track Condition for Preventive Maintenance by Using Asset
a Data-Driven Approach
Vandoorne and Gribe [36] S.tochas.tlc rail life cycle cost maintenance modelling using Monte Carlo Element
simulation
Wenfi et al. [37] Optimization Model of Life Cycle Repair Decisions for Track Network Asset
Proposed methodology Improving the intervention planning of railway tracks considering the inter- Component

action of components and uncertain evolution of failure risks
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Table 2. Summary of a selection of literature related to railway intervention estimation.

Deterioration Types

Failure Risks

Source

Gradual

Sudden

Interaction
Between Assets/-
Components

Generating
Future Interven-
tions Overview

Deterioration
Modelling

IS ! Determina-
tion/Utilization

Dynamic Deteri-
oration Rates

Dynamic FR !

Service Calculation

Structural

Giunta et al. [5]

Kobayashi et al. [11]
Fecarotti and Andrews [12]
Kaewunruen et al. [13]
Adey and Hajdin [15]
Allah Bukhsh et al. [16]
Bressi et al. [17]

Chiachio et al. [18]
Consilvio et al. [19]
Consilvio et al. [20]
Fecarotti and Andrews [21]
Hidirov and Guler [22]
Irfan et al. [23]

Prescott and Andrews [24]
Prescott and Andrews [25]
Rua et al. [26]

Sadeghi et al. [27]

Sancho et al. [28]
Sasidharan et al. [29]
Sharma et al. [30]
Soleimanmeigouni et al. [31]
Sresakoolchai and Kaewunruen [32]
Usman et al. [33]

Usman et al. [34]

Vale and Simos [35]
Vandoorne and Gribe [36]
Wenfi et al. [37]

Proposed Methodology

N N N N N N N N S N E NN

ARAX AU X AAUX X AN XX QAN X AX X AN X X

Deterministic
Stochastic
Stochastic
Stochastic
Stochastic
Mixed
Stochastic
Stochastic

Stochastic
Stochastic
Stochastic
Deterministic
Stochastic
Stochastic

Deterministic
Stochastic
Stochastic
Stochastic
Deterministic
Al

Stochastic
Stochastic
Stochastic
Stochastic
Stochastic

AAX XXX AAXX XX XXX XXXXXXXAXXXXX
AAX XX XXX XXX XXXXXXXXXXXXXXXNX
AXAX AAX ANAX X AX X XAXAXAX AN XX
AX X XXX XXX XXXXXXXXAXAXXXXXXXX
AXXXAXXAX XXX XXXXXXAXAX XXX XX
AANAX X AX CCNAAX ACNANRRRAX KRAX A8S
AX XXX XXX XXX XXXXXXXXXXXXXXXXX

1 FR: Failure Risks, IS: Intervention Strategies.

3. Methodology
3.1. Steps

The overview of the proposed methodology is shown in Figure 1. This methodology

encompasses multiple steps that are described as follows:

0.

Setup the requirements and constraints: The requirements and constraints for initial-
ising and using the algorithm must be set up first.

Select all track sections for which the estimates are to be made: The track sections
that are planned to undergo a detailed investigation by engineering firms must be
excluded.

Estimate the condition of all components for all track sections at f = 0: The initial
condition of all track components should be consistently estimated.

Estimate the condition of all components for all track sections at ¢t = 5: Intervention
requirements must be estimated 15 years ahead of the execution due to budgeting
and permission requirements [2,3]. The 15 years planning horizon consists of three
blocks of five years, wherein all interventions between ¢t = 0 and t = 5 have already
been planned and almost no major changes can be made [1]. This means that they
have received their allocated budget, obtained the necessary permits, and are in the
detailed execution planning stage [3]. Given this procedure, t = 5 is considered the
initial point after which estimates can be made.

Estimate the failure risk at t = 5: The risks associated with the occurrence of the
different service loss types need to be estimated.

Estimate the probability that each component requires an intervention based on
component-level intervention strategies: These estimates are conducted for the
periods between t = 6 and ¢ = 10 and between ¢ = 11 and t = 15.

If no intervention is needed, set t = t + 1 and update the condition state of the
components: Repeat steps 3 to 6 until the probabilities of components requiring
intervention and the failure risks have been estimated for each of the five years within
each planning period.

Estimate the required interventions: An intervention on a track section in the up-
coming planning period is required if either the probability of requiring intervention
on any of its components or the failure risk in that planning period exceeds a certain
threshold value. The possible and most likely types of interventions, required posses-
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sion windows, and intervention costs are estimated as a function of the intervention
type and service impacts.

8.  Checking the termination condition: If  # max interval, i.e., the end of the planning
period, update the deterioration speed if the corresponding components, set t =t + 1
and update the condition state of the components, repeat steps 3 to 7 until the end of
the planning period.

9. Suggest intervention postponements: Prioritise interventions based on the failure
risk value if the execution of all of them is not possible within the planning period.
Then, the interventions associated with the lower risk track sections are postponed

postp
until the constraints are met.
0 1 2 3
Select all Estimate the Estimate the
Setu track condition of condition of
etup sections for all all
requirements R t=0
and which the components components
constraint s estimates for all track for all track
are to be sections at sections at
made t=0 t=5
t=5

8
Update the Update the
condition t=t+1 deterioration
state of the speed of the

components corresponding
i components

Estimate
required
interventions

Estimate the
Estimate the | | probability that each
failure risk of the components
att=5 requires an
intervention

Select
interventions
considering
constraint s

Intervention
needed?

Assuming no
interventions are

executed, set t =t+1 t=max Yes
and update the interval
condition state of the
components

Figure 1. The steps of the proposed methodology to enable digitalised intervention planning process.

3.2. Requirements and Constraints

The requirements and constraints for initialising and using the algorithm are

as follows:

Definition of track components: The main track components are discerned through
the examination of the track drawings. Subdividing the tracks into components helps
provide more insight into the content of future intervention requirements. For example,
knowing that the switches of a track section will require a rehabilitation intervention
in 10 years and that this will require the closing of the associated track for eight hours
is more useful than just knowing that the track section will require a rehabilitation
intervention and being unsure if the intervention can be executed with or without
closing the rail line. In addition, this allows early estimations of the costs and the pos-
sibility of executing multiple interventions simultaneously on different components of
the track section. A more detailed analysis would subdivide the track sections into
their elements. For example, each switch associated with a track section consists of the
switching machine, toes, switch rails, fastenings, ballasts, sleepers, heels, check rail,
wing rail, crossing nose, stock rail, through rail, and subgrade [38]. This is, however,
not currently proposed for two reasons. First, it would increase the work required
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by track managers and inspectors to obtain the initial overview of the track sections,
which is a major barrier to implementation. Second, it is unlikely that interventions
would target single elements, and it is more likely that multiple elements of a single
component would need intervention. For instance, it is more plausible for an inter-
vention to be executed on all fastenings in a track section simultaneously, rather than
targeting a single fastening element. Therefore, estimating the required interventions
on the component level provides a suitable balance between the accuracy and the
required time and effort in estimating the information to make estimates for all track
sections in a network.

Definition of possible condition states of track components: The condition states are
defined to reflect the physical condition of the components. Different classification
schemes can be used for this purpose, such as a discrete scale from 1 to 5 that is used in
this manuscript to classify the condition of components. In this classification scheme,
the best condition is represented by Condition State 1 (CS1) and the worst condition
is represented by Condition State 5 (CS5). These definitions have to comply with the
organisation’s guidelines and preferences of track managers.

Estimation of the current condition state of components: The current CS of com-
ponents is estimated using existing data sources, e.g., proprietary asset condition
database. If they are not explicitly estimated, the inspection reports can be used to
determine the CS of the components by matching the damage indicators mentioned
in the inspection reports with the definition of the CSs. In case the existing data are
imperfect or if data on the condition of the components are not available, different
methods such as Bayesian networks can be used to estimate the current condition of
components [4].

Estimation of the likelihood of changing states over time, i.e., transition proba-
bilities: Estimating transition probabilities is necessary to predict the future state
of components. In the absence of the condition monitoring data, these values can
be estimated using expert opinions, taking into account the interaction between de-
teriorating components and the impacts of the residual damages to the component
due to the imperfect execution of maintenance interventions. These values can be
updated once enough information becomes available, for example, using data-driven
approaches [39-42].

Definition of possible interventions for each track component in each CS and
estimation of their costs and impacts on service: The possible interventions associated
with each CS for each component should include the activities to address the damage
indicators mentioned in the definition of the CSs, along with the estimates of their
costs and impacts on service. For example, a switch should be replaced if signs of
plastic deformation are observed in the crossing nose of the switch, i.e., CS5. This
intervention roughly costs 0.5 million Monetary Units (0.5Mum) and approximately
takes 8 h to complete. These interventions and estimates can be defined using expert
opinion or using existing references, e.g., [43].

Identification of the best component-level intervention strategies: These strategies
provide a guideline as to the actions to be taken when a component is in a specific CS.
For example, the intervention strategy for the switches could indicate that no inter-
vention needs to be executed on the switches if they are in CS 14, and a replacement
is needed if they are in CS5.

Definition of fault trees for the track sections: fault trees can assess how each
component functions individually and how they work together to ensure the provision
of sufficient service on the track section. These are used to approximate the probability
of a track section not providing the expected service (failure) when the components are
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in different CSs. These fault trees can be developed initially with an acceptable level
of detail and then be updated with more sophisticated ones based on the requirements
of track managers.

* Estimation of the occurrence probability of basic events: The probability of oc-
currence for a basic event should be correlated to the time and the evolution of
components’ CS, which is likely to provide a realistic idea of how the failure risks
evolve over time. For example, if a switch is in CS1, the failure probability of this
switch due to the occurrence of a severe sudden event is very low (10~°), whereas this
probability is very high (10~3) if the switch is in CS5. These estimations can initially
be made using expert opinion and then be updated in the future using more advanced
approaches such as Finite Element Analysis conducted by [44,45].

* Estimation of the consequences of each failure type: the consequences related to
the occurrence of each failure type, i.e., the top events, must be estimated to enable
the calculation of the failure risks that are dependent on the time and condition of
components. For example, the estimation of consequences must encompass the owner
and the user costs, which include expenses related to materials and equipment, traffic
management, and increased travel time due to the service reduction or loss. These
estimations can be made using a combination of expert opinion and construction price
indices, e.g., the Swiss construction pricing index [46].

4. Case Study

The case study includes a network of eight stations spanning a distance of 25 km,
located in Switzerland. A schematic overview of the case study is shown in Figure 2. This
is a double-track network with an average daily passenger traffic of 45 trains on each track
side. The geometry of tracks is measured using diagnostics trains twice a month for twist,
cross-level, gauge, curvature, and alignment error [47]. In addition, other possible issues,
such as sleeper cracks or ballast loss, are measured every year on the tracks with high
demand using semi-automatic and manual inspections [2,48].

\ ] ! - | =

—\ A
i \
\
. — L
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8

Figure 2. The schematic overview of the case study.

The case study is segmented into 154 tracks and 161 switches, considering the length
of 120-125 for each track section. The latest inspection reports regarding the condition of
each track section are available in the internal track condition database, which was used as
the basis for this case study. A summary of the condition of all track sections is provided in
Figure 3. It is observed that while most switches are in a rather healthy condition, tracks
are mostly in a damaged condition.
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Figure 3. The latest condition distribution of the example tracks and switches.

4.1. Components

Railway tracks are split into five main components, i.e., rails, fastenings, sleepers,
ballasts/sub-ballasts, and subgrades, as illustrated in Figure 4. Ballasts and sub-ballasts are
considered as one component since they deteriorate in a similar manner [43]. In addition,
switches are considered as one component since their maintenance includes performing
interventions on multiple elements [43,49]. Therefore, the case study consists of a total of
931 components.

Rail Fastening
system

Figure 4. A schematic overview of track components.

4.2. CS of the Componentsat t = 0and t =5

The proposed methodology aligns with standard railway inspection protocols that
operate at three distinct levels: visual inspection, diagnostic train assessment, and de-
tailed investigation using destructive or non-destructive techniques such as ultrasound.
The present research specifically addresses the first level, which is designed to support
identifying critical issues such as fractures and rail contact fatigue that subsequently trigger
more detailed inspections and flag components for potential intervention consideration in
future planning periods.

The condition of the components is represented through five discrete states, i.e.,
CS=1[1 2 3 4 5] Inthisscale, CS1 represents the best condition, where there is no or
minor damage, and CS5 represents the worst condition, where there exists severe damage
that is unsafe. The states in between show increasing levels of damage. Table 3 shows an
example definition for the CSs of the switches. Based on this table, switches are in CS1 if
they have no issues and in CS5 if the settlement is too high or the cross nose is deformed.
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Similar to switches, such CSs are defined for other components. The CSs are defined for all
other track components similarly.

Such simplified definitions of condition states, while not capturing all causal dete-
rioration mechanisms and detailed indicators, provide sufficient discriminatory power
for strategic maintenance planning while maintaining computational feasibility. These
criteria, nonetheless, require customisation for each type of component based on inspection
methodologies, regulatory frameworks, and operational contexts. The implementation of
this methodology on a portfolio of railway track assets necessarily involves calibration in
collaboration with maintenance execution specialists and compliance with existing reg-
ulations. Future research will explore methods to incorporate more complex deterioration
processes without compromising the practical utility of the model for infrastructure managers.

Table 3. Example definition of the CSs for switches.

CS Condition Description Damage Description Damage Indicator

No significant damages, no sign

1 New None/insignificant of settlement.

Slight wear on the mechanism,
a slight sign of debris
accumulation, a slight sign

of settlement.

2 Good Minor

Insignificant signs of wear on
the switchblade, Insignificant
sign of wear on the crossing
nose, small areas with slight
corrosion, insignificant
accumulation of debris,

the amount of settlement
reaches the alarm threshold.

3 Sulfficient Significant

The frog shows some damage,
switchblades damaged, switch
actuator/motor can fail,

4 Poor Extensive significant accumulation of
debris, the amount of settlement
reaches the
intervention threshold.

Plastic deformation of the
crossing nose, loss of stability
due to severe corrosion of the
frog, extreme accumulation of
5 Insufficient Safety is endangered  debris actuator/motor have a
high failure probability,
the amount of settlement
reaches the maximum
tolerable threshold.

The CS of all track components at t = 0 is estimated based on information provided in
the latest inspection reports, which is summarised in Figure 5a. The CSs of each component
were determined by matching the definition of CSs with the damage indicators mentioned
in the inspection reports. The CS of components in each track section is then assumed
to be the same as the overall CS for those sections where component-level information
was consistently unavailable. This assumption allows for a consistent estimation of initial
CSs across all components, ensuring a convenient approach in the absence of component-
level information.
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Figure 5. Overview of the CS of the track components at: (a) t = 0, and (b) t = 5. A caption on a
single line should be centred.

Probabilistic discrete state modelling is used to estimate how CSs evolve over time,
which is similar to the modelling used in existing railway asset management systems [28,30].
Table 4 represents an example of non-homogeneous transition probabilities for switches
over a one-year period, which corresponds to the mean interval between two inspections.
Here, it is assumed that deterioration rates increase as a function of the times maintenance
interventions are executed on the component. This is because of imperfection in execut-
ing maintenance interventions, which do not always reinstate the physical and chemical
characteristics of the components [15,50]. The impact of this on the deterioration rate can
be determined using expert opinion. In case enough data are available, other methods
such as stochastic approaches can be used to determine this impact [51,52]. It is assumed
there is a 2% increase in the deterioration rate following each successive maintenance
intervention. This assumption is inspired by the works of Peng et al. and Li and Jia [53,54].
The maintenance count resets for each component upon the replacement of the component.
This rationale is consistently applied across all components.



Infrastructures 2025, 10, 126 12 of 27
Table 4. Example transition probabilities for switches.
1st Maintenance 2nd Maintenance
CS 1 2 3 4 5 1 2 3 4 5
1 0.94 0.06 - - - 0.92 0.08 - - -
2 - 0.92 0.08 - - - 0.90 0.10 - -
3 - - 0.86 0.14 - - - 0.84 0.16 -
4 - - - 0.72 0.28 - - - 0.70 0.30
5 - - - - 1 - - - - 1

Moreover, the deterioration rates for each component are further refined to account
for the interaction between deteriorating components. Bayesian filters are used for this
purpose. These filters can be integrated into the existing infrastructure management
system, without the need to make significant changes in the logic and the modelling
structure [55,56]. This is likely to reduce the effort and the costs needed to implement the
proposed methodology in a railway company. These filters are defined depending on the
location of the components on the tracks. For example, while the condition of the rails is
influenced by the condition of the fastenings, sleepers, ballasts, and subgrade, the condition
of the subgrade and switches is independent of the condition of other components [21,43].
For example, Equation (1) represents the Bayesian filter associated with the interaction
between rails and other track components, which is indicated with I'g,;;s. In this equation,
I'raits = I (I is an identity matrix) when other influencing components are in CS1 or CS2.
The influence of the condition of other components, when they are in CS3, C54, and CS5,
on the CS of the rails is represented, respectively, by «, §, and #. The values associated with
these filters can be estimated using expert opinion or using more advanced techniques,
such as regression-based nonlinear optimisation or neural networks [57,58] in case enough
information is available. The definition of these filters for other track components are
provided in Appendix A.

The calibration and validation of these parameters can be performed using empirical
methods. For instance, regression methods or Bayesian updating can effectively compare
predicted and observed deterioration rates [41,57]. Furthermore, sensitivity analysis can
verify the reliability of the estimated parameters. For illustrative purposes in this study, it
is assumed that @ = 0.0001, 8 = 0.0005, and # = 0.001, which are inspired by the works of
Chen et al., Niroshan et al., and Kobayashi et al. [11,57,58].

I if CFastenings _ {1/2} | CGSleepers — {1,2}
| CGBallasts _ {1 2} | CGSubgrades {1 2}

Li—a Vi€ {1,234} if CFastenings — (3} | CgSleepers = (3}
Liipy +o Vie{1,2,3,4} | CsBallasts — g3} | Cgdubgrades — {3}
I'Raits = 1)
Li—p Vie{1,23,4} if CFastenings — {4} | CSSleepers = {4}
ey +B Vie{1,2,3,4} | CsBellasts — g4y | Cgdubgrades — {4}

Li—n Vi e {1,2,3,4} if CGFastenings {5} ‘ CSSleepers — {5}
Ii(i+l) +y Vi€ {1,2’3’4} | CGBallasts — {5} | CGSubgrades {5}
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An overview of the most likely CS of all components at t = 5 is shown in Figure 5b.
These are estimated using Equation (2) that multiplies the CS of components at ¢ = 0 with
the probability of them transitioning to the possible future states, shown with P, and with
the Bayesian filter associated with each component, represented by I', within 5 years.

csttl=cst.p.T )

4.3. Component-Level Interventions and Intervention Strategies

Several interventions are required to maintain the expected serviceability of compo-
nents throughout their life cycle. These interventions vary with respect to the component
characteristics and damage severity. These interventions can be categorised using three
generic terms, i.e., Rehabilitation, Renewal, and Replacement, to represent different levels
of execution complexity [15,43].

The intervention costs are calculated as the total of owner costs, Cp, and user costs, Cyj,
Crotal = Co + Cy. Cp is calculated using a construction pricing index [46]. Cy; is calculated
by monetising the average daily added travel time, i.e., 6’524 mu/day, using Equation (3).
In this formula, the average number of passengers per day is represented by APD, the
average daily wage by ADW, and average daily added travel time per passenger by ATP.

Cy = APD x ADW x ATP 3)

Table 5 shows the example switch intervention costs, which increase with the com-
plexity and labour demand of activities [12,21,43]. These costs are calculated similarly for
other track components.

Table 5. Example switch intervention costs.

Intervention Type Cp (mu/quantity) Service Disturbance Duration (h) Cy (mu) Crotal (mu)
Rehabilitation 3’110 4 2607496 263’606
Renewal 3930 4 2607496 264’426
Replacement 14’110 8 5207992 535102

Component-level intervention strategies, along with their effectiveness, can be esti-
mated using a combination of the internal documentation and expert opinion. In case these
strategies do not exist in an organisation, they can be determined using different techniques
such as Markov chains [1,15,40]. For example, Table 6 shows an example of multiple
variants for switch intervention effectiveness, where the switch intervention strategy used
is highlighted in violet, and the effectiveness is given in terms of the probability of being in
CS1 or CS2 after the execution of the intervention. This is derived using internal documents
of railway assets. The switch intervention strategy indicates that no intervention is needed
in CS1 and CS2, while a replacement is needed in CS5. For CS3 and CS4, rehabilitation
and renewal are applied, respectively. The effectiveness indicates the probability of a
component being in CS1 or CS2 after executing an intervention, which can be estimated
with different methods, for example, using Data Envelopment Analysis [59,60]. In this
paper, these are inspired by the values mentioned in [59,60].
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Table 6. Example intervention effectiveness for switches.
Intervention Type CS1 CS2 CS3 CS4 CS5
Rehabilitation ! 0.85 0.15 - - -
CS3 Renewal 0.95 0.05 - - -
Replacement 1.00 - - - -
Rehabilitation 0.65 0.35 - - -
Cs4 Renewal 2 0.90 0.10 - - -
Replacement 1.00 - - - -
Rehabilitation 0.50 0.50 - - -
CS5 Renewal 0.85 0.15 - - -
Replacement 3 1.00 - - - -

Note: The best switch intervention strategy is highlighted in violet. ! Potential activities: Tightening of the
fastenings, Tamping or ballast cleaning, lubrication of the switch blades, adjustment of switch settings. 2 Potential
activities: Restoration of the rail surface by welding, manual grinding. ® Potential activities: Replacing the
damaged parts of the switch.

4.4. Evolution of Failure Risks

There are different methods to assess the risks associated with the failure of compo-
nents to provide a sufficient level of service, such as Fault Tree Analysis, or Failure Modes
and Effects Analysis [38,61]. However, compared to other risk assessment methods, fault
trees not only better help infrastructure managers visually map the logical relationships
between basic component failures and the resulting system-level failure, i.e., top events,
but also offer a great level of adaptability so that they can be continually updated as more
data become available over time [34,62]. This iterative nature makes them well-suited for
infrastructure intervention planning.

The evolution of failure risks is estimated using fault trees, connected to the compo-
nents’ failure severity. Top events are “restricted service” (due to rehabilitation at night)
and “interrupted service” (due to replacement with total closure) defined for each track
section, as shown in Figure 6a and Figure 6b, respectively. The basic events are the gradual
or sudden deterioration of the individual components due to external loads, such as traffic
or natural hazards.

The failure probabilities of components are estimated based on the occurrence prob-
ability of basic events. These events depend on the occurrence of external loads and the
component resistance. The occurrence of external loads is independent of the CSs of com-
ponents and based on expert opinion, while the resistance of components varies with the
components’ CS. This means the failure probabilities of components due to the occurrence
of basic events vary for different CSs at different times, with a lower value for CS1 and a
higher value for CS5.

Equation (4) indicates how failure probabilities are estimated, where PoF% represents
the probability that component i fails at year ¢ due to the occurrence of the sudden event j,
POS; is the occurrence probability of the sudden events j until year ¢, Rf; is the resistance
factor of component i, and CS! is the CS of the component i at year ¢, which is represented as
al x 5vector. POS; is assumed to follow a Poisson process as suggested by Usman et al. [34].
This way of calculating the failure probabilities enables taking into account the changes in
the occurrence probability of top events in each year within each planning period.

PoFi’; = PoS; “Rf; - CS! Vi € Components & j € Sudden events 4)
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Figure 6. Examples of fault trees associated with: (a) restriction service, and (b) interrupted service.
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For example PoF of a switch at year t due to the occurrence of the sudden event j

can be calculated as follows:

t
) X Rfswiteh X CSsyiten

}

at year t and the resistance vector Rfsitcn

1
T
A

CS1 CS2 CS3 CS4 CS5
[RfSwitch RfSwitch RfSwitch RfSwitch RfSwitch
- e

1
1!

((/\j'f)

t _
PoFgisep,; =

with a return period of T years, i.e., A;
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The consequences of each top event depend on how much work is needed to restore
the level of service. These are estimated in terms of owner and user costs of executing
immediate interventions using information from Section 4.3. The failure risks associated
with each track section are then estimated depending on the components” CS. These esti-
mates enable obtaining a meaningful overview of interventions and avoiding intervening
on different components every year. These also help plan interventions using a predefined
failure risk threshold in case there are no component-level intervention strategies defined.
This threshold is defined as the value of failure risks when all components are in CS4, since
having any assets in CS5 is not desirable for the asset managers [1].

An overview of the evolution of failure risks for a selection of track sections is shown
in Figure 7. In this figure, TS3 notably exhibits one of the highest failure risks, while TS11
exhibits one of the lowest. The primary reason for this difference is the initial CS of the
components on these two track sections, which are in CS4 and CS1, respectively.

6 M7 w8 "9 W10 w1l m12 w13 m14 m15

Failure risks (x102mu)
- 30 60 90 120 150 180 210 240 270 300

L',

TS|
2 )
53
TS4

Track section name

Figure 7. Overview of the failure risk evolution for a selection of track sections between t = 6 and
t =15.

4.5. Overview of Component-Level Intervention Requirements

The interventions are estimated for the next planning periods, i.e.,, t = 6 to t= 10,
and t =11 to t =15 considering deterioration rates and intervention strategies discussed
in Section 4. Interventions are scheduled to be executed on a component when the failure
risks associated with each track section reach the pre-defined failure risk threshold in each
planning period. After knowing which interventions are needed, detailed information
regarding the most likely interventions, such as the expected costs and possession windows,
is estimated. These estimates are not conducted for the period between t = 0and t = 5
since any interventions between t = 0 and t = 5 have already entered a detailed planning
phase based on the intervention planning process.

Table 7, for example, shows the chances of intervention requirements between t = 6
and t = 10, along with the estimates of possession windows requirements and the expected
costs for only two switches. Based on this table, there is a 34% likelihood that S1 require
an intervention. It is most likely that the type of this intervention will be rehabilitation,
with a 27% likelihood. If this is executed alone, the rehabilitation would be expected to take
six hours, of which one would require no disruption to service, one hour would require
restrictions to be implemented and four hours would require the associated track section to
be closed. This would be expected to cost 263,000 mu.
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Table 7. Possible and most likely switch interventions required between t= 6 and t = 10, with associ-
ated possessions and intervention costs.

Expected Required Possessions (h) if Conducted Alone

Chance of Expected
. Expected .
Switch an  Inter- 1 . Traffic Interven-
. Details Duration None . .. Closure .
Name vention (h) Restrictions tion Costs
(%) (x10% mu)
S1 34 27/6/1 6/7/11 1/1/1 1/2/2 4/4/8 263/264/535
S2 100 -/47/53 6/7/11 1/1/1 1/2/2 4/4/8 263/264/535

Note: The values associated with the most likely interventions are indicated in bold. ! The chance of the
intervention being rehabilitation /renewal /replacement (%).

4.6. Prioritisation of Interventions as a Function of the Failure Risk Estimates

Track managers must decide which interventions to postpone in a situation when de-
tailed investigations on all track sections requiring interventions cannot be initiated, or if all
interventions cannot be executed due to organisational restrictions. A benchmark is needed
to enable managers to do so. Such a benchmark should capture different characteristics of
the components as well as the concerns of track managers. For example, track managers
consider CS4 as the last point before the initiation of emergency intervention [1,2]. This
means that the ratio of failure risks associated with the track sections when their com-
ponents are in their current or predicted CSs, and failure risks associated with the track
sections when their components are in CS4 can be used to prioritize interventions (the
calculation of the failure risks for each track section when all components are in CS4 and
are conducted by setting CS! = 4 in Equation (4) and then calculating the failure risks
with respect to the associated logic of the described fault trees). This failure risk ratio reflects
an indication of the failure risk level for each track section, which exists even without any
damage. Track managers need to keep this level within a reasonable margin for each track
section. At the same time, track managers do not aim to achieve the same failure risk level
across all track sections. An example is shown in Figure 8. This would mean that if a
detailed investigation of one of the track sections needed to be postponed, it would be the
one for TS35, as the failure risks associated with this track section are the farthest away
in terms of percentage from the failure risks associated with the track section if all of its
components were in C54.

100%
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80% 75%
70%

60%

50%

40%

30%

22%
20%

Risks with predicted condition states of components / Risks
with components in condition state 4 x 100%

10%
2% 2% 2%
0%
TS9 TS17 TS2 Ts1 TS35
Track name

Figure 8. Failure risks with predicted CSs of components/failure risks with components in CS4
%x100% between t = 6 and ¢ = 10.

5. Enabling the Use

Enabling the use of the proposed methodology in the intervention planning process re-
quires some effort from infrastructure managers to initialise the methodology. A schematic
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overview of the setup and implementation process is also shown in Figure 9. This method-
ology is designed to be implemented with minimum requirements, e.g., using a computer
equipped with spreadsheet software. However, it is recommended to use a programming
language such as R [63] to analyse the entire railway network of a country. The estimation
of the required information can be achieved using various sources with different levels
of detail, from expert opinion to detailed track management databases. After the proper
implementation of the proposed methodology, the output can be used to develop inter-
vention programmes that consider all asset-level and network-level constraints, such as
the interdependencies between the interventions. Moreover, the use of BIM (Building
Information Modelling) or GIS (Geographic Information System) allows for automatic stor-
age and visualisation of the methodology’s output as new information becomes available,
which is crucial in a digitalised intervention planning process. For example, the output
can be visualised for a selection of track sections that will require interventions on the case
study railway network using a GIS platform to provide an overview of the most likely
intervention requirement, along with the early estimates of the related costs and possession
windows over the future planning periods, as shown in Figure 10 for the periods between
t=1land t = 15.

Figure 9. Schematic overview of the setup and implementation workflow within a digitalised

infrastructure management process.
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Figure 10. Most likely intervention requirements on the GIS model of the case study between ¢ = 11
and t = 15.

6. Discussion

The proposed methodology provides railway asset managers with an efficient
overview of the component-level interventions, related costs, possession windows, and as-
sociated failure risks over future planning periods. The methodology considers components’
condition, deterioration rates, the interaction between them, component-level intervention
strategies, and a tolerable failure risk threshold. Additionally, the methodology enables the
prioritisation of component-level interventions based on the level of failure risks associated
with each track section to decide which one should be selected to initiate the preliminary
study phase.

One limitation of the methodology is that even though it is designed to be implemented
with minimum effort, the initial estimates of all input information are still required to
be made by infrastructure managers, e.g., initial components’ condition, deterioration
rates and the impact of their interaction on deterioration rates, possible interventions
and their impacts on service and the associated costs as described in the manuscript. This
limitation would be the same with all such methodologies. In some parts, such as estimating
the components’ condition, generating the input information can be made easier using
stochastic and data-driven methods.

Additionally, the development of fault trees is deemed demanding, but adequate
consideration of failure risk is necessary to support decision-making. From a planner’s
perspective, it is useful to have a comprehensive overview of failure risk, i.e., the likeli-
hood and consequences of having to close parts of the railway network for emergency
maintenance interventions. From an engineer’s perspective, it is difficult to estimate the
probabilities of occurrence of base events and the consequences exactly, which is made
harder when there are criticisms of the exactness. This, in many cases, is likely to mean that
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the estimates are not made, which unfortunately means risk is not explicitly considered.
From a planner’s perspective, it is preferable to have general, albeit approximate, estimates
rather than none at all.

A further challenge is to accurately estimate the potential effects on service, required
possession windows and, if required, the cost estimates. This challenge arises primarily for
two reasons. Firstly, the methodology is to be used at an early planning stage, where there
is limited knowledge regarding the specific activities encompassed in the interventions.
Even if approximate, this estimation is essential for acquiring an early yet comprehensive
understanding of all track interventions in a railway network. Secondly, even if estimates at
the component level were known for individual interventions, the impacts on service and
the intervention costs would fluctuate as individual component-level interventions become
clustered into cohesive intervention programs. This is because clusterisation results in
some interventions being executed earlier or later than they would be executed if the assets
were considered alone, and the combination of some interventions in time with others will
likely result in a net reduction in both costs and service disruptions.

7. Conclusions

This manuscript proposes a methodology to estimate interventions, possession times,
costs, and failure risks for track sections. It is exemplified through application on a 25 km
railway network in Switzerland. The novelty of the method includes the focus on com-
ponents and their interaction over time, and the use of fault trees to estimate condition-
dependent failure risks. The methodology accounts for the factors that are of concern to
track managers. It uses a five-state probabilistic model to estimate the current and future
CSs and intervention requirements. It uses fault trees to estimate the failure probabilities
and consequences for the two top events related to different service loss scenarios. The con-
sequences include owner and user costs. To comprehensively assess the advantages of
this methodology, future studies should conduct testing on both real-world and simulated
networks using different methods such as business processes simulation or structural
equations modelling.

The proposed methodology provides a consistent and complete early estimation
of component-level interventions, their costs, and associated possession windows, as
well as failure risks in the upcoming planning periods. The methodology considers the
condition of the components, their non-homogeneous deterioration rates as a function of
the maintenance count, the interaction between the deteriorating components, and the
component-level intervention strategies. Interventions are triggered through the coupling
of failure risks with the CS evolution. If deemed necessary, the decisions on postponing
interventions or their prioritisation can be made using the ratio between predicted failure
risks and the failure risk threshold.

The methodology presented herein represents an advancement over the current state-
of-the-art practices. It comprehensively encompasses crucial aspects essential in the track
managers’ decision-making process. This methodology effectively estimates the failure
risks associated with the condition of asset components. Notably, the dynamic adaptation of
fault tree calculations for the estimation of condition-dependent failure risks, coupled with
a comprehensive overview of intervention requirements, distinguishes this methodology.
To the authors’ knowledge, such an application is unprecedented in existing railway asset
management systems [43,64].

The systematic overview provided by this methodology in terms of the interventions
required, the associated possession windows and the cost estimates streamlines the com-
munication among various stakeholders in the intervention planning process, such as asset
managers, line planners, and network developers. Having such a comprehensive overview
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is crucial for the development of stable train schedules, ensuring that multiple interventions
are synergistically integrated within limited time frames.

The design of the proposed methodology was aimed at ensuring the ease of imple-
mentation. It allows for the estimation of required input information from several sources,
ranging from expert judgment to existing databases, with varying levels of granularity.
The accuracy of this input data can be refined further upon the availability of more detailed
information. Additionally, other parts of the methodology, such as the definition of CSs,
can be improved to incorporate indications generated from advanced measuring tools.
For example, these can cover cross-section loss of the rail head in percentage if such mea-
surement is consistently available. Moreover, more detailed fault trees can be developed
according to the needs of the infrastructure managers. The methodology accounts for the
further refinement of component-level intervention strategies. For example, the estimates
of the initial CSs can be improved using the DBN (Dynamic Bayesian Network) to impute
the missing values in the database [4].

Implementing the methodology presented in this manuscript within a suitable plat-
form will enable track managers to efficiently take advantage of digitalisation. This will
facilitate the generation of a detailed overview of the intervention requirements, their initial
costs and impacts on the service, as well as the level of failure risks in future planning
periods for all track sections in a systematic manner. The adoption and application of
the proposed methodology are expected to significantly improve the efficiency and effec-
tiveness of the intervention planning process. Future studies should focus on improving
different aspects of the presented methodology, with a particular emphasis on applying
the proposed methodology to generate the component-level intervention programmes for
all assets within a railway network. For example, the consistent estimation of initial CSs
for all infrastructure components using advanced models, such as physics-informed CS
estimation [65], should be integrated into the current methodology.

Additionally, future studies should enhance the visualisation capabilities of the pre-
sented methodology. The outcomes could be displayed on a GIS-based Building Informa-
tion Modelling (BIM) platform for the entire railway network, including detailed BIM for
each track section, to improve the interpretation of intervention requirements, preliminary
costs, and required possession windows for upcoming planning periods.

Finally, future research should quantitatively evaluate the efficiency improvements
achieved through this methodology. This should involve a systematic comparison of the
methodology’s outputs with validated real-world benchmarks. Furthermore, key metrics
such as planning time, number of iterations, the extent of decision-maker engagement,
and maintenance budget approval success rates should be measured before and after
implementation to provide empirical evidence of the methodology’s effectiveness.
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Appendix A. Bayesian Filters

The Bayesian filters associated with the interaction between fastenings and other track
components, sleepers and other track components, and ballasts and other components
are, respectively, shown in Equations (A1)—(A3). The same values as the ones discussed in
Section 4.2 are used for these filters. Please note that the deterioration rate of subgrades is
assumed to be independent of the CSs of other track components.

I if CSSleepers — {1,2} ‘ CgBallasts _ {1,2}
‘ CGSubgrades {1 2}

Ii—a Vi€ {1,2,3,4} if CsSleerers = (3} | CgBallasts — (3}
Liipy)+o Vie{1,2,3,4} | CsSubsrades — (3}

rFustenings = (A1)
Li—p Vie{1,23,4} if CSSleerers = {4} | CsBallasts = (4}
Liie1)+B Vie{1,2,3,4} | CsSubsrades — {43
Iiz‘ -7 Vi e {1,2,3,4} if CSSleepers — {5} | CSBallasts _ {5}
ey +1 Vie{1,2,3,4} CGSubgrades — (5}
I if CgBallasts — {112} ‘ CSSubgrades — {1,2}
Ii—a Vie {1,234} if CSBallasts — (3} | CgSubgrades — (3}
Ii(iJrl) +a Vi e {1,2, 3,4}
Usteepers = (A2)
Sleepers I — ,B Vi e {1,2,3/4} if CSBullasts _ {4} | CSSubgmdes — {4}
I,-(i+1) +p Vie{1,234}
Li—n Vie€{1,2,3,4} if cSBallasts — (5} | CgSubgrades — (5}
Ii(i+1) +7n Vi e {1,2,3,4}
I if CGSubgrades — {1’2}
Li—a Vie {1,234} if CgSubgrades — 3}
Ii(i+1) +a Vi e {1,2,3,4}
Upattasts = § Li — B Vi € {1,2,3,4} if C§Subsrades — 14} (A3)

Ly +B Vi€ {1,234}

Li—n Vi€ {1,3} if CgSubgrades — (5}
=ity +1 Vi€ {1,234}

Appendix B. Estimating the Condition State of the Components
over Time

The Algorithm A1 shows the pseudocode associated with CS estimation taking into
account the interactions between components and the impacts of the imperfect execution of
maintenance interventions. The CS of the components was estimated each year taking into
account the transition probability associated with each component, the acceleration factor,
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the number of years throughout the planning periods, the effectiveness of the interventions,
the Bayesian filters and the initial condition of the components. CSs at ¢t = 5, as mentioned
in Section 3.1, are first estimated by multiplying the initial CSs by the transition probabilities
for all components (lines 2 to 5). The year count is then updated on line 6. The main loop of
the algorithm starts by estimating the CS of all components in year ¢ by multiplying the CS
of the components in year t — 1 by the associated transition probabilities (line 9). The line 11
captures the interaction between the components by updating the deterioration rates of
the components by multiplying their current transition probabilities by the Bayesian filter
associated with each component. For example, if all components are in CS in year t then,
as discussed in Section 4.2 and Appendix A, it would be TP x I = TP. This means that if all
components are in CS2, their transition probabilities would remain unchanged. In the next
step, the algorithm checks if the conditions for triggering interventions are met. If positive,
the CS of the components in need of interventions is updated by multiplying their estimated
CS by the intervention effectiveness vector, as seen in line 13. The impact of maintenance in-
terventions on deterioration rates is captured in lines 14 and 15. In these lines, the algorithm
checks if the intervention type was not “Replacement”. In case this statement is positive,
the algorithm updates the transition probabilities by multiplying the current transition
probabilities by a given acceleration factor, as discussed in Section 4.2. The algorithm
continues until the CSs for the last year of the last planning period are estimated.

Algorithm A1 Estimating CS of the components over time

1: Input: Transition Probabilities (T P), TP acceleration factor (AF), Planning Periods (PIP),
Intervention Strategies (IS), Intervention Effectiveness (IE), Bayesian Filters (T'), Initial
Condition State (CSp)
t<+1
: for t = 1to5do
CS; +CS;_1 xTP
end for
t—t+1
: while t < PIP do
// For all components in parallel:
CSy +— CS;_1 x TP
/I Check condition states of all dependable components and update TP with
Bayesian Filters
11: TP <+ TP xT

R B S ol

—
=

12: if CS; indicates an intervention is needed (per corresponding IS) then
13: CSt < CSt x IE

14: if Intervention type # Replacement (per corresponding IS) then
15: TP« TP x AF

16: end if

17: end if

18: end while

Appendix C. Estimating Failure Risks

The Algorithm A2 shows the pseudocode related to the estimation of failure risks
over time. The failure risks were estimated taking into account the length of the planning
periods, the evolution of CSs over time, and the probability of occurrence of basic events
depending on the condition of components. Based on this algorithm, the failure probability
of the components due to the basic event j in year t, i.e., Pont, is calculated taking into

account the probability of occurrence of that event in that year, i.e., Pon , the condition
of the components in that year, i.e., C S]t., and a factor to represent the resistance of each
component i in each CS against the impacts of the occurred of basic events (Rf;). In the final
step, the failure risks (FR') in each year are calculated taking into account the structure
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of the fault trees. The algorithm then checks whether the level of failure risk exceeds the
acceptable failure risk threshold and if positive, flags for intervention. The loop continues
until the end of the planning period. More detailed information regarding the definition
and the use of fault trees connected to the condition of components are found in [1].

Algorithm A2 Estimating evolution of failure risks

1: Input: Acceptable Failure Risk Level (AFR), Condition States (CS;), Planning Periods
(PIP), Probability of Occurrence (PoS), Consequences (Con)

2 45

3: while t < PIP do

4: for each component i do

5: for each failure mode j do

6: PoFitj — PoS]t- X Rf; x CS!
7: end for

8: end for

9:

FR! + f(Pon].) x Con
0.  if FRZ?]. > AFR then

11: Flag for intervention
12: end if

13: t—t+1

14: end while
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