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Abstract: This study applied 2019 macro-level data from DATASUS to model traffic fatalities
at the scene. Ordinary least squares (OLS) and censored regression models (TOBIT) were the
methodologies used to identify the significant variables explaining the occurrence of deaths
on public roads due to crashes. The number of fatalities on public roadways was then
modeled using a multilayer perceptron artificial neural network employing the significant
variables as predictors according to the generalization capacity of complex predictive
models. The OLS and TOBIT findings indicated that the variables motorcycles and scooters
per capita, municipal human development index, and number of SUS emergency units were
the most important for modeling traffic fatalities at the scene at the national and regional
levels. Applying these variables, the neural network’s best results achieved a hit rate of
88% for Brazil and 95% for the Northeast model. The contribution of this study is providing
an approach combining various methods and considering a range of variables influencing
traffic fatalities at the scene. The findings offer insights for policymakers, researchers, and
practitioners involved in road safety initiatives, mainly where crash data are scarce, and
macro-level analysis is necessary.

Keywords: traffic safety; traffic crash modeling; traffic management; traffic fatalities;
multiple linear regression

1. Introduction
Traffic crashes are a global problem that can lead to deaths, injuries, and property

damage. They are the eighth leading cause of death in the world, with 1.19 million deaths
annually [1], lower by 5% compared to the estimated 1.25 million road traffic deaths in
2010, which accounts for nearly 3% of many countries’ GDP. Almost 92% of deaths occur in
upper-middle, lower-middle, and low-income countries combined, and 56% of the victims
are pedestrians, cyclists, or motorcyclists [1].

According to the United Nations [2], many deaths and severe injuries are preventable.
Despite improvements in roads and vehicles, in many countries, traffic crashes remain a
public health problem that affects society, the environment, and the economy. From this
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perspective, the 2023 Agenda [3] included a goal to achieve safer transport systems and
reduce the negative impacts of traffic (SDG-11). The UN has also defined 2021 to 2030 as
the second Decade of Action for Road Safety, seeking to reduce traffic injuries and deaths
worldwide by at least 50%.

According to the WHO [1], road traffic fatalities can be significantly reduced by
adopting and enforcing appropriate legislation governing road user behaviors. While many
countries have such laws, they often fall short of the WHO’s best practices as well as lack
consistent implementation and enforcement. Although the safe system approach highlights
the importance of system design, behavioral regulations remain crucial in preventing
crashes, injuries, and fatalities. Risk factors such as drunk driving, which contributes to
10% of road traffic deaths, as well as the non-use of seat belts, helmets, and child restraint
systems, which alone can reduce fatalities by at least 60%, further emphasize the need for
stricter enforcement. Additionally, distractions like using communication devices while
driving pose significant dangers, reinforcing the critical role of robust and well-enforced
traffic laws.

In 2018, Brazil, a continent-sized country, ranked fourth among the countries in
the American continent with the most traffic crash deaths, with a rate of 23.4 deaths
per 100,000 inhabitants [4]. According to the National Road Safety Observatory [5], one
individual passes away every 15 min in the country due to traffic crashes. Between 2009
and 2018, the direct costs of crashes to the Unified Health System (UHS) were about
USD 579 million. These numbers reveal the scenario of the impact on health and the
economy, which makes road safety a challenge that decisionmakers must consider.

Prediction models are strategically employed in traffic management to forecast the
frequency of traffic crashes and aid in decisions on investments in road safety [6]. These
traffic crash prediction models can be developed at the micro and macro levels [7]. The
micro-level models analyze crashes at segments or intersections, while the macro-level
models use data aggregated by area, such as census tract, traffic zone, and municipality [8].

Conventional statistical models, such as Poisson and negative binomial regressions,
have been widely used to analyze traffic crashes [9] at the micro [10] and macro lev-
els [11–16]. However, their assumptions lead to inaccurate results in calculating a crash’s
probability [7,17]. Increasingly, studies are being conducted using machine learning (ML)
methods in the transportation field [18] and road safety to identify hotspots [19] and
predictors of injury severity [20].

However, despite being less efficient as predictive methods than machine learning
methods, statistical regression models identify the relationships between predictor variables
and the desired outcome [21–24]. In this way, combining linear or logistic regressions
in studies employing machine learning methodologies for predictions or classifications
enables the appropriate selection of non-correlated variables that demonstrate statistical
significance in generalizing the sought-after responses.

Wang et al. [25] stated that these models could help estimate the frequency of accidents
resulting in crashes at a specific location over a given period. Rahman et al. [7] used machine
learning (random forest) to show that population density positively affects the number of
traffic crash deaths. Delen et al. [20] used a series of artificial neural networks to estimate
significant predictors of injury severity, and, as a result, variables had different significance
for each injury severity level. Hasan et al. [26] analyzed different ML models to predict
crash injury severity in the New Jersey dataset. Random forest and Catboost best predicted
fatal, significant, and minor injuries. Vlahogianni et al. [27] suggested using artificial neural
networks in a study that compared statistical data and artificial intelligence as the most
appropriate method for making forecasts in transportation research.
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In addition to identifying crash frequency and severity, these models are also used
to identify the factors contributing to frequency or severity. Some of these studies have
suggested that demographic factors such as population density, age, and sex as well as the
area of the municipality affect the occurrence of traffic crash fatalities [10,28–32]. A study
performed by Pljakić et al. [11] showed that increased population density was associated
with a higher frequency of deaths. In contrast, another study by Tang et al. [12] showed
that municipalities with more paved roads had more crash deaths. Using a decision
tree approach, Campos et al. [33] revealed that gross domestic product (GDP) was most
closely related to Brazilian traffic death rates. The authors also observed a direct positive
relationship between the length of the road network and the vehicle fleet.

In this context, we considered the following research question: Can socioeconomic,
infrastructure, traffic, health units, and transport investment variables adequately model,
at the municipal level, traffic crash fatalities at the scene? From this perspective, we sought
to identify the macro-level characteristics that explain the higher occurrence of deaths at
traffic crash sites in certain municipalities or regions, that is, related to the most-severe
road crashes. To the best of our knowledge, no exploratory studies have been conducted
using machine learning techniques in all Brazilian municipalities yet, specifically for deaths
occurring at traffic crash scenes. In this context, this study aimed to develop prediction
models for traffic crash fatalities at the scene, grouped by municipality, using various
machine learning techniques.

This study contributes to the road safety literature by applying machine learning
techniques to analyze a database categorizing traffic fatalities at Brazil’s municipal level.
It adopted a macro-level data approach to examine incidents occurring at the crash scene.
Additionally, it is relevant for managers who work in road safety, public health, and
automobile insurance and who seek to predict costs and service capacity as well as perform
economic analyses based on crash severity. It also provides insights into the advancement of
modeling techniques for predicting fatalities in traffic crashes at the macro level, considering
Brazil’s continental, cultural, social, and economic dimensions and the lack of an efficient
data management policy.

2. Materials and Methods
2.1. Study Area

Brazil had an estimated population of 212.6 million inhabitants in 2020 [34] in an area
of 8,510,345.538 km2 (Figure 1). The country’s federal road network accounted for a total
length of 75,800 km in 2019, of which 65.4 thousand km corresponded to paved roads [35].
Regarding its vehicular fleet, Brazil had a total of 107,948,371 registered vehicles (cars, light
commercials, trucks, buses, motorcycles, scooters, and others) in 2020, according to the
National Traffic Secretariat [36].

The country is divided into 26 states [37], and, of these, nine make up the Northeast
region. Regarding traffic safety, according to public health records [38], Brazil reported
32,879 traffic deaths, 30.7% of which occurred in the Northeast region states, despite
accounting for 26.7% of the population and 12.7% of the vehicle fleet. Table 1 presents
information on the population, vehicle fleet, number of municipalities, and traffic fatalities
data for each state in Brazil in the year 2019.
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Table 1. Population, vehicle fleet, and traffic fatality data for 2019.

State Resident
Population Car Fleet Deaths on

Public Roads
Number of

Municipalities

Acre (AC) 881,935 91,615 119 22
Alagoas (AL) * 3,337,357 374,169 610 102
Amapá (AP) 845,731 85,529 85 16

Amazonas (AM) 4,144,597 412,140 471 62
Bahia (BA) * 14,873,064 1,907,497 2470 417
Ceará (CE) * 9,132,078 1,192,715 1640 184

Distrito Federal (DF) 3,015,268 1,328,622 339 1
Espírito Santo (ES) 4,018,650 990,203 759 78

Goiás (GO) 7,018,354 1,910,006 1480 246
Maranhão * (MA) 7,075,181 457,104 1280 217
Mato Grosso (MT) 3,484,466 764,931 1038 141

Mato Grosso do Sul (MS) 2,778,986 763,091 638 79
Minas Gerais (MG) 21,168,791 6,467,501 3337 853

Pará (PA) 8,602,865 631,396 1428 144
Paraíba (PB) * 3,996,496 552,067 774 223
Paraná (PR) 11,433,957 4,573,703 2433 399

Pernambuco (PE) * 9,557,071 1,369,199 1511 185
Piauí (PI) * 3,273,227 380,035 923 224

Rio de Janeiro (RJ) 17,264,943 4,646,402 1526 92
Rio Grande do Norte (RN) * 3,506,853 579,196 473 167

Rio Grande do Sul (RS) 11,377,239 4,432,248 1663 497
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Table 1. Cont.

State Resident
Population Car Fleet Deaths on

Public Roads
Number of

Municipalities

Rondônia (RO) 1,777,225 298,059 382 52
Roraima (RR) 605,761 78,387 124 15

Santa Catarina (SC) 7,164,788 3,053,350 1440 295
São Paulo (SP) 44,996,070 18,753,362 5057 645
Sergipe (SE) * 2,298,696 341,946 401 75

Tocantins (TO) 1,572,866 223,715 478 139
Note: * states in Northeast region, Brazil.

According to De Oliveira et al. [39], despite the Northeast region having the second
largest population in the country (Table 1), this region has a municipal human development
index (HDI-M) of 0.683, against 0.789 for Brazil and a per capita GDP in 2020 of BRL 19,947,
according to IBGE, compared to Brazil’s per capita GDP of BRL 35,172.

2.2. Database

Brazil does not have a national dataset of traffic crashes, and the official statistics from
national road safety include the number of deaths. Thus, the data applied in this study were
from public sources for the 5570 municipalities in Brazil (1794 in the Northeast), organized
into 26 states and the Federal District (Figure 1). The data were from the Brazilian Institute
of Geography and Statistics (IBGE), the Ministry of Health, and the Central Bank of Brazil
and applied in the study as collected initially or treated as indices, as presented in Table 2.

Table 2. Description of the response and explanatory variables obtained for each municipality.

Variable Group Variable Name Description Year Unit Variable Group

Response
Variable Deaths on public roads Deaths on public roads

due to traffic crashes 2019 Absolute number [38]

Explanatory
Variables

Road fatality rate
Deaths divided by

population multiplied
by 100,000

2019 Deaths/100,000
inhabitants [38,40]

Deaths by
type

Deaths resulting from a
specific incident 2019 Absolute number [40]

Deaths by
Occurrence rate

Deaths by occurrence
divided by the

population of a given
area, then multiplied by

100,000 inhabitants.

2019 Deaths/100,000
inhabitants [38,40]

Cars per capita Motorized vehicles per
inhabitant Vehicles/inhabitant [36,40,41]

Motorcycles and scooters
per capita

Motorcycles and
scooters per inhabitant 2019 Motorcycle/inhabitant [36,40,41]

Road extension by cars
Total road mileage

divided by the number
of cars

2019 km/car [36,42]

Road extension by
motorcycles

Total road mileage
divided by the number

of motorcycles
2019 km/motorcycle [36,42]

Municipal human
development

index

A composite measure of
indicators from three
dimensions of human

development: longevity,
education, and income

2019 Index [41]
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Table 2. Cont.

Variable Group Variable Name Description Year Unit Variable Group

Explanatory
Variables

Road extension by
municipality

Length of roads per
municipality road

mileage in km
2019 km [40,42]

Road density Road Mileage in km per
inhabitant 2020 km/inhabitant [40,42]

Investment in road
infrastructure per capita

Monetary values (in
Brazilian reals) invested

in road infrastructure
per inhabitant

2020 R$/inhabitant [43]

Investment in housing
and urban

development per capita

Monetary values (in real)
invested in housing and

urbanization per
inhabitant

2019 R$/inhabitant [43]

GDP per capita Gross domestic product
per capita 2019 R$/inhabitant [40,43]

Demographic
density

Number of people
divided by the area of

the municipality
2019 Inhabitants/km2 [40]

SUS emergency units Number of health units
with emergency care 2019 Absolute number [38]

Length of roads per municipality. Mileage in km.

The response variable used in this study corresponded to the number of road deaths
due to traffic crashes in Brazilian municipalities in 2019. These data were obtained from
the Mortality Information System of the Unified Health System (DATASUS) and originated
from the “Death Declaration” document. The indices of traffic deaths per inhabitant and
vehicle allowed us to know the negative impact of traffic crashes and measure traffic
safety [44]. In this way, modeling the number of deaths made it possible to identify the
macro-level factors related to more severe crashes, identifying the socioeconomic and road
infrastructure characteristics of the most-exposed municipalities.

Considering that traffic crashes are rare and random [9], a set of variables was selected,
according to data availability, to assess the relationship with the occurrence of the most
severe traffic crashes, that is, with deaths at the site. Thus, the explanatory variables
corresponded to the socioeconomic characteristics of the municipality of occurrence, vehicle
fleet composition, and road infrastructure. Table 3 presents the descriptive statistics of
the dataset.

Table 3. Descriptive data statistics.

Variable Mean Median Stan. Dev. Min Max

Deaths on public roads 3.00 1.00 6.85 0.00 242.00
Road fatality rate 13.71 8.18 22.26 0.00 585.50
Deaths by occurrence 5.91 2.00 21.58 0.00 763.00
Deaths by occurrence rate 18.40 13.09 30.46 0.00 1099.00
Cars per capita 0.20 0.18 0.21 0.00 11.56
Motorcycles and scooters per capita 0.14 0.13 0.10 0.00 5.61
Extension of highways by cars 0.66 0.24 2.36 0.00 105.90
Extension of highways by motorcycles 0.45 0.29 0.88 0.01 41.24
HDI-M 0.66 0.67 0.08 0.00 0.86
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Table 3. Cont.

Variable Mean Median Stan. Dev. Min Max

Road extension by municipality 660.70 415.60 874.90 16.27 20,918.00
Road density 1.35 1.02 1.60 0.00 20.93
Investment in transportation per capita 124.60 33.10 241.60 0.00 4498.00
Investment in housing and urban
development per capita 300.50 243.90 262.30 0.00 3645.00

GDP per capita 24.55 18.19 25.55 4.48 464.90
Demographic density 120.00 25.07 627.40 0.05 14,208.00
SUS emergency units 1.87 1.00 6.18 0.00 303.00

2.3. Methodological Steps

This study aggregated municipal data and spatial information to examine how so-
cioeconomic, fleet, and infrastructure factors related to traffic crash fatalities on Brazilian
roads. It used two analytical approaches. The first encompassed all Brazilian municipalities
and the second only the municipalities in the Northeastern region. This distinction aimed
to verify the proposed models’ ability to predict road crash deaths in different contexts
since Brazil is a continent-sized country. The diversity of the Brazilian regions in terms of
economic aspects and institutional capacity could lead to different results in terms of the
significance of the variables.

The flowchart presented in Figure 2 demonstrates the methodological steps applied in
this study. It involved a data survey, preliminary treatment, and database formation, as
well as the establishment of the explanatory variables to be submitted to the prediction and
classification models by machine learning and artificial neural networks (ANNs). Thus, the
flowchart was followed for all municipalities and then only for the municipalities in the
Northeast region, as detailed in the following sections.

2.3.1. Database Treatment

The database, composed of the variables described in Table 1, was subjected to a data
treatment step of the original variables. Thus, a conventional machine learning pipeline,
consisting of data mining, data cleaning, pre-processing, removal of discrepant values,
resource selection, model training, and validation, was used to predict the number of
fatal failures.

First, we standardized the data to ensure comparability across variables with different
units. This process involved transforming each variable with a mean of zero and a standard
deviation of one. Standardization normalizes the scale of the variables, facilitating more
accurate analysis and comparison. Subsequently, we applied the isolation forest algorithm
(iForest) to identify and eliminate outliers in the dataset, and we generated a linear regres-
sion (LR) using all the variables to calculate the mean absolute error (MAE) of the model
and serve as the baseline. The isolation forest (iForest) algorithm detects anomalies by
constructing a random forest of decision trees [45]. Tailored for isolating anomalies within a
dataset, it exploits the characteristic that anomalies often require fewer connections, allow-
ing efficient identification through iterative partitioning [46]. This unique approach ensures
fast computation and robust performance across diverse domains, making iForest a tool for
anomaly detection tasks [45]. Outliers can skew statistical measures, leading to poor fit and
lower predictive ability, which takes advantage of isolation to exploit subsampling with
low memory requirements. The dataset was divided into training and testing subsets to
ensure the model was validated based on unknown data. This separation helped prevent
data leakage by avoiding any influence of the test data on the training process.



Infrastructures 2025, 10, 117 8 of 20

We used the iForest algorithm with a default contamination rate of 10% to identify
outliers in the dataset. We removed the outliers and then randomly split the remaining
data into training and test sets in a 70%:30% ratio.

To reduce model complexity and possible existing correlations and to select the most
critical variables in the dataset, we used a subset of input features most relevant to the target
response—the number of road fatalities in a municipality, using two different approaches:
correlation statistics and mutual information statistics.
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2.3.2. Correlation Statistics and Linearity Verifications

We used Pearson’s correlation matrices to identify the variables most correlated with
this study’s response variable. According to Evans [47], we discarded any variable with a
correlation of less than 0.20 because it was negligible. Additionally, we performed graphical
analyses using scatter plots with trend lines to evaluate the strength and direction of the
linear relationships among the variables.
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2.3.3. Regression Models and Statistical Validation

We applied two regression methods to the database (ordinary least squares (OLS) and
TOBIT regression) to select the explanatory variables related to the evolution of the cases of
deaths on public roads and their subsequent application in the neural network models.

We validated the OLS regression model using hypothesis tests for the model conditions.
Thus, we tested the heteroscedasticity of the data through White’s test to find the similarities
between the errors found for the system’s selected inputs. Another test used was the
variance inflation factor (VIF), which tests collinearity among variables. The last test
required for OLS validation was the residual normality test, where histograms checked
some trends among the residuals.

The truncated dependent variable regression model, or TOBIT, has as its principle a
correlation in which the dependent variable concentrate between ranges of values, that is,
points equal to a threshold value [48]. Like OLS, the TOBIT model requires hypothesis tests
that validate the model and the coefficients raised for the variables, these being the VIF and
the normality of the residuals, just like the previous model.

The TOBIT regression model, also known as a truncated or censored regression model,
is used when the dependent variable is truncated at some point, typically at zero [49].
The dependent variable’s distribution is incomplete because some values are censored
or unobserved below a certain threshold. The TOBIT model allows for the estimation of
regression parameters by adjusting to this specific data structure. In this study, we applied
TOBIT to address the truncated nature of the dependent variable: the number of deaths on
public roads. This variable was truncated because it could not take on negative values and,
in many cases, could be equal to zero (when there were no deaths in a particular location
or period). The TOBIT model is suitable for handling this type of data as it accounts for the
censoring in the distribution of the dependent variable.

2.3.4. Predicting Occurrences with Artificial Neural Networks (ANNs)

A supervised artificial neural network method, multi-layer perceptron (MLP), was
employed to examine the influence of the variables selected in the preceding steps on
the occurrence of deaths on public roads due to traffic crashes from the analysis of the
prediction of occurrences.

Artificial neural networks generalize predictions to responses still unknown to the
network. Schutz et al. [50] highlighted this network model’s recurrent approach for discrete
time-series value prediction.

Luger [51] suggested that, through the construction of concepts and representative
analysis of a predicted event, coupled with the data and objectives to be portrayed by
the model, the machine learning system recognizes behavior patterns, referred to as the
potential for generalization. It is also capable of attributing the acquired knowledge to
similar cases.

Specifically, the supervised neural networks of the multi-layer perceptron (MLP) type
used backpropagation as its base algorithm, and we validated the network by verifying the
coefficient of determination of the training and test stages.

We tested the net architectures to define the configuration with the highest prediction
accuracy. We also defined this analysis using the following information: the number of
intermediate layers in the system, the number of neurons per hidden layer, the activation
function between layers of neurons, and the mathematical model for validating the results.

Even though there is no consensus in the literature regarding the ideal percentage
distribution of data for training and testing in analyses with artificial neural networks
(ANNs), several approaches have been adopted. For instance, Chen et al. [52] chose a
distribution of 80% for training and 20% for testing, while other studies opted for a ratio of
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60% for training and 40% for testing [53]. These references influenced the decision on the
distribution in this study, resulting in an allocation of 70% for training and 30% for testing.

The Levenberg–Marquardt backpropagation feeding algorithm, the moment-weighted
gradient regression adaptation function, and the bias learning function were used, and
their validation was defined by the mean squared error (MSE).

The artificial neural network (ANN) model was developed after the linear regres-
sion model because linear models, like ordinary least squares (OLS), effectively identify
significant linear relationships between predictor and response variables. These models
provide a solid foundation for variable selection by pinpointing which variables have
statistically significant relationships with the variable of interest. Following this selection
process, the ANN model was employed to capture complex, non-linear patterns in the data,
which are beyond the reach of simple linear models. This approach allows the ANN to
model intricate relationships between input and output variables that linear models cannot
adequately address.

3. Results
After scaling the variables, a linear regression was trained as the baseline model with

a mean absolute error of 36.640 for the test set. Next, the iForest algorithm detected and
removed 373 municipalities as outliers. After removing the outliers, a new linear regression
model was trained, leading to an MAE of 34.546. This suggested that excluding outliers
from the dataset led to a lower MAE. This result demonstrated that the model without
outliers showed a predicted value closer to the true one.

After excluding the outlier municipalities, the Pearson correlation coefficient (R) was
calculated to identify how the variables in this study correlated with the number of deaths
on public roads. Thus, the coefficients are presented for the two datasets: Brazil (Table 4)
and Northeastern Brazil (Table 4). Table 5 presents the identification of the variables
corresponding to the codes present in the matrices in Figure 3.

Table 4. Pearson correlation coefficient matrices for the Brazil dataset (a) and the Northeast region (b).

(a)

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0.1 1
3 0.9 0 1
4 0.2 0.9 0.1 1
5 0.1 0 0.1 0 1
6 0.1 0 0 0 0.6 1
7 −0.1 0 0 0 −0.2 −0.1 1
8 −0.1 0.1 −0.1 0.1 −0.1 −0.2 0.6 1
9 0.2 0 0.2 0.1 0.6 0.2 −0.3 −0.1 1

10 0.7 0 0.7 0.1 0.1 0.1 0 0 0.2 1
11 0.3 0.1 0.4 −0.1 0.2 0 −0.1 −0.1 0.3 0.2 1
12 −0.1 0.1 −0.1 0 0.3 0.1 0 0.1 0.3 −0.1 0 1
13 0 0.1 0 0 0.2 0 0 0 0.3 0 0.1 0.1 1
14 0.1 0.1 0.1 0.1 0.3 0 −0.1 0 0.4 0.2 0.2 0.2 0.4 1
15 0.3 −0.1 0.4 0 0.1 0 0 −0.1 0.2 0.2 0.8 −0.1 0 0.1 1
16 0.8 0 0.9 0 0.1 0 0 −0.1 0.2 0.6 0.4 −0.1 0 0.1 0.4 1
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Table 4. Cont.

(b)

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0.3 1
3 0.8 0 1
4 0.3 0.9 0.2 1
5 0.4 0 0.4 0.1 1
6 0.2 0.1 0.1 0.2 0.5 1
7 −0.1 0 −0.1 0 −0.3 −0.2 1
8 −0.2 0 −0.1 0 −0.2 −0.4 0.7 1
9 0.5 0 0.4 0.1 0.6 0.3 −0.2 −0.3 1

10 0.6 0 0.5 0.2 0.3 0.1 0.1 0.2 −0.3 1
11 0.4 −0.1 0.5 −0.1 0.5 0 −0.2 −0.1 0.2 0.2 1
12 0 0 0 0 −0.1 0 0.1 0.1 −0.1 0 −0.1 1
13 0 0 0 0 0.2 0 0 0.1 0.1 0 0.1 0.1 1
14 0.2 0 0.1 0.1 0.2 0.1 0 0.1 0.3 0.3 0.2 0.2 0.3 1
15 0.4 −0.1 0.6 0 0.3 0 −0.1 −0.1 0.4 0.2 0.8 0 0 0.1 1
16 0.7 0 0.8 0.1 0.4 0.1 −0.1 −0.1 0.4 0.5 0.5 0 0 0.2 0.7 1

Table 5. Variables used in the correlation matrices and their respective codes.

Variable Code

Deaths on public roads 1
Road fatality rate 2
Deaths by occurrence 3
Deaths by occurrence rate 4
Cars per capita 5
Motorcycles and scooters per capita 6
Extension of highways by cars 7
Extension of highways by motorcycles 8
HDI-M 9
Road extension by municipality 10
Road density 11
Investment in transportation per capita 12
Investment in housing and urban development per capita 13
GDP per capita 14
Demographic density 15
SUS emergency units 16

The dependent variable, deaths on public roads (1), obtained the highest Pearson
correlation coefficients with identical explanatory variables on both datasets, (Table 4a)
Brazil and (Table 4b) Northeast Region.

The correlation matrix for Brazil (Table 4a) showed that the dependent variable
(1) had strong positive correlations with deaths by occurrence (3), road extension per
municipality (10), and SUS emergency units (16). The first two could be correlated as they
were related to exposure. The emergency units, on the other hand, could be related to
the population of the municipalities since it also showed a high and positive correlation
with the variable’s road density (11) and demographic density (15). Among the other
variables, we observed a positive correlation between the municipal human development
index (HDI-M) (9), with cars per capita (5), GDP per capita (14), investment in housing, and
urbanism per capita (13), road density (11), and investment in transportation per capita
(12), indicating a possible socioeconomic relationship of the municipalities.
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For the Northeast region of Brazil (Tabel 4b) the HDI-M (9) presented a stronger corre-
lation with the dependent variable (1) when compared to the national scenario (Table 4a).
The other identified correlations were similar to the national scenario; however, there as a
higher negative correlation between motorcycles and scooters per capita (6) and the road
extension by motorcycles (8) in the Northeast region. This result could be related to the
high number of motorcycles registered in the Northeast region. Furthermore, contrary to
the national reality, investments in transportation per capita (12) had a negative relationship
with the HDI-M (9).
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Thus, to select parameters with the most significant influence on the occurrence of
deaths on public roads, a new evaluation of the variables’ relationships was performed
using other techniques to corroborate the present analysis.

3.1. Mutual Information Statistics

The OLS and TOBIT regression models were applied to define the parameters that
better described the dependent variable. After analyzing the metrics of the models, Table 6
presents the ones that obtained the best results.

Table 6. Results of the OLS and TOBIT models for Brazil and Northeast region data.

Data Set Brazil Northeast Region
Models OLS TOBIT OLS TOBIT

Variable Coef p-Value Coef p-
Value VIF Coef p-Value Coef p-

Value VIF

Constant −2.907 <0.001 −6.14512 <0.001 - −6.682 <0.001 −8.942 <0.001 -
Motorcycles and

scooters per capita 1.127 0.0144 2.242 <0.001 1.049 7.344 0.0021 10.025 0.0011 1.495

HDI-M 4.332 <0.001 7.378 <0.001 1.241 3.323 0.0049 4.105 0.0062 1.711
Road extension per

municipality 0.003 <0.001 0.0036 <0.001 1.702 0.002 <0.001 13.452 <0.001 1.373

Investment in
transportation per capita −0.001 <0.001 −0.0039 <0.001 1.115 −0.0002 <0.001 −0.003 <0.001 1.055

Investment in housing
and urban development

per capita
−0.0004 0.0217 −0.0012 <0.001 1.077 −0.002 0.090 −0.004 <0.001 1.088

Demographic density 0.0002 0.0767 0.0003 0.0162 1.275 −6.75 × 10−6 <0.001 0.002 0.0369 1.095
SUS emergency

health units 0.607 <0.001 0.583 <0.001 1.940 0.054 <0.001 0.542 <0.001 2.321

* Note: for the same set of variables, the results observed for the VIF metric for the Brazil and Northeast models
did not vary according to the regression established model.

The regression coefficients of the models for the national and regional analysis, Table 6,
presented positive correlations between the occurrence of deaths on the roads and the
variable motorcycles and scooters per capita, the local socioeconomic variable, and the
HDI-M. We highlight, however, the higher coefficient for the motorcycle and scooter per
capita variable for the Northeast region, showing that this type of vehicle represented an
important explanatory factor for the severity of crashes in this region compared to the
result achieved in the model for Brazil.

Investments in housing, urban infrastructure, and transportation had an opposite
relationship with the incidence of traffic crashes, indicating that municipalities with better
infrastructure enjoyed safer traffic conditions. The municipal human development index
(HDI-M) analysis confirmed a relationship between higher socioeconomic development
and better road safety conditions. These findings align with the global trend (WHO, 2023),
where wealthier countries have lower traffic fatality rates.

SUS emergency units positively correlated with the number of deaths on public roads,
suggesting that areas with higher traffic crashes may receive more emergency care units
due to their increased need. This relationship highlights the occurrence of traffic crashes
and the presence of emergency units could be influenced by underlying factors such as
vehicle and infrastructure conditions. While this correlation does not imply causation, it
points to the potential interdependence between emergency care infrastructure and crash
severity. No significant correlation was found between the number of healthcare facilities
and infrastructure investments. Population density was significant, but the models had
low parameter values.

Generally speaking, the same behaviors were observed in the variables in the OLS
and TOBIT models. Thus, the variables motorcycles and scooters per capita, HDI-M,
road extension per municipality, investments in transportation per capita, investments in
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housing and urbanism, demographic density, and SUS emergency units were characterized
as being the ideal variables to explain the dependent variable in this study. Therefore, these
variables were selected for the next study stage, with the application of neural networks.

The regression model validation occurred through the hypothesis tests described for
the model conditions. In this way, the collinearity of the variables in the models was tested
using the variance inflation factor (VIF). The results showed no values higher than five
in the applied set (Table 4), indicating that there was no collinearity among the variables.
Also, the normality tests of the residuals showed a normalized trend in the histograms for
the Brazil and Northeast OLS models (Figure 3a,b). However, the normality of the model
residuals was not supported, as indicated by the high test statistics (2900.995 and 21,912.350)
and very low p-values for the normality tests, with α = 5%. This result suggested that the
residuals did not follow a normal distribution.

For the TOBIT regression models, the normality tests of the residuals had improved
values, with chi-squares values of 28.1174 and 34.7124 and p-values < 0.001 for both Brazil
and the Northeast. In addition, for OLS, the heteroscedasticity of the data was tested
with White’s test, obtaining p-values < 0.001 for the Brazil and Northeast models, with
the null hypothesis that the model did not have a dispersion of the errors along the
observations presented.

However, since the individual p-values for each variable were within the tolerance
range for model stability, the responses of their coefficients could not be ruled out, given
the coefficients of determination of 0.7437 and 0.6151 for the Brazil and Northeast OLSs.

3.2. Artificial Neural Network Models

During the variable selection process, 16 variables were initially considered. The
regression analysis (OLS and TOBIT) resulted in the selection of seven significant variables.
However, for the artificial neural network (ANN) model, an eighth variable, “cars per
capita”, was included. Although this variable showed collinearity in the variance inflation
factor (VIF) test during regression analysis, it demonstrated solid predictive power and
better generalization and prediction performance in the ANN. Therefore, the inclusion
of “cars per capita” in the ANN model was justified by its significant contribution to the
model’s accuracy, leading to using eight variables in the ANN instead of the seven variables
used in OLS and TOBIT regression.

We used neural networks and different architectures to train the models in the analyses
of Brazil and the Northeast. The network configuration (Table 7) was tested and evaluated
for six architectures (A to F), which differed in the number of layers and the number of
neurons and activation function per layer, resulting in the best training response and greater
accuracy in the test, characterizing appropriate behavior for the data.

Table 7. Configurations of the network architectures applied in each model.

Architecture

1st Layer Intermediate 2nd Layer Intermediate 3rd Layer Intermediate Use in the Model

No. of
Neurons

Activation
Function

No. of
Neurons

Activation
Function

No. of
Neurons

Activation
Function Brazil Northeast

A 10 Linear 1 Linear - - X X
B 10 * 1 * - - X X
C 10 Linear 1 * - - X X
D 10 Linear 10 Linear 1 Linear X X
E 15 Linear 15 Linear 1 Linear X -
F 10 * 10 * 1 * - X

* Sigmoid hyperbolic tangent.
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The architectures were tested using 30% of the unused sample data in the training. R
represents the number of successes of the neural network with a margin of ±15% about
the actual expected output value, in this case, the number of deaths on public roads in the
municipalities. Table 8 presents a summary of the metrics found in each architecture tested.

Table 8. Metrics of the ANN architectures applied to analyzing occurrences in the Northeast region
and Brazil.

Metric
Brazil

ANN Architectures

A B C D E

RTraining 0.86217 0.5467 0.75952 0.86244 0.86197
F1 Score 0.41 0.37 0.59 0.88 0.87

Metric
Northeast Region

ANN Architectures

A B C D F

RTraining 0.7822 0.87094 0.75381 0.78467 0.83798
F1 Score 0.89 0.95 0.76 0.89 0.96

The best forecast results in Brazil and the Northeast were obtained with the models
with a linear activation function and three intermediate layers and the one with two hidden
layers. These models corresponded to architectures D and B, where a hit rate of 88%
was observed for the Brazil model and 95% for the Northeast model. Figure 4 shows
both architectures.
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Despite the F net configuration obtaining a higher percentage of correct predictions
for the Northeast, a net with a more complex architecture, be it with a higher number of
neurons or layers, demands machine performance that does not justify the higher demand
and processing time for the 1% higher efficiency than that of the simpler B model.

As fundamental limitations, the adopted model represents an aggregation of all mu-
nicipalities in a naturally heterogeneous country, considering for testing only the theoretical
variables that influence traffic crashes that are available in each analyzed unit.

4. Discussion
Sixteen variables, including socioeconomic and infrastructure, were used to predict

the number of deaths on public roads due to traffic crashes. The regression models showed
that the most important variables were the number of motorcycles and scooters per capita
and the HDI-M, in addition to the number of emergency units, but to a lesser extent.

The motorcycle and scooter per capita variable explained the occurrence of deaths,
with higher parameter values for both samples. However, it was higher in the Northeast
region in Brazil. This result corroborates the relationship between the higher number of
motorcycles in the fleet and high rates of traffic deaths in Brazilian municipalities found by
Campos et al. [33]. However, it also reveals the diversity existing in the national context.

The literature reveals that the main factors that contribute to involvement in crashes
with motorcycles are human factors, road and vehicle conditions, and environmental
factors [54,55], which result in a higher risk of motorcyclists being traffic victims [56–58]
since motorcycles are smaller vehicles, which can hinder their visibility in traffic, in addition
to not having a vehicle mass that protects the human body. This has also been observed in
other countries [59–62].

In this study, the parameters of the regression models indicated the greater importance
of the motorcycle fleet for the Northeast region. Motorcycles represent more than 40% of
the vehicle fleet in the Northeast [39]. Additionally, it stands out by having the highest
traffic morbidity and mortality [63], mainly affecting young men [63,64]. According to de
Oliveira et al. [39], the motorcycle is considered an agent of social inclusion, especially for
the rural population of the Brazilian northern and northeastern regions, allowing access to
services such as health and education. However, given the motorcycle-related exposure
and severity observed in different countries, Siman-Tov et al. [65] question the social and
economic advantages of two-wheeled vehicles.

The average municipal human development index (HDI-M) had the second-highest
positive coefficient in the regression models for the national and regional settings. The
results corroborate those of Salehi et al. [66], who verified the relationship between the HDI
and traffic crash deaths. The authors found that a high HDI reduces the number of deaths
in developed countries. In contrast, this relationship is inverse in developing countries,
such as Brazil. In other words, in Brazil, the impact is positive; that is, the number of
deaths increases as the HDI increases. The result of the correlation analysis between the
HDI-M and traffic fatalities corroborates this finding. The northeastern region had the
lowest HDI-M and showed a higher positive correlation with the dependent variable.

The regression coefficients referring to the number of SUS emergency units were
significantly positive; the higher the number of units, the higher the number of deaths.
Regarding this information, it should first be noted that emergency units are related to the
post-crash moment, as presented by the Haddon matrix. As such, other factors—human,
vehicle, and roadway—can influence the severity of a crash.

Most traffic crashes occur in regions far from major emergency hospitals, which can
lead to longer response times and more deaths [67]. According to Cabral et al. [68], adequate
health coverage in more remote areas is important to reduce the likelihood of deaths.
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Regarding the results obtained with neural network prediction, the model for the
Northeast region had a better response. It is important to emphasize that, despite the F net
configuration obtaining a higher percentage of correct answers for the Northeast region,
this net had a more complex architecture, with a more significant number of neurons or
layers, which required higher computational effort and did not justify its use.

The combined analysis of the three methods, ordinary least squares (OLS) regression,
the TOBIT model, and the artificial neural network, highlights the importance of analyzing
the relationship between the parameters selected as the input for prediction systems. Most
current studies have sought to predict outcomes using various machine learning methods;
the combination of these, or the correlation between input variables and delay, has taken
place theoretically only, not delving into the data [69].

5. Conclusions
This study used neural networks to model the number of deaths occurring at crash

sites in municipalities, represented at a macro level. Additionally, this study aimed to
understand which macro factors could be related to deaths at crash sites. Focusing on
municipal-level data provided broad insights but could have masked micro-level dynamics
crucial for targeted interventions.

As limitations, the iForest algorithm excluded outliers, which carries the risk of filter-
ing out extreme but meaningful data points; the Pearson correlation used for descriptive
and exploratory analysis to select variables for the regression models may not have fully
captured the non-linear relationships within the data; and the OLS and TOBIT regression
models analyzed the significance and importance of the independent variables, culminating
in predictions with neural networks.

When evaluating factors related to severe crashes resulting in death at the scene,
variables such as motorcycles and scooters per capita, HDI-M, and SUS emergency units
showed greater explanatory power at the macro level. The proposed methodological
approach enabled the neural network to achieve high prediction accuracy rates (above
88%). This approach benefits strategic decision making in areas with limited data reliability
or aggregation. However, the diversity observed in Brazil, with a 95% accuracy rate in
the Northeast region, hinted at significant regional differences. The model’s performance
highly depended on quality, consistency, and data management across diverse regions. This
implied a limitation regarding regional data heterogeneity, where differences in reporting
practices or data aggregation could affect the overall model’s reliability.

The artificial neural network (ANN) models outperformed the linear models in pre-
dicting fatal traffic crashes due to their ability to capture complex and non-linear patterns.
Adjustments to the network architecture, including hidden layers, neurons, and activation
functions, combined with cross-validation, resulted in more accurate predictions. Although
ANNs are less interpretable, their superior predictive performance is crucial for road safety
policies and emergency resource allocation. For decisionmakers and policy formulators,
the nature of the ANN’s responses may limit the understanding of how specific predictors
influence fatality rates, potentially complicating the translation of results into concrete
safety measures.

While this study is based on traffic crash data in Brazil, the methodologies and models
discussed have potential applicability to other regions with similar demographics and
geographic conditions. Future research should explore how these models can be adapted
or validated in different contexts, considering local data availability and regional factors.
Recommendations for future studies include evaluating the use of weighted emergency
units by population or road network and examining the impact of the time between the
crash and emergency services’ arrival. These limitations offer valuable directions for future
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research. They highlight the need for improved data management practices, methods
to enhance model interpretability, careful handling of outliers, and more granular and
temporally consistent data. Expanding the variable range could further refine predictive
accuracy and policy relevance.
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