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Abstract: The maintenance of critical maritime infrastructure is essential for ensuring the
safe, reliable, and efficient operations of marine seaports. This paper proposes a novel fuzzy
multi-criteria decision framework for evaluating the maintenance practices and culture
of maintenance-critical maritime infrastructure, such as port loading and unloading ma-
chinery and equipment. The proposed framework incorporates three distinct multi-criteria
decision-making tools Step-wise Weight Assessment Ratio Analysis, Weighted Aggregate
Sum Product Assessment, and Technique for Order of Preference by Similarity to Ideal
Solution. Fuzzy logic is incorporated into the framework to enhance the precision and
robustness of the evaluation process. To form the basis of the assessment, the framework
is structured around five key maintenance practice criteria: planning and scheduling;
data collection and analysis; documentation and record keeping; maintenance personnel
training; and competency, and four important maintenance culture criteria: leadership
commitment, proactive and preventive approach, safety and compliance focus, and con-
tinuous improvement and learning. To validate the framework, an empirical evaluation
was conducted, analyzing maintenance practices and culture across six Nigerian seaports.
Data collection uses a questionnaire administered to relevant maintenance experts in the
ports, ensuring a comprehensive and expert-informed analysis. The data collected was then
analyzed using the fuzzy multi-criteria decision framework. The results provide valuable
and actionable insights into the current maintenance practices and maintenance culture of
the ports, identifying areas for improvement.

Keywords: multi-criteria decision-making; maintenance practice; maintenance culture;
fuzzy logic; step-wise weight assessment ratio analysis; weighted aggregate sum product
assessment; technique for order of preference by similarity to ideal solution

1. Introduction
The maritime industry is a cornerstone of global economic growth and trade, with

maritime seaports facilitating logistics and international trade and contributing to the
economic development of regions and countries [1]. Hence, stakeholders, port authorities,
the government, and investors are keen to ensure that critical infrastructures are well
maintained to make seaports attractive to clients and investors. This has stimulated
interest in investment in maintenance-critical maritime infrastructure (MCMI), which is
essential for the long-term success and competitiveness of seaports. In most seaports,
MCMI management is under the supervision of the port authorities. A well-maintained
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infrastructure and equipment ensure operational continuity through minimal downtime,
ensuring a continuous flow of goods and attracting clients who depend on timely shipments.
In addition, cargo can be handled quickly and efficiently, reducing turnaround times for
ships and increasing port throughput. The safety of port workers and cargo is ensured
as regular maintenance helps prevent accidents and equipment failures. Efficient, well-
maintained infrastructures lead to lower operational costs because the need for costly
emergency repairs is reduced and operational disruptions are minimized. This leads to
cost savings that can be passed on to clients in the form of competitive rates, making the
port more attractive when compared to less efficient ports. A well-maintained port with
a track record of well-maintained infrastructure builds trust with clients and presents a
positive image, enhancing its reputation in the industry.

MCMI evaluation involves the systematic assessment of the condition and perfor-
mance of various components that make up a port infrastructure and facilities to ensure
they are safe, functional, reliable, and efficient. This includes evaluating the state of
docks, piers, breakwaters, navigation channels, port equipment like cranes, loading and
unloading machinery, utilities, buildings, and other shore-based facilities. The evaluation
process typically involves visual inspection by technical personnel; structural integrity,
wear, and corrosion diagnostic testing; operational capacity and efficiency performance
monitoring; and analysis of maintenance records and asset management data. Deficien-
cies, deterioration, or damage that could impact the safety, reliability, and productivity of
operations are identified. The information gathered is then used to guide maintenance
planning, budgeting, and capital improvement projects to keep the infrastructure in good
working condition.

MCMI also serves as an essential tool for setting benchmarks. Benchmarking can be
seen from two perspectives: maintenance practice and maintenance culture, which are
related but distinct concepts. Maintenance practice refers to specific activities, strategies,
procedures, and methods used to ensure the proper functioning and longevity of infras-
tructure, equipment, and assets. It encompasses a range of activities such as preventive
maintenance, corrective maintenance, predictive maintenance, condition-based monitoring,
and reliability-centred maintenance. Maintenance culture, on the other hand, refers to the
broader organizational mindset, values, beliefs, and attitudes regarding the importance
of maintenance. It encompasses how people within an organization approach and view
maintenance activities, their commitment to equipment maintenance and maintenance
task prioritization, and the level of responsibility they take in ensuring assets are properly
maintained. A robust maintenance practice and a supportive maintenance culture are
crucial for organizations to maximize asset reliability, optimize the lifecycle performance of
their physical assets and infrastructure, and achieve operational excellence.

An approach that can be used for analyzing port maintenance practices and culture
is the multi-criteria decision-making (MCDM) framework. Studies have used MCDM
approaches to address various maintenance issues in the maritime industry. However,
to the best of the author’s knowledge, no investigation has been conducted into bench-
marking a port’s MCMI using MCDM. Thus, this paper proposes a framework for MCMI
evaluation using selected maintenance practices and maintenance culture criteria. The pro-
posed framework incorporates three distinct multi-criteria decision-making tools, namely
fuzzy Step-wise Weight Assessment Ratio Analysis (SWARA), Weighted Aggregate Sum
Product Assessment (WASPAS), and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The fuzzy SWARA method was used to determine the importance
of the maintenance practice and maintenance culture criteria. Also, fuzzy TOPSIS and
WASPAS were applied to rank the performance of the port’s maintenance practices and
culture criteria.
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The proposed framework exhibits adaptability, robustness, and a strong focus on
safety and compliance, which provides a versatile and reliable tool for application across
various maritime contexts.

2. Literature Review
Several studies have documented the application of fuzzy logic in MCDM techniques

in addressing issues in the maritime sector. Google Scholar was searched for articles with
the keywords fuzzy, multi-criteria decision-making, and maritime. The 980 most relevant
articles were selected from 1997 to 2024. The bibliometric analysis of the co-occurrence of
keywords in the title and abstract was carried out with the help of VOS Viewer. VOS Viewer
produced 326 keywords and divided them into 15 clusters. The overlay visualization in
Figure 1 shows the selected data from 2014 to 2024.
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The year-wise no. of publications graph created from these 980 articles can be seen in
Figure 2. The graph depicts an increasing interest by researchers in MCDM studies.

Fuzzy logic, which was introduced by Lofti A. Zadeh [2], is an extension of classical
logic that deals with reasoning under uncertainty. It allows variables to have degrees of
truth ranging between 0 and 1, unlike the traditional binary logic, where variables take
values of either 0 or 1 (true or false). It provides a framework for handling uncertain or
imprecise information. Fuzzy logic operates on fuzzy sets, which are defined by fuzzy
numbers and described using fuzzy linguistic terms. A fuzzy set is characterized by a
membership function (MF) that maps each element in a set to a membership degree between
0 and 1, and it describes how likely it is that the element represents the value of the fuzzy
number. The relationship between fuzzy linguistic terms (such as “low”, “medium”, and
“high”) and fuzzy numbers (mathematically representing these terms) is based on the fuzzy
set theory [2] and research practices for modelling uncertainty and vagueness. To represent
linguistic terms mathematically, triangular fuzzy numbers (TFNs) and trapezoidal fuzzy
numbers (TrFNs) are commonly used due to their simplicity and intuitive interpretations.
TFNs are defined by three parameters (a, b, c) representing the lower limit, peak (most likely
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value), and upper limit, while TrFNs are defined by four parameters (a, b, c, d), creating a
trapezoidal shape. For example, a linguistic term like “low” might be modelled as TRN,
A = (1, 3, 5), where 1 represents the minimum value considered “low”, 3 represents the
most likely (or peak) value, and 5 represents the upper boundary of “low”. This modelling
aligns with the principles outlined by Zimmermann [3] and Klir and Yuan [4], which
emphasize the flexibility of fuzzy numbers in capturing uncertainty and imprecision.
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In the practical determination of fuzzy numbers, the selection of appropriate fuzzy
numbers for linguistic terms often depends on expert input and established methodologies,
which include expert consensus methods, standard practices and literature, and context-
specific adjustments. Expert consensus methods like the Delphi method [5] involve iterative
rounds of consultation with experts to converge on a consensus to define fuzzy numbers,
thus ensuring that the assigned values reflect collective judgment and domain knowledge.
In standard practices and the literature, many decision-making frameworks, such as the
fuzzy analytical hierarchy process (fuzzy AHP) [6], use predefined scales. For example, a
scale mapping linguistic terms to fuzzy numbers might assign “less important” to (3, 5, 7)
(3, 5, 7), (3, 5, 7), reflecting a consensus on its relative weight in a pairwise comparison.
Depending on the problem domain, membership functions can be tailored to reflect specific
criteria in context-specific adjustments. For instance, in a service quality evaluation [7],
fuzzy numbers may be adjusted based on performance metrics and customer feedback.

While theoretical and expert-based methods are widely used, empirical data can
be further validated and refined. This involves comparing linguistic assessments with
quantitative data to fine-tune membership functions. For instance, if survey responses rate
a service as “excellent”, the corresponding numerical scores can be analyzed to adjust the
fuzzy number associated with “excellent”.

As mentioned earlier, the mapping of fuzzy linguistic terms to fuzzy numbers is a well-
established process grounded in fuzzy set theory and expert judgment. By leveraging both
theoretical foundations and practical methods, fuzzy numbers can effectively represent
linguistic uncertainty in decision-making models. Empirical validation, where feasible,
further enhances the robustness of these mappings. This combination of theory, expert
consensus, and data-driven refinement ensures that the fuzzy models accurately capture
the nuances of human language and the decision-making process.



Infrastructures 2025, 10, 89 5 of 34

Marine ports, as crucial nodes in the global supply chain, facilitate the movement of
goods and services across international borders. However, ports face multiple challenges,
including infrastructural development, safety, congestion, environmental sustainability,
and operational efficiency. A robust decision-making framework, like MCDM, has emerged
as a valuable tool in addressing these issues. This literature review explores the application
of various MCDM methods in addressing issues in marine ports.

MCDM techniques are decision-support methodologies used to analyze and evalu-
ate multiple conflicting criteria in decision-making scenarios. In the context of marine
ports, these techniques are employed to optimize port operations, enhance competitiveness,
and improve sustainability. Some traditional MCDM techniques include the Analytical
Hierarchy Process (AHP); Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS); Step-wise Weight Assessment Ratio Analysis (SWARA); Measurement of Alterna-
tives and Ranking according to Compromise Solution (MARCOS); Combined Compromise
Solution (CoCoSo); Best Worst Method (BWM); Preference Ranking Organization Method
for Enrichment Evaluation (PROMETHEE); Elimination and Choice Expressing Reality
(ELECTRE); VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Serbian
words that mean Multi-criteria Optimization and Compromise Solution; Simple Additive
Weighting (SAW); and Decision-Making Trial and Evaluation Laboratory (DEMATEL),
amongst others. Some of these traditional techniques have a weakness of not being able to
properly handle the uncertainty inherent in decision-making, and thus, modifications to
these techniques through hybridization with another technique are made to compensate
for this weakness [8], e.g., the AHP-TOPSIS technique. Decision-making involves some
imprecision and uncertainty in subjective judgment, and fuzzy logic has been integrated
with these traditional techniques by using fuzzy numbers to represent the subjective assess-
ment of decision-makers. This has generated fuzzy logic-based MCDM techniques, such as
FAHP, FTOPSIS, and hybrids like FAHP-FTOPSIS techniques [8].

Several studies have documented the use of MCDM techniques in tackling prob-
lems/issues and improving decision-making within marine ports. These issues include
performance evaluation, sustainability, site selection, port expansion, safety and security,
and congestion management, among others.

Görçün [9] used the AHP for optimal container port selection amongst nine ports in
Turkey, taking into account criteria such as port location, port safety and security, total
operational costs, total storage capacity, total vehicle capacity, sufficient draft, total length
of quays, number of liners, and maximum length of ships that can berth in the port.
TOPSIS was employed to rank the ports. Port location was seen as the most important
selection criterion, as it determines successful logistics operations and easy access by
customers. The port of Ambarli was selected because it is the nearest container port
to commercial, industrial, and trading centres compared to other alternatives. Also, its
safety level is higher than the others. On the other hand, the charges and operational
costs are a little high compared to the other decision alternatives. Kurt et al. [10] also
applied the AHP to analyze hub/port selection in the Mediterranean Sea. Five main criteria
(location, connectivity, port performance, port capacity, and investment opportunities)
and sixteen sub-criteria determined from the literature review were compared through a
survey by various stakeholders, including port users, ocean carrier operators, and other
service providers in the region. The obtained survey results were applied to three pre-
determined ports (Piraeus–Greece, Candarli–Turkey, Gioia–Italy), and the AHP model
scored Piraeus Port as the best, followed by Candarli Port. Chou [11] proposed a fuzzy
multiple criteria decision-making model (FMCDM) in evaluating and selecting the optimal
container transshipment hub in Southeast Asia by applying the canonical representation of
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the multiplication operation on three fuzzy numbers. The port of Kaohsiung, Taiwan, was
selected because of its cheaper transshipment costs.

With increasing pressure to reduce environmental impact while maintaining economic
viability, sustainability has become a key focus for marine ports. MCDM techniques have
been utilized to assess port sustainability initiatives, considering factors such as energy effi-
ciency, emissions reduction, waste management, and social responsibility. Chiu et al. [12]
applied AHP to analyze the importance and priority of port factors; then, fuzzy AHP
was employed to conduct the assessment of green port operations of five ports in Taiwan.
The assessed criteria include environmental quality, use of energy and resources, waste
handling, habitat quality and greenery, and social participation. This study ranked the
green port performance of the ports, with the port of Taichung ranking first, followed by
the port of Keelung in second place, and the port of Kaohsiung in third place. Due to
limited resources, it would be difficult for ports to fully implement all greener requirements,
and the more feasible action is to choose the more important factors as the priority imple-
mentation items. The AHP and FAHP techniques provided a good solution for helping
decision-makers in the ports to take appropriate actions. Majidi et al. [13] conducted a
sustainability ranking of major Iranian ports using various MCDM methods, including
SWARA, MARCOS, CoCoSo, and TOPSIS, taking into consideration the economic, environ-
mental, and social aspects of sustainability. SWARA was used to calculate the weight of
the sub-criteria under each aspect, and MARCOS, CoCoSo, and TOPSIS were used to rank
the ports. Loading and unloading oil, pier length, and population sub-criteria obtained
the highest scores in the economic, environmental, and social aspects of sustainability, re-
spectively, which shows that they had the greatest impact on the sustainability assessment
of Iranian ports. MARCOS and CoCoSo techniques had very similar results in all three
dimensions of sustainability and were deemed to be suitable methods for evaluating the
sustainability of ports. The ports of Astara, Bushehr, and Imam Khomeini were the three
top ports, and with the analysis of the results, several managerial insights to make better
industry decisions are also revealed.

In the area of port site selection and expansion, MCDM techniques have been applied
to help decision-makers weigh multiple criteria and select the most suitable sites. Chowd-
hury and Haque [14] proposed a framework for identifying the best location for a new dry
port in Bangladesh using three multi-criteria decision analysis (MCDA) techniques: FAHP,
BWM, and PROMETHEE. The FAHP and BWM were applied to find the weights of the dry
port location selection decision criteria. The PROMETHEE was used to rank five potential
locations based on the proximity of the dry port to the exporter and importer, accessibility to
the high-capacity road network, proximity of the dry port to the seaport, and availability of
the rail network. The port of Savar was identified as the best location, followed by the port
of Mirsharai. This study will benefit government and private investors in making dry port
investment decisions. In a study of dry port selection in China, Brian [15] used the FAHP
to determine the weights of criteria that have an impact on the decision-making process,
which include transportation, common facilities, cost factor, economic level, trade level,
and policy advantage. ELECTRE was applied to rank the alternatives, with Zhengzhou
and Xi’an emerging as the top two suitable sites.

In marine ports, processes such as the loading, handling, and unloading of cargo
carry many risks. MCDM techniques have been used to evaluate and manage these risks.
Şenel et al. [16] carried out a risk analysis of the loading and unloading process in a port in
Turkey. The study determined the most important risk factors using a failure mode and
effect analysis (FMEA), and fuzzy TOPSIS was used to prioritize and determine the most
important risks. The study identified the neglect of technical personnel, lack of loading
and unloading equipment maintenance, and improper storage of goods in the ship’s cargo
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holds as the most important risks. The safety and security of people and goods are critical
in ports, and MCDM methods have been used to assess and manage risks, thus allowing
port authorities to develop risk mitigation strategies. Khorrama [17] proposed a port risk
management model aimed at transferring the conventional safety-oriented functional safety
assessment (FSA) to a framework-based approach and utilizes an FAHP-VIKOR combined
model in an Iranian port container terminal. This study revealed that the applicability
of the conventional FSA method can be improved by applying the ranking method in a
fuzzy environment.

One of the persistent challenges affecting the efficiency of global trade is port con-
gestion. Port congestion is also a critical problem that affects seaports’ performance and
productivity and efficiency levels. MCDM techniques have been applied to identify the
root causes of congestion and evaluate strategies for reducing it. Bolat et al. [18] used AHP
to determine the key elements that affect port congestion and identify the most significant
factors. According to the results, the most important main factors for port congestion
are documentation procedures, port operation and management, ship traffic inputs, port
structure and strategy, and government relations, respectively.

In maritime stakeholder relationship management, port performance measurement
(PPM) has become an important tool to achieve a sustainable competitive position. Ha
et al. [19] proposed a PPM framework using a hybrid DEMATEL and ANP methodology
incorporating fuzzy evidential reasoning (FER) by taking the perspectives of different port
stakeholders. The framework identified the most crucial port performance indicators (PPIs)
for each group of stakeholders, considering the uncertainty and interdependencies among
the PPIs. The framework was validated through a case study of four major container ports
in South Korea.

In the last decade, inter-port competition has significantly increased, especially in the
West Africa region. VanDyke and Ismael [20] used the AHP to evaluate the competitiveness
of six ports in the region: Dakar, Abidjan, Tema, Lome, Cotonou, and Lagos. The main
criteria considered include cargo volume, port location, port efficiency and performance,
port infrastructure, port cost, and political stability. From the study, the port of Abidjan
emerged as the most competitive, and the port of Cotonou emerged as the least competitive.

Maritime structures and infrastructures can be assessed, diagnosed, and monitored
using the inverse analysis methodology. It involves using measured data, usually from
sensors, to infer unknown parameters, such as structural properties, material characteristics,
or damage locations, by solving the inverse problem [21]. An inverse problem is the
process of determining unknown causes or system parameters by observing their effects
or measured responses. An example is the use of vibration data from a breakwater to
identify internal voids or damage. Inverse analysis is typically used in the maritime
environment for damage detection, e.g., identifying cracks, corrosion, or fatigue in ship
hulls, offshore platforms, and pipelines [22–24]; structural health monitoring (SHM) using
sensor data [25,26]; material property estimation, e.g., estimating unknown properties like
stiffness and damping [27]; and residual life assessment by predicting future degradation
and remaining service life [28,29].

From the literature reviewed on MCDM, it can be seen that many prior studies on
maritime infrastructure maintenance often rely on traditional decision-making models,
which typically assume precise data inputs and either focus on single decision-making
techniques or do not explicitly integrate uncertainty into their models. However, in real-
world maritime operations, maintenance decisions frequently involve subjective, imprecise,
and uncertain information due to the complex and dynamic nature of the port environment.
This proposed framework addresses these gaps by integrating fuzzy logic into all three
methods (fuzzy SWARA, fuzzy TOPSIS, and fuzzy WASPAS), thus enabling decision-
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makers to account for the vagueness and uncertainty inherent in the maintenance decision
criteria. The combination of the three distinct fuzzy MCDM tools within a single framework
provides several methodological improvements. The incorporation of fuzzy logic across
SWARA, TOPSIS, and WASPAS ensures that the imprecise linguistic assessments provided
by maintenance experts (e.g., “very important”) are accurately captured and processed. This
enhances the overall robustness and reliability of the results compared to traditional models
that require precise numerical inputs. Fuzzy SWARA facilitates a subjective but systematic
weighting process, allowing experts to dynamically adjust the relative importance of the
criteria. Compared with conventional SWARA, this provides more realistic and context-
sensitive weight assignments. Fuzzy TOPSIS evaluates alternatives based on their proximity
to an ideal solution. This method ensures balanced decision-making, allowing for both
the best- and worst-case scenarios to be accounted for. This is critical in maintenance
decisions involving safety and cost trade-offs. Fuzzy WASPAS combines Weighted Product
and Weighted Sum Models, offering a hybrid assessment that balances accuracy and
simplicity. This dual approach improves ranking stability, especially when the criteria
exhibit high variability.

To underscore the advantages of the proposed framework, a comprehensive empirical
evaluation across six Nigerian seaports was conducted, leveraging expert input via struc-
tured questionnaires. The expert-driven fuzzy evaluation provided insights that would
have been difficult to achieve using conventional methods. Specifically, the fuzzy data
collection and analysis captured nuanced expert opinions, leading to more accurate pri-
oritization of maintenance areas. The results identified specific gaps in both maintenance
practices and cultural aspects, highlighting areas for targeted improvement. Despite the
importance of maintenance-critical infrastructure in seaports, to the best of the author’s
knowledge, no investigation has been conducted into benchmarking the port’s MCMI
using MCDM. This is what this paper intends to address.

3. Methodology
A framework leveraging fuzzy logic and MCDM techniques (SWARA, TOPSIS,

WASPAS) was used to evaluate MCMI. This framework considers two primary dimensions:
maintenance practice and maintenance culture. These dimensions are further broken down
into specific criteria. Fuzzy SWARA was used to determine the weights of the different
criteria in the maintenance practice and maintenance culture dimensions. Fuzzy TOPSIS
and fuzzy WASPAS are used to rank six ports in Nigeria in terms of maintenance practice
and maintenance culture.

Four experienced port infrastructure maintenance experts, all belonging to a common
marine engineering community in Nigeria, discussed and reached a consensus on the
maintenance practice and culture criteria. There are machinery and equipment that make
up the port infrastructure. However, all the experts are involved in the maintenance of
port loading and offloading equipment like cranes, which is very critical for smooth port
operation. Through questionnaires, the experts expressed their opinions on the various
maintenance practices and culture criteria in the six ports, using linguistic terms.

3.1. Fuzzy SWARA (Alternatives Weight Determination)

Fuzzy SWARA is an extension of the traditional SWARA technique used in MCDM
that incorporates fuzzy logic to handle vagueness and uncertainty in decision-making.
Traditional SWARA uses a deterministic approach to assess the relative importance or
weights of the criteria, but fuzzy SWARA accommodates the inherent subjectivity and
imprecision involved in human judgment, thus allowing for a more flexible evaluation.
SWARA is easy to understand and apply, relying heavily on the opinions of decision-
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makers who rank criteria step by step, with the weight of each criterion calculated based
on its relative importance to others, using ratios between successive criteria. SWARA is
especially useful in situations where expert judgment is needed to prioritize criteria.

The advantages of using fuzzy SWARA in MCDM include the fact that the fuzzy
logic element deals with the ambiguity and vagueness that accompanies subjective judg-
ments, thus making it more suitable for complex and uncertain environments. Also, fuzzy
SWARA allows the decision-maker’s expertise to be directly used in the weighting cri-
teria, thus enhancing the quality of the decision-making process. Fuzzy SWARA has
been used in various domains, including logistics [30,31], sustainable construction [32],
ranking road sections [33], advancing sustainable urban development [34], sustainable
supplier selection [35], and many other fields where decision-making involves imprecision
and uncertainty.

The steps in applying the fuzzy SWARA are as follows.

3.1.1. Step 1: Criteria Identification and Sorting

The SMEs identify relevant criteria important to maintenance practice and culture.
The criteria are arranged in descending order of their perceived importance by the SMEs.
The most important criterion is placed first, followed by the second most important, and so
on. The least important criterion is placed at the bottom.

3.1.2. Step 2: Calculation of the Fuzzy Relative Importance (sj)

Starting from the second-ranked criterion, the SMEs use fuzzy linguistics variables
(e.g., equally important, less important, etc.) to express the relative importance of each
criterion compared to the one ranked just before it. Each linguistic variable is represented
by a fuzzy number using the triangular fuzzy scale shown in Table 1. A triangular fuzzy
number (TFN) is made up of three parameters: a, b, and c, where a is the smallest likely
value, b is the most probable value, and c is the largest possible value of any fuzzy event.

Table 1. The triangular fuzzy scale [6].

Linguistic Term Fuzzy Scale

Equally important (EI) (1, 1, 1)

Moderately less important (MLI) (2/3, 1, 3/2)

Less important (LI) (2/5, 1/2, 2/3)

Very less important (VLI) (2/7, 1/3, 2/5)

Much less important (MLI) (2/9, 1/4, 2/7)

3.1.3. Step 3: Calculation of the Fuzzy Weight Coefficient of Importance (kj)

The fuzzy weight coefficient of importance is then calculated:

k j = sj + 1, (1)

where k j denotes criterion j’s fuzzy weight coefficient of importance, and sj denotes criterion
j’s relative importance.

3.1.4. Step 4: Calculation of the Criteria Initial Weights (qj)

The initial weight for each criterion is calculated by considering the weight coefficients
in a step-wise manner. Starting with the most important criterion (first-ranked), which is
assigned a weight of 1, the following formula is used for subsequent criteria:
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qj =
q(j − 1)

k j
(2)

where qj denotes the initial weights for criterion j, q(j−1) is the weight of the previous
criterion, and k j is the weight coefficient of the current criterion.

3.1.5. Step 5: Criteria Initial Weight Normalization

The criteria initial weights are then normalized to ensure they add up to 1 by dividing
each weight by the sum of the weights. This is performed to enhance its comparable
capability [36].

3.1.6. Step 6: Defuzzification and Final Weight Assignment

The fuzzy weights are converted into crisp values using the weighted average method,
and the final crisp weights are assigned to each criterion.

3.2. Fuzzy TOPSIS (Alternatives Ranking)

Fuzzy TOPSIS is an extension of the traditional TOPSIS method that incorporates fuzzy
set theory and allows for the representation of ambiguous and vague information usually
encountered in real-world decision-making problems. TOPSIS is a MCDM technique used
in evaluating and ranking alternatives based on how close each of the alternatives is to an
imaginary ideal positive and equally how far they are from an imaginary ideal negative
solution. The highest ranked and best alternative for the decision-maker is one that is closer
to the positive ideal solution and further from the negative ideal solution. Fuzzy TOPSIS
deals with the imprecision and uncertainty in decision-making by using fuzzy numbers to
represent decision-makers’ subjective assessments.

Fuzzy TOPSIS has been used in various domains, including supply chain [37,38], ship
investment [39], human resources [40], sustainability [41], etc.

The fuzzy TOPSIS steps are as follows.

3.2.1. Step 1: SMEs’ Linguistic Evaluation

SMEs evaluate six maritime ports based on the identified maintenance practice criteria
and maintenance culture criteria. The evaluations are given using linguistic terms, e.g., low,
medium, high, etc., which are converted into fuzzy numbers using the triangular fuzzy
scale shown in Table 2.

Table 2. Fuzzy triangular scale for seaport rating [42].

Linguistic Term TFN

Very Low (VL) (0, 0, 0.25)

Low (L) (0, 0.25, 0.5)

Medium (M) (0.25, 0.5, 0.75)

High (H) (0.5, 0.75, 1.0)

Very High (VH) (0.75, 1.0, 1.0)

3.2.2. Step 2: Decision Matrix Construction

The decision matrix is constructed by converting the fuzzy values of the matrix to
crisp values using the averaging method.
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3.2.3. Step 3: Decision Matrix Normalization

The values in the decision matrix are then normalized using the vector normalization
technique for the rji element of the normalized decision matrix as follows:

rji =
xji√

∑N
j=1 x2

ji

(3)

where j = 1, 2 . . ., N; i = 1, 2 . . ., k; and xji = alternative j value with respect to attribute i.

3.2.4. Step 4: Weighted Normalized Decision Matrix

The next step is to calculate the weighted normalized fuzzy decision matrix uji. The
normalized fuzzy numbers obtained in Step 3 are multiplied by the weight values of the
criteria from 3.1 Step 6.

uji = wirji (4)

3.2.5. Step 5: Fuzzy Positive-Ideal Solution (FPIS) and Fuzzy Negative-Ideal Solution
(FNIS) Determination

FPIS and FNIS are determined to evaluate alternatives against the criteria. FPIS
represents the best or optimal value for each criterion. These values are determined to
create an imaginary alternative that is “most preferred”. FNIS represents the worst or least
desirable value for each criterion. These values are determined to create an imaginary
alternative that is “least preferred” possible values for each criterion.

The imaginary ideal solution, i.e., positive (A+) and negative (A−) ideal solution,
respectively, are defined as follows:

A+ =
{

v+1 , v+2 , . . . , v+i , . . . , v+k
}

(5)

A− =
{

v−1 , v−2 , . . . , v−i , . . . , v−k
}

(6)

where v+j and v−j represent positive-ideal and negative-ideal values for each criterion j,

respectively. v+j andv−j are calculated for each criterion based on whether the criterion is
benefit-oriented or cost-oriented.

Positive-Ideal Solution

The benefit criterion (jϵI) is for criteria where higher values are preferable (e.g., effi-
ciency, quality). The positive-ideal solution is the maximum value across all alternatives
(max

i
vij):

v+j =
(

max
i

vij

∣∣∣∣jϵI
)

(7)

where I is set of benefit criteria
The cost criterion (jϵI′) is for criteria where lower values are preferable (e.g.,

cost, downtime).
The positive-ideal solution is the minimum value across all alternatives (min

i
vij):

v+1 =
(

min
i

vij

∣∣∣∣jϵI′
)

(8)

where I′ is set of cost criteria
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Negative-Ideal Solution

The benefit criterion (jϵI) is for criteria where higher values are preferable. The
negative-ideal solution is the minimum value across all alternatives (min

i
vij):

v−j =
(

min
i

vij

∣∣∣∣jϵI
)

(9)

The cost criterion (jϵI′) is for criteria where lower values are preferable. The negative-
ideal solution is the maximum value across all alternatives (max

i
vij):

v+1 =
(

max
i

vij

∣∣∣∣jϵI′
)

(10)

3.2.6. Step 6: Distance Calculation

The distance of each alternative from the ideal positive and negative values determines
the final ranking of each alternative. The distance from the positive ideal solution S+

i and
distance from the negative ideal solution S−

i is obtained from the following equation:

S+
i =

√√√√ K

∑
i=1

(
vji − v+i

)2 (11)

where vji is the value of the i-th alternative for the j-th criterion.

S−
i =

√
∑K

i=1

(
vji − v−i

)2 (12)

where j = 1, 2, . . ., n.

3.2.7. Step 7: Closeness Coefficient and Ranking

The overall distance of each alternative Aj from the positive ideal solution is estimated
as follows:

c+j =
s−j

s+j + s−j
(13)

The best ranked alternative has the maximum C+
j value. This implies that if C+

j is
close to 1, the ideal alternative is Aj and non-ideal if it is close to 0.

3.3. Fuzzy WASPAS (Alternatives Ranking)

Fuzzy WASPAS is an extension of WASPAS, a popular MCDM technique. It integrates
fuzzy logic into the traditional WASPAS method to handle imprecision and uncertainty
in the decision-making process. WASPAS is a hybrid MCDM technique developed from
a systematic combination of two widely used methods: the Weighted Sum Model (WSM)
and the Weighted Product Model (WPM). The combination of these two models helps in
improving the reliability and accuracy of decision-making when dealing with multiple
criteria. WASPAS has been applied in solving MCDM problems. For example, Turskis
et al. [43] applied the technique to determine critical infrastructure information.

The steps of the fuzzy WASPAS technique are as follows.

3.3.1. Step 1: Decision Matrix Construction

Construct the decision matrix where each row represents an alternative and each
column corresponds to a criterion. The performance of the alternatives is represented as
the matrix values.
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3.3.2. Step 2: Decision Matrix Normalization

The decision matrix is normalized to bring the criteria into a comparable scale [36].
In the WASPAS technique, the approach for decision matrix normalization depends on
whether the decision matrix criteria are benefits or non-benefits (costs). For the benefit
criteria, normalization is performed by dividing each value by the maximum value of the
criterion. For non-benefit (cost) criteria, the normalization is performed by dividing the
minimum value by each value of the criterion.

Equations for normalizing benefits and non-benefits (costs) criteria are as follows:
For the benefit criteria,

pij =
xij

max
i

xij
(14)

where max
i

is the maximum value, j = 1, 2, . . ., n; i = 1, 2, . . . m

For the non-benefit (cost) criteria,

pij =
xij

min
i

xij
(15)

where min
i

is the minimum value, j = 1, 2, . . ., n; i = 1, 2, . . ., m.

3.3.3. Step 3: Weighted Sum Model (WSM) Score

The Weighted Sum Model (WSM) score for each alternative is calculated using the
weighted sum formula:

si = ∑n
j=1 pij · wj (16)

where wj is the weight of the j-th criterion, and pij is the normalized value of the i-th
alternative for the j-th criterion.

3.3.4. Step 4: Weighted Product Model (WPM) Score

The Weighted Product Model (WPM) score for each alternative is calculated using the
weighted product formula:

Pi = ∏n
j=1

(
rij
)wj (17)

where wj is the weight of the j-th criterion, and rij is the normalized value of the i-th
alternative for the j-th criterion.

3.3.5. Step 5: Final Score

The WSM and WPM scores are combined to give the WASPAS final score for each
alternative using the following equation:

zi = λsi + (1 − λ)Pi (18)

where zi is the final score for alternative i, and λ is the weight given to the WSM score. This
is usually set to 0.5, giving equal importance to both WSM and WPM.

Thus,
zi = 0 · 5si + 0.5pi (19)

3.3.6. Step 6: Alternatives Ranking

The alternatives are then ranked based on their zI value. The alternative with the
highest zi value is considered the best.
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3.4. Case Study

In Nigeria, the southern region hosts a cluster of the country’s seaports. Six seaports
in this region are used in this paper to evaluate the proposed framework’s applicability
(Figure 3). These are the Lagos port complex, the Tincan Island port complex, the Rivers
port complex, the Onne port complex, the Delta port complex, and the Calabar port
complex. The Nigerian Ports Authority, which is a Federal Government Agency, governs
and operates the ports. The ports handle various types of cargo, including dry and wet
bulk cargoes, box-containerized cargoes, RORO services, and general cargo. As previously
mentioned, four experienced experts with present maintenance working experience in
these ports, and who belong to a common marine engineering community, discussed and
arrived at a consensus on the criteria for maintenance practice and maintenance culture.
Through questionnaires, the experts expressed their opinions on the various maintenance
practices and culture criteria in the six ports using linguistic terms.
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Table 3 gives brief information about these ports.

Table 3. Selected Nigerian seaports [45,46].

ID Port Description

A1 Calabar Port

The port has multiple multi-purpose terminals available with necessary facilities
(handling equipment, space, storage, etc.) available. Facilities handle containerized
cargo, general cargo, including oilfield (refined petroleum bitumen) and project
cargo, bulk grain handling, agricultural produce, bagged cement, and fish. It has
jurisdiction over crude oil terminals in the axis. The port has various cargo handling
equipment, including mobile cranes, transtainers, and grain elevators with
bagging machines.

A2 Delta Port Complex, Warri The port handles grain and bulk cargo. It is equipped with various mobile cranes.

A3 Rivers Port Complex, Port Harcourt

This port is a multi-purpose facility and is strategically located in one of the world’s
largest crude oil production regions, the Niger delta. It is equipped with various
tanks of bulk oil installation. It plays the “Mother-Port” role to several jetties
surrounding her as “satellites” through the provision of pilotage and towage
services, catering to the various markets relating to dry, liquid, and general cargo
trades. It is equipped with various mobile cranes.
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Table 3. Cont.

ID Port Description

A4 Tincan Island Port Complex

This is the second busiest port after Apapa Port. The port handles diversified
cargoes with five terminal operators specializing in different forms of cargo (dry and
wet bulk cargoes, box-containerized cargoes, RORO services). The port handles
vessels ranging from 100 to 260 m. It is well-equipped with modern cargo handling
equipment such as dockside cranes, gantries, mobile cranes, RORO tugmasters,
grain elevators with bagging machines, and transtainers.

A5 Onne Port Complex

This is the first port of its kind in Nigeria that operates the Landlord Port Model
devised to encourage private participation in the port industry. It is one of the
largest oil- and gas-free zones in the world, supporting exploration and production
for Nigerian activities. It robustly serves both onshore and offshore activities while
providing efficient access to oil fields in West Africa and the Sub-Saharan region.
The port is highly industrialized, with modern facilities and equipment that can
stand the test of time. It has one of the biggest harbour mobile cranes in Africa
(Liebherr 600) with a lifting capacity of 208 metric tons and twin cranes that have the
capacity of lifting a single heavy cargo of 300 tons.

A6 Lagos Port Complex, Apapa

The Lagos Port Complex, also referred to as Apapa Quays, is the oldest and largest
Port in Nigeria. It is situated in Apapa, Lagos State, the commercial centre of
Nigeria. The port handles general cargo, bulk cargo, and container cargo. It has five
(5) private terminals and eight (8) jetties. It is well equipped with modern cargo
handling equipment such as dockside cranes, gantries, mobile cranes, RORO
tugmasters, grain elevators with bagging machines, and transtainers. Sugar, salt,
and flour are produced in factories belonging to operators within the port. It boasts
of a four-wheel gate of about 8 metres for oversized cargoes, and this has given the
port an edge over others in the handling of oversized cargoes.

4. Results
4.1. SWARA Results
4.1.1. Maintenance Practice
Step 1: Criteria Identification and Sorting

Four SMEs (DM1-DM4) reached a consensus and identified the relevant criteria im-
portant to maintenance practice, and sorted them in descending order of importance, as
shown in Table 4.

Table 4. Maintenance practice criteria.

P1 Planning and Scheduling Most important

P2 Maintenance Personnel Training and Competency

P3 Continuous Improvement

P4 Data Collection and Analysis

P5 Documentation and Record Keeping Least important

As seen from Table 4, the SMEs placed planning and scheduling as the most impor-
tant criterion in maritime maintenance practice. The reasons adduced for this are that
well-structured planning and scheduling ensure that all necessary maintenance tasks are
executed at the correct intervals, thus minimizing the risk of equipment failures, ensuring
the functionality and safety of the infrastructure, and maximizing operational uptime. In a
maritime environment, poor planning can lead to unplanned downtime with severe safety
and financial consequences.

Competent and well-trained personnel are crucial for executing maintenance tasks
safely and effectively. This directly impacts the reliability of the infrastructure, and thus,
this criterion was ranked second by the SMEs. In a maritime environment, improper
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handling of critical infrastructure can result in significant operational risks. The skills and
competency of personnel determine the maintenance quality, reduce human error, and
ensure that maintenance activities are performed correctly. Without qualified personnel,
maintenance plans cannot be implemented effectively.

Continuous improvement, which was ranked third, drives the long-term effective-
ness of the entire maintenance program. It involves analyzing past maintenance activ-
ities, identifying areas for improvement, and implementing more efficient, safer, and
cost-effective procedures over time. Continuous improvement helps reduce long-term risks
and inefficiencies.

Data are key to making informed decisions about maintenance. This includes gath-
ering baseline data, e.g., equipment specifications, manufacturer recommendations, and
historical maintenance records; monitoring key performance indicators (KPIs) that help to
identify potential problems before they become critical; and analyzing maintenance data
to find areas for optimization, such as adjusting maintenance frequencies or identifying
recurring issues. Data collection and analysis, which was ranked fourth, provides valuable
insights into the performance of infrastructure, predicts potential failures, helps to optimize
maintenance activities, and improves overall operational efficiency. In the maritime context,
analyzing data is essential but relies heavily on a foundation of good planning, skilled
personnel, and a commitment to continuous improvement.

Documentation and record keeping, which was ranked lower in importance relative
to the other criteria, is essential for regulatory compliance, tracking historical maintenance
activities, and audits. Good documentation supports all other activities but does not
directly impact the effectiveness of maintenance without proper execution of the other
maintenance practices.

Step 2: Calculation of the Fuzzy Relative Importance

Starting from the second criterion, the SMEs use linguistics terms (Table 1) to express
the relative importance of each criterion compared to the one ranked just before it. For
example, the relative importance expression of DM1 is as follows:

The importance of P2 compared to P1 (maintenance personnel training and compe-
tency vs. planning and scheduling) is moderately less important (MLI), etc. Expressions of
relative importance by all DMs are presented in Table A1. The linguistic terms were then
converted to fuzzy numbers using Table 1. The results are presented in Table A2. The fuzzy
numbers are then converted to decimal numbers, and the results are presented in Table 5.

Table 5. Conversion of fuzzy numbers to decimal numbers.

DM1 DM2 DM3 DM4

P2 (0.6667, 1.0000,
1.5000)

(0.6667, 1.0000,
1.5000)

(1.0000, 1.0000,
1.0000)

(1.0000, 1.0000,
1.0000)

P3 (0.6667, 1.0000,
1.5000)

(0.6667, 1.0000,
1.5000)

(0.6667, 1.0000,
1.5000)

(0.6667, 1.0000,
1.5000)

P4 (0.4000, 0.5000,
0.6667)

0.6667, 1.0000,
1.5000)

(0.4000, 0.5000,
0.6667)

(0.6667, 1.0000,
1.5000)

P5 0.4000, 0.5000,
0.6667)

0.4000, 0.5000,
0.6667)

0.4000, 0.5000,
0.6667)

0.4000, 0.5000,
0.6667)

The relative importance of each criterion Sj is calculated by finding the average of the
three values: smallest likely values, most probable values, and largest possible values.

For example, the relative importance of criterion P2 is calculated as follows:
Smallest likely value = (0.6667 + 0.6667 + 1.0000 + 1.0000)/4 = 0.8334.
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Most probable value = (1.0000 + 1.0000 + 1.0000 + 1.0000)/4 = 1.0000.
Largest possible value = 1.5000 + 1.5000 + 1.0000 + 1.0000)/4 = 1.2500.
The results of this exercise are presented in Table 6.

Table 6. Maintenance practice criteria SWARA.

Sj Kj qj wj

P1 1.0000 1.0000
1.0000

0.4467 0.5030
0.5686

P2 0.8334 1.0000
1.2500

1.8334 2.0000
2.2500

0.5454 0.5000
0.4444

0.2437 0.2515
0.2527

P3 0.6667 1.0000
1.5000

1.6667 2.0000
2.5000

0.3272 0.2500
0.1778

0.1462 0.1257
0.1011

P4 0.5334 0.7500
1.0834

1.5334 1.7500
2.0834

0.2134 0.1429
0.0853

0.0953 0.0719
0.0485

P5 0.4000 0.5000
0.6667

1.4000 1.5000
1.6667

0.1524 0.0953
0.0512

0.0681 0.0479
0.0291

Step 3: Determination of the Criteria Fuzzy Weight Coefficient of Importance, Kj

The fuzzy weight coefficient of importance is calculated using Equation (1).
Kj for criterion P2: 0.8334 + 1, 1.0000 + 1, 1.2500 + 1, and the results are presented

in Table 6.

Step 4: Calculation of the Criteria Initial Weights, qj

Since P1 was placed as the most important criterion by the SMEs, it was assigned an
initial weight of 1. Equation (2) is then used to calculate the other criteria’s initial weights,
as shown in Table A3, and the results are presented in Table 6.

Step 5: Criteria Initial Weight Normalization, wj

The criteria initial weights are normalized by dividing each criterion weight by the
sum of all criteria weights, and the results are presented in Table 7.

Table 7. Criteria initial weight normalization and final weight.

Final Weight

P1 0.4467, 0.5030, 0.5686 0.5061

P2 0.2437, 0.2515, 0.2527 0.2493

P3 0.1462, 0.1257, 0.1011 0.1243

P4 0.0953, 0.0719, 0.0485 0.0719

P5 0.0681, 0.0479, 0.0291 0.0484

Step 6: Defuzzification and Final Weight Assignment

The values in Table 7 are defuzzied using the weighted average method, and the final
weight is obtained. For example, the final weight for P1 = (0.4467 + 0.5030 + 0.5686)/3 = 0.5061.

The final weights for the other criteria were calculated, and the results are presented
in Table 7. The criteria’s final weights are shown graphically in Figure 4.
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4.1.2. Maintenance Culture

The same SMEs (DM1-DM4) in 4.1.1 reached a consensus, identified the relevant crite-
ria important to maintenance culture, and sorted them in descending order of importance,
as shown in Table 8.

Table 8. Maintenance culture criteria.

C1 Safety and Compliance Focus Most important

C2 Proactive and Preventive Approach

C3 Leadership Commitment

C4 Continuous Improvement Least important

Step 1: Criteria Identification and Sorting

With respect to maintenance culture criteria, the SMEs rated safety and compliance
focus as the most important criterion, as shown in Table. In maritime infrastructure, this
criterion is paramount due to the inherently hazardous nature of the environment. To avoid
accidents, legal penalties, and environmental damage, compliance with both national and
international regulations is critical. Thus, safety is a core value that ensures the personnel,
equipment, and the environment are protected, making this the highest priority in the
maintenance culture.

To minimize the risk of equipment failure and ensure that issues are addressed before
they escalate, a proactive and preventive maintenance approach is required. This criterion
is rated second after the safety and compliance focus. In the maritime industry, unexpected
breakdowns can lead to safety risks and severe financial losses. Thus, this approach is
essential for ensuring the longevity and reliability of the maritime infrastructure.
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Leadership sets the mode for the entire maintenance culture, and this criterion was
ranked third. Strong leadership commitment drives safety, ensures resources are allocated
appropriately, and encourages a proactive approach.

Adapting to new technologies, regulations, and best practices requires continuous
improvement and learning. While this is important for long-term success, it builds on a
foundation of strong leadership, safety focus, and proactive maintenance practices. Though
this criterion supports the evolution of the maintenance culture, it ranks lower in the
immediate impact compared to others.

Step 2: Calculation of the Fuzzy Relative Importance

The experts’ relative importance expression is shown in Table A4. Following the steps
in Section 3.1, the linguistic terms are converted to fuzzy numbers as shown in Table A5,
and calculations for Sj, Kj, qj, wj, and the final weights are conducted.

The results are presented in Table 9 and shown graphically in Figure 5.

Table 9. Maintenance culture criteria SWARA.

Sj Kj qj wj
Final
Weight

C1
1.0000
1.0000
1.0000

0.4709
0.5191
0.5779

0.5226

C2
0.6667
1.0000
1.5000

1.6667
2.0000
2.5000

0.6000
0.5000
0.4000

0.2826
0.2595
0.2312

0.2578

C3
1.0000
1.0000
1.0000

2.0000
2.0000
2.0000

0.3000
0.2500
0.2000

0.1413
0.1298
0.1156

0.1289

C4
0.3429
0.4167
0.5334

1.3429
1.4167
1.5334

0.2234
0.1765
0.1304

0.1052
0.0916
0.0754

0.0907
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4.2. Fuzzy TOPSIS Results
4.2.1. Maintenance Practice
Step 1: SMEs’ Linguistic Evaluation

As mentioned earlier, SMEs rate the maintenance practice of the ports using the
linguistic terms in Table 2, and the results are presented in Table A6.

Step 2: Decision Matrix Construction

The linguistic terms were converted to fuzzy numbers using Table 2. The results are
presented in Table A7. The fuzzy numbers were transformed into crisp values to give
the decision matrix, and the results are presented in Table 10, for example, transforming
A1/P1 = (0.25 + 0.5 + 0.75)/3 = 0.5.

Table 10. Fuzzy decision matrix.

A1 A2 A3 A4 A5 A6

P1 0.5 0.5 0.5 0.75 0.75 0.92

P2 0.5 0.5 0.5 0.75 0.5 0.75

P3 0.5 0.5 0.5 0.5 0.5 0.75

P4 0.5 0.25 0.5 0.5 0.5 0.75

P5 0.75 0.75 0.5 0.92 0.5 0.75

Step 3: Fuzzy Decision Matrix Normalization

Using Equation (3), the fuzzy decision matrix presented in Table 10 is normalized. The
results are presented in Table 11.

Table 11. Normalized decision matrix.

A1 A2 A3 A4 A5 A6

P1 0.18 0.20 0.20 0.22 0.28 0.24

P2 0.18 0.20 0.20 0.22 0.18 0.19

P3 0.18 0.20 0.20 0.15 0.18 0.19

P4 0.18 0.10 0.20 0.15 0.18 0.19

P5 0.28 0.30 0.20 0.26 0.18 0.19

Step 4: Weighted Normalization Fuzzy Decision Matrix

Using Equation (4) and the maintenance practice weights from Table 7, the weighted
normalization fuzzy decision matrix is calculated and presented in Table 12, for example,
A1/P1: 0.18 × 0.5061 = 0.0911.

Table 12. Weighted normalized fuzzy decision matrix.

A1 A2 A3 A4 A5 A6

P1 0.0911 0.1012 0.1012 0.1113 0.1417 0.1215

P2 0.0449 0.0499 0.0499 0.0548 0.0449 0.0474

P3 0.0224 0.0249 0.0249 0.0186 0.0224 0.0236

P4 0.0129 0.0072 0.0144 0.0108 0.0129 0.0137

P5 0.0136 0.0145 0.0097 0.0126 0.0087 0.0092
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Step 5: Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution
(FNIS) Determination

The imaginary fuzzy positive and negative ideal reference point is determined by
taking the largest element of each benefit criterion and the smallest element of each cost
criterion, using Equations (5) and (6). Thus, the fuzzy positive ideal reference point (A+)
and fuzzy negative ideal reference point (A−) for each criterion are set, and the results are
presented in Table 13.

Table 13. FPIS and FNIS values.

Category FPIS FNIS

P1 Benefit 0.1417 0.0911

P2 Benefit 0.0548 0.0449

P3 Benefit 0.0249 0.0186

P4 Benefit 0.0144 0.0072

P5 Cost 0.0087 0.0145

Step 6: Distance Calculation

The distances of each port alternative from the FPIS and FNIS values with respect to
each criterion are calculated using Equations (11) and (12). As an example, the distance
of alternative A1 to FPIS (D1+) and FNIS (D1−), with respect to criterion P1, is calculated
as follows:

D1+ =
√

(0.0911−0.1417)2 + (0.0449−0.0548)2 + (0.0224−0.0249)2 + (0.0129−0.0144)2 +
(0.0136−0.0087)2 = 0.0519.

D1− =
√

(0.0911−0.0911)2 + (0.0449−0.0449)2 + (0.0224−0.0186)2 + (0.0129−0.0072)2 +
(0.0136−0.0145)2 = 0.0069.

The distances of other alternatives to FPIS and FNIS were determined, and the results
are presented in Table 14.

Table 14. Maintenance practice fuzzy TOPSIS analysis summary.

Port D+ D− CC Values Ranking

A1 Calabar Port 0.0519 0.0069 0.1173 6

A2 Delta Port Complex, Warri 0.0418 0.0129 0.2358 5

A3 Rivers Port Complex, Port Harcourt 0.0408 0.0155 0.2753 4

A4 Tincan Island Port Complex 0.0315 0.0229 0.4210 3

A5 Onne Port Complex 0.0103 0.0514 0.8331 1

A6 Lagos Port Complex 0.0216 0.0320 0.5970 2

Step 7: Closeness Coefficient and Ranking

Based on the results obtained in Step 6, the closeness coefficient (CC) of each alternative
can be calculated using Equation (9). For example, the calculation of the CC value for
alternative A1 is as follows:

D1+ = 0.0519 and D1− = 0.0069.
CC1 = 0.0069/(0.0519 + 0.0069) = 0.1173.
The CC values for other alternatives are calculated, and the alternatives are ranked.

The results are presented in Table 14.
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4.2.2. Maintenance Culture

As mentioned earlier, SMEs rate the maintenance culture of the ports using the lin-
guistic terms in Table 2, and the results presented in Table A8. The linguistic terms were
converted to fuzzy numbers using Table 2. The results are presented in Table A9. The fuzzy
numbers are transformed into crisp values to give the fuzzy decision matrix, and the results
are presented in Table 15.

Table 15. Maintenance culture fuzzy decision matrix.

A1 A2 A3 A4 A5 A6

C1 0.5 0.25 0.25 0.25 0.25 0.25

C2 0.5 0.75 0.75 0.75 0.5 0.75

C3 0.75 0.5 0.5 0.5 0.5 0.75

C4 0.5 0.5 0.25 0.5 0.5 0.5

Following the steps outlined in Section 4.2.1, the D+, D−, CC values, and the port
rankings are calculated. The results are presented in Table 16.

Table 16. Maintenance culture fuzzy TOPSIS analysis summary.

Port D+ D− CC Values Ranking

A1 Calabar Port 0.0029 0.0034 0.5397 2

A2 Delta Port Complex, Warri 0.0548 0.0424 0.4362 4

A3 Rivers Port Complex, Port Harcourt 0.0436 0.0557 0.5609 1

A4 Tincan Island Port Complex 0.0548 0.0436 0.4431 3

A5 Onne Port Complex 0.0592 0.0245 0.2927 6

A6 Lagos Port Complex 0.0639 0.0301 0.3202 5

4.3. Fuzzy WASPAS Results
4.3.1. Maintenance Practice
Step 1: Decision Matrix Fuzzy Numbers

In Table A7, the values are transformed into crisp values, with each row representing
an alternative and each column corresponding to a criterion (Table 17).

Table 17. Fuzzy decision matrix.

Beneficial Criteria Non-Beneficial/Cost Criteria

P1 P2 P3 P4 P5

A1 0.5 0.5 0.5 0.5 0.75

A2 0.5 0.5 0.5 0.25 0.75

A3 0.5 0.5 0.5 0.5 0.5

A4 0.75 0.75 0.5 0.5 0.92

A5 0.75 0.5 0.5 0.5 0.5

A6 0.92 0.75 0.75 0.75 0.75

Weights 0.5061 0.2493 0.1243 0.0719 0.0484

Step 2: Normalization of Decision Matrix and the Weighted Decision Matrix
(WSM and WPM)

As shown in Equations (14) and (15), the beneficial criteria are normalized by dividing
each value by the maximum value of the criterion. For example, the maximum value of
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criterion P1 is 0.92. For the cost criteria, the minimum value is divided by each value
of the criterion. For example, the minimum value of P5 is 0.5. The results are presented
in Table A10.

The normalized matrix is then weighted.
(a) For WSM
Using Equation (14), the normalized weight matrix for the WSM is calculated. For

example, P1/A1: 0.543 × 0.5061 = 0.275. Other criteria were calculated, and the results are
presented in Table 18.

Table 18. WSM normalized weight decision matrix.

Beneficial Criteria Non-Beneficial/Cost Criteria

P1 P2 P3 P4 P5

A1 0.275 0.166 0.083 0.048 0.032

A2 0.275 0.166 0.083 0.024 0.032

A3 0.275 0.166 0.083 0.048 0.048

A4 0.412 0.249 0.083 0.048 0.026

A5 0.412 0.166 0.083 0.048 0.048

A6 0.506 0.249 0.1243 0.072 0.032

(b) For WPM
Using Equation (15), the normalized decision matrix values (Table A10) are raised to

the power of each criterion weight.
For example, P1/A1: (0.543)0.5061 = 0.734.
P2/A1: (0.667)0.2493 = 0.904.
P3/AI: (0.667)0.1243 = 0.951.
P4/A1: (0.667)0.0719 = 0.971.
P5/A1: (0.667)0.0484 = 0.981.
The results are presented in Table 19.

Table 19. WPM normalized weight decision matrix.

Beneficial Criteria Non-Beneficial/Cost Criteria

P1 P2 P3 P4 P5

A1 0.734 0.904 0.951 0.971 0.981

A2 0.734 0.904 0.951 0.924 0.981

A3 0.734 0.904 0.951 0.971 1.000

A4 0.902 1.000 0.951 0.971 0.971

A5 0.902 0.904 0.951 0.971 1.000

A6 1.000 1.000 1.000 1.000 0.981

Step 3: Calculation of the WSM and WPM Scores for Each Alternative

For WSM (Equation (16)), for example, A1: 0.275 + 0.166 + 0.083 + 0.048 + 0.032 = 0.604.
Calculation is performed for other criteria, and the results are presented in Table 20.

For WPM, (Equation (17)), for example, A1: 0.734 × 0.904 × 0.951 × 0.971 × 0.981 = 0.601.
Calculation is performed for other criteria, and the results are presented in Table 20.



Infrastructures 2025, 10, 89 24 of 34

Table 20. Maintenance practice WASPAS analysis summary.

WSM
Score

WPM
Score

WASPAS
Score

WASPAS
Ranking

WPM
Ranking

WSM
Ranking

A1 0.604 0.601 0.603 5 5 5

A2 0.580 0.571 0.576 6 6 6

A3 0.620 0.613 0.617 4 4 4

A4 0.818 0.809 0.814 2 2 2

A5 0.757 0.753 0.755 3 3 3

A6 0.983 0.981 0.982 1 1 1

Step 4: WASPAS Final Score for Each Alternative

Using Equation (19), the final WASPAS score is obtained. For example, for A1,
0.5 (0.604) + 0.5 (0.601) = 0.603. Calculation is performed for other criteria, and the re-
sults are presented in Table 20.

Step 5: Alternatives Are Then Ranked Based on the Final WASPAS Scores

The alternative with the highest score is considered the best option. The results of the
ranking of the alternatives based on WASPAS, WPM, and WSM are presented in Table 20.

4.3.2. Maintenance Culture

Following the steps enumerated in Section 4.3.1, the maintenance culture decision
matrix (Table 15) is normalized and weighted using the WSM and WPM methods. The
results are presented in Tables 21 and 22, respectively.

Table 21. Maintenance culture WSM normalized weight decision matrix.

Beneficial Criteria

MCC1 MCC2 MCC3 MCC4

A1 0.523 0.172 0.129 0.091

A2 0.261 0.258 0.086 0.091

A3 0.261 0.258 0.086 0.045

A4 0.261 0.258 0.086 0.091

A5 0.261 0.172 0.086 0.091

A6 0.261 0.258 0.129 0.091

Table 22. Maintenance culture WPM normalized weight decision matrix.

Beneficial Criteria

MCC1 MCC2 MCC3 MCC4

A1 1.0 0.901 1.0 1.0

A2 0.696 1.0 0.949 1.0

A3 0.696 1.0 0.949 0.939

A4 0.696 1.0 0.949 1.0

A5 0.696 0.901 0.949 1.0

A6 0.696 1.0 1.0 1.0

The WSM and WPM scores for each alternative were then calculated. Alternatives are
then ranked based on the final WASPAS scores. The alternative with the highest score is
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considered the best option. The results of the ranking of the alternatives based on WASPAS,
WPM, and WSM are presented in Table 23.

Table 23. Maintenance culture WASPAS analysis summary.

WSM
Score

WPM
Score

WASPAS
Score

WASPAS
Ranking

WPM
Ranking

WSM
Ranking

A1 0.915 0.901 0.908 1 1 1

A2 0.696 0.661 0.679 3 3 3

A3 0.650 0.620 0.635 5 5 5

A4 0.696 0.661 0.679 3 3 3

A5 0.610 0.595 0.603 6 6 6

A6 0.739 0.696 0.718 2 2 2

The maintenance practice and culture ratings using the fuzzy TOPSIS and fuzzy
WASPAS methods are shown graphically in Figures 6 and 7, respectively.
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5. Sensitivity Analysis
A sensitivity analysis was conducted on the criteria weights to assess the impact of

changes in these weights on the port rankings. For maintenance practice, the weight of
planning and scheduling, a criterion that has the highest weighting (beneficial criterion),
and documentation and record keeping, which is the only cost criterion, are increased by
10%. A sensitivity analysis is then conducted for each scenario.

For maintenance culture, where all the criteria are beneficial, the weight of the safety
and compliance focus criterion, which is deemed as most important by the SMEs, is
increased by 10%, and sensitivity analysis is conducted. The weights were adjusted and
normalized to maintain a total sum of 1.0. The rankings are then recalculated using fuzzy
TOPSIS and fuzzy WASPAS methods. The results are presented in Tables 24 and 25,
respectively.

Table 24. Maintenance practice sensitivity analysis summary.

Scenario Port TOPSIS
CC Value

TOPSIS
Ranking

WASPAS
Score

WASPAS
Ranking

Original
weights A1 0.1173 6 0.603 5

A2 0.2358 5 0.576 6

A3 0.2753 4 0.617 4

A4 0.4210 3 0.814 2

A5 0.8331 1 0.755 3

A6 0.5970 2 0.982 1

P1 + 10% A1 0.1089 6 0.601 5

A2 0.2297 5 0.575 6

A3 0.2663 4 0.614 4

A4 0.4184 3 0.814 2

A5 0.8441 1 0.758 3

A6 0.5957 2 0.983 1

P5 + 10% A1 0.1179 6 0.603 5

A2 0.2335 5 0.577 6

A3 0.2645 4 0.619 4

A4 0.4212 3 0.813 2

A5 0.8325 1 0.757 3

A6 0.5974 2 0.981 1

Table 25. Maintenance culture sensitivity analysis summary.

Scenario Port TOPSIS
CC Value

TOPSIS
Ranking

WASPAS
Score

WASPAS
Ranking

Original
weights A1 0.5397 2 0.908 1

A2 0.4362 4 0.679 3

A3 0.5609 1 0.635 5

A4 0.4431 3 0.679 3

A5 0.2927 6 0.603 6

A6 0.3202 5 0.718 2



Infrastructures 2025, 10, 89 27 of 34

Table 25. Cont.

Scenario Port TOPSIS
CC Value

TOPSIS
Ranking

WASPAS
Score

WASPAS
Ranking

C1 + 10% A1 0.5428 1 0.927 1

A2 0.4157 3 0.744 3

A3 0.5414 2 0.710 5

A4 0.4157 3 0.744 3

A5 0.2898 6 0.677 6

A6 0.3133 5 0.778 2

6. Discussion
The results of applying fuzzy TOPSIS and fuzzy WASPAS to evaluate maintenance-

critical maritime infrastructure highlight the differences in performance across various ports
under both the maintenance practice and maintenance culture criteria. For maintenance
practice, the rankings are based on criteria such as planning and scheduling, personnel
training and competency, continuous improvement, data collection and analysis, and
documentation and record keeping. The rankings for maintenance culture are based on
safety and compliance focus, proactive and preventive approach, leadership commitment,
continuous improvement, and learning.

In the maintenance practice ranking, Port A5 (Onne Port Complex) is ranked first
by TOPSIS and third by WASPAS, showing consistently strong performance across both
methods. However, it ranks last (6th) in maintenance culture across both TOPSIS and
WASPAS methods, indicating potential weakness in proactive safety practices, compliance,
and leadership commitment. Its better performance in maintenance practice may reflect
operational strength but also a lack of emphasis on cultural aspects.

Port A6 (Lagos Port Complex, Apapa) ranks second with TOPSIS and first with
WASPAS in maintenance practice, showing competitive strength, especially in the WASPAS
method. In the area of maintenance culture, the port demonstrated varied performance,
with strong results in the WASPAS ranking (2nd) but less consistency in TOPSIS (5th). This
may suggest potential sensitivity to the evaluation method used, and further investigation
into the specific criteria affecting each ranking is needed.

Port A1 (Calabar Port) emerged as a strong performer in the maintenance culture,
ranked second by TOPSIS and first by WASPAS. However, it exhibited weaker performance
in the maintenance practice, ranked sixth by TOPSIS and fifth by WASPAS. The discrepancy
in maintenance practice may indicate sensitivity to the weighting of specific criteria in
the two methods. The general result suggests that while the port demonstrated a strong
commitment to safety, compliance, and leadership, it may have challenges in operational
aspects like planning and scheduling or continuous improvement practices.

Port A4 (Tincan Island Port) ranks relatively high in both maintenance practice and
maintenance culture. In the maintenance practice, it is ranked third in TOPSIS and second in
WASPAS. In the maintenance culture, it is ranked third in TOPSIS and joint third in WASPAS
with Port A2. This suggests good performance across a broad range of maintenance
practices and maintenance culture.

In the maintenance culture, Port A3 (Rivers Port Complex, Port Harcourt) has a first-
place ranking in TOPSIS but drops to fifth in WASPAS, indicating that it excels in some
culture criteria but falls behind in others. It also highlights the sensitivity of the rankings
to the specific characteristics of the fuzzy methods applied. In maintenance practice, it is
ranked fourth in both TOPSIS and WASPAS, suggesting that improvement is needed in
this area.
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Port A2 (Delta Port Complex, Warri) performed poorly in the maintenance practice,
ranking fifth in TOPSIS and last (6th) in WASPAS. It exhibited a better performance in the
maintenance culture, ranking fourth by TOPSIS and joint third with Port A4 in WASPAS.
The low rankings in both the maintenance practice and maintenance culture dimensions
indicate a need for significant improvements.

The sensitivity analysis revealed the influence of altering criterion weights on the
decision outcomes for maintenance practices and culture rankings. For maintenance
practices, the weight of P1 (planning and scheduling) was increased by 10%. In the FTOPSIS
analysis, the increase marginally benefits the top-ranked port, A5, with an improved
closeness coefficient (CC) of 0.8441 from 0.8331. On the contrary, lower-ranked ports such
as A1 and A3 experienced a decline in CC from 0.1173 to 0.1089 and 0.2358 to 0.2297,
respectively. In the FWASPAS results, the ranking order remains stable, with A6 retaining
the top position and A2 the bottom position. However, the weighted scores for A5 and
A6 increase slightly, indicating the sensitivity of the method to priority shifts in benefit
criteria such as planning and scheduling. Increasing the weight of the cost criterion, P5
(documentation and record keeping), the FTOPSIS analysis results in slightly reduced
CC values across all ports except A6 and A5, which remain unaffected. Similarly, in the
FWASPAS results, the rankings remain stable, with A6 retaining the top position with
minor adjustments in scores reflecting the increased emphasis on cost management.

In conducting the sensitivity analysis for the maintenance culture, the weight of C1
(safety and compliance focus) was increased by 10%. In the FTOPSIS results, increasing
the weight significantly alters the rankings for the maintenance culture. A1, with a CC
value of 0.5428, moves to the top, displacing A3, which was previously in the top position.
The CC values for ports such as A5 and A6 showed noticeable declines. The FWASPAS
rankings exhibited higher sensitivity, with A1 having a score of 0.927 and securing the top
position. This outcome emphasizes that FWASPAS may be more responsive to changes in
the weights of the highly impactful benefit criteria.

The sensitivity analysis demonstrates the robustness of the decision framework, with
minor variations in rankings despite changes in weights. However, the results highlight cer-
tain characteristics. The FTOPSIS method exhibits a moderate level of stability, especially for
top-ranked ports (e.g., A5 and A6 for maintenance practices). However, lower-performing
port rankings were more sensitive to weight changes. FWASPAS is slightly more sensitive
to weight changes, particularly for benefit criteria such as P1 and C1. The FWASPAS’s
relative scoring approach amplifies the impact of changes in weights, especially for closely
ranked alternatives.

The differences in rankings between FTOPSIS and FWASPAS highlight the sensitivity
of the decision-making process to the chosen methodology, with each method emphasizing
different aspects of the criteria. FTOPSIS focuses on the relative closeness to the positive and
negative ideal solutions, emphasizing the distance-based trade-offs between the criteria. It
is also sensitive to the distribution of scores, particularly for alternatives with intermediate
performance. FWASPAS combines weighted sum and product models, which tend to
highlight absolute performance differences across alternatives. FWASPAS exhibits higher
sensitivity to changes in benefit criteria due to the multiplicative nature of the scoring
mechanism. The high degree of variability between FTOPSIS and FWASPAS observed in
Ports A5 and A6 may be attributed to different algorithmic approaches for incorporating the
weights. This calls for a closer look at the weight distribution of the criteria in each method.

Based on the analysis and observed differences, it is recommended that decision-
makers use FTOPSIS when the goal is to evaluate relative performance, especially when
distinguishing between high-performing and low-performing alternatives. FTOPSIS is also
suitable for scenarios with balanced trade-offs and moderate sensitivity to weight changes.
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FWASPAS is recommended to be used when prioritizing certain criteria that significantly
affect decision outcomes, for example, in cases where decision-makers wish to emphasize
planning (P1) or safety (C1).

The practical implications of these results are that when planning (P1) or safety
and compliance (C1) are critical, as in high-risk maritime environments, FWASPAS may
provide a more nuanced perspective. Conversely, FTOPSIS is a reliable option for general
infrastructure evaluation where stability is prioritized. Also, ports with better rankings
in both maintenance practice and culture, such as Port A4 and Port A6, may serve as
benchmarks for best practices in both operations and safety. In addition, ports with lower
scores in maintenance culture, especially Port A5, should consider adopting more proactive
approaches to maintenance culture to improve safety, culture, and leadership commitment.
Those with lower scores in maintenance practice, especially Ports A1 and A2, should
consider more proactive approaches to maintenance practice to improve planning and
scheduling, maintenance personnel training and competency, continuous improvement,
and data analysis collection and analysis. Decision-makers should regularly conduct
sensitivity analyses to understand the robustness of rankings against priority shifts. This
ensures transparent and well-informed decision-making.

This proposed framework exhibits high adaptability to other maritime contexts due to
its ability to account for uncertain, imprecise, and subjective decision-making conditions.
Offshore infrastructures, such as subsea pipelines, offshore wind farms, and oil platforms,
operate in dynamic and unpredictable environments where maintenance decisions often
involve high degrees of uncertainty. The incorporation of fuzzy logic ensures that the
framework can handle the imprecise opinions of experts, making it suitable for evaluating
offshore maintenance practices where qualitative factors such as safety compliance, regula-
tory adherence, and environmental protection are as critical as quantitative performance
indicators. The framework can be easily adapted by modifying the criteria to suit the
unique requirements of different maritime infrastructure types. For offshore infrastructures
that operate under stringent regulatory frameworks, additional criteria such as regula-
tory compliance, structural integrity, corrosion control, and environmental impact can
be incorporated to reflect their unique operational challenges. In shipyard infrastructure
maintenance, criteria such as vessel turnaround time, dry dock utilization, and safety audits
can be included to enhance the decision-making model. The SWARA weighting method
can be used to dynamically adjust the importance of these criteria based on the evolving
operational priorities. Fuzzy TOPSIS can be employed where the emphasis is on identifying
alternatives that are closest to an ideal safety and performance profile. Fuzzy WASPAS is
better suited for contexts where the weighted importance of critical maintenance factors,
such as corrosion control in subsea structures, requires a more nuanced evaluation. In
the offshore environment, conducting a sensitivity analysis can further ensure that critical
decision points remain stable even under changing conditions.

7. Conclusions
In this paper, the application of a novel fuzzy multi-criteria framework that effectively

leverages fuzzy logic and multi-criteria decision-making (MCDM) techniques (SWARA,
TOPSIS, WASPAS) to evaluate maintenance-critical maritime infrastructure revealed im-
portant insights into the performance of different ports in Nigeria in both maintenance
practice and maintenance culture. The results offer insights into the relative performance
of the ports and highlight the importance of considering both maintenance practices and
culture. By addressing the identified areas for improvement, decision-makers can enhance
the efficiency and sustainability of the maintenance-critical maritime infrastructure. While
both FTOPSIS and FWASPAS offer unique advantages, their complementary application
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provides a holistic perspective, ensuring robust and adaptable decision-making for critical
maritime infrastructure management.

To further enhance the robustness of the decision-making framework and ensure an
adaptable and more comprehensive evaluation of maritime infrastructure maintenance,
future studies will be required. A deeper comparison of the methodologies (fuzzy TOPSIS
and fuzzy WASPAS) could help understand why ports rank differently across the two
methods. Also, conducting a sensitivity analysis to explore how changes in the fuzzifi-
cation parameters influence the final ranking. Future studies can track the performance
of the ports over time to assess how changes in maintenance practice or culture affect
long-term outcomes, such as safety incidents, operational efficiency, and regulatory compli-
ance. A fuzzy decision-making model incorporating different stakeholders’ perceptions
of maintenance practices and culture can be developed. Involving such stakeholders as
port authorities, regulatory bodies, and maintenance personnel could provide a more
significant understanding of performance. In addition, future research could investigate
how digital tools such as the Internet of Things (IoT), predictive maintenance, and data
analytics impact maintenance practice and culture, thus providing insight into how digital
adoption correlates with port rankings in terms of maintenance effectiveness.
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Appendix A

Table A1. Experts’ relative importance expression.

DM1 DM2 DM3 DM4

P2 MLI MLI EI EI

P3 MLI MLI MLI MLI

P4 LI MLI LI MLI

P5 LI LI LI LI

Table A2. SMEs’ linguistic terms converted to fuzzy numbers (Maintenance Practice).

DM1 DM2 DM3 DM4

P2 (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1)

P3 (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2)

P4 (2/5, ½, 2/3) (2/3, 1, 3/2) (2/5, ½, 2/3) (2/3, 1, 3/2)

P5 (2/5, ½, 2/3) (2/5, ½, 2/3) (2/5, ½, 2/3) (2/5, ½, 2/3)
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Table A3. Critical initial weight calculation.

P1 qp1 1.0000, 1.0000, 1.0000

P2 qp2 1.0000/1.8334 = 0.5454, 1.0000/2.0000 = 0.5000,
1.0000/2.2500 = 0.4444

P3 qp3 0.5454/1.6667 = 0.3272, 0.5000/2.0000 = 0.2500,
0.4444/2.5000 = 0.1778

P4 qp4 0.3272/1.5334 = 0.2134, 0.2500/1.7500 = 0.1429,
0.1778/2.0834 = 0.0853

P5 qp5 0.2134/1.4000 = 0.1524, 0.1429/1.5000 = 0.0953,
0.0853/1.6667 = 0.0512

Table A4. Maintenance culture: experts’ relative importance expression.

DM1 DM2 DM3 DM4

C2 MLI MLI MLI MLI

C3 EI EI EI EI

C4 LI VLI VLI LI

Table A5. SMEs’ linguistic terms converted to fuzzy numbers (Maintenance Culture).

DM1 DM2 DM3 DM4

C2 (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2)

C3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

C4 (2/5, ½, 2/3) (2/7, 1/3, 2/5) (2/7, 1/3, 2/5) (2/5, ½, 2/3)

Table A6. Experts’ linguistic expressions.

A1 A2 A3 A4 A5 A6

P1 M M M H H VH

P2 M M M H M H

P3 M M M M M H

P4 M L L M M H

P5 H H M VH M H

Table A7. Maintenance practice: SMEs’ linguistic terms converted to fuzzy numbers.

A1 A2 A3 A4 A5 A6

P1 (0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

(0.5, 0.75,
1.0)

(0.75, 1.0,
1.0)

P2 (0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

P3 (0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

P4 (0.25, 0.5,
0.75)

(0, 0.25,
0.5)

(0, 0.25,
0.5)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

P5 (0.5, 0.75,
1.0)

(0.5, 0.75,
1.0)

(0.25, 0.5,
0.75)

(0.75, 1.0,
1.0)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)
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Table A8. Maintenance culture experts’ linguistic expressions.

A1 A2 A3 A4 A5 A6

C1 M L L L L L

C2 M H H H M H

C3 H M M M M H

C4 M M L M M M

Table A9. Maintenance culture SMEs’ linguistic terms converted to fuzzy numbers.

A1 A2 A3 A4 A5 A6

C1 (0.25, 0.5,
0.75)

(0, 0.25,
0.5)

(0, 0.25,
0.5)

(0, 0.25,
0.5)

(0, 0.25,
0.5)

(0, 0.25,
0.5)

C2 (0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

(0.5, 0.75,
1.0)

(0.5, 0.75,
1.0)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

C3 (0.5, 0.75,
1.0)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.5, 0.75,
1.0)

C4 (0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0, 0.25,
0.5)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

(0.25, 0.5,
0.75)

Table A10. Maintenance practice WASPAS normalized decision matrix.

Beneficial Criteria Non-Beneficial/Cost Criteria

P1 P2 P3 P4 P5

A1 0.543 0.667 0.667 0.667 0.667

A2 0.543 0.667 0.667 0.333 0.667

A3 0.543 0.667 0.667 0.667 1.000

A4 0.815 1.000 0.667 0.667 0.543

A5 0.815 0.667 0.667 0.667 1.000

A6 1.000 1.000 1.000 1.000 0.667

Weights 0.5061 0.2493 0.1243 0.0719 0.0484
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