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Abstract: Concrete is widely used in different types of buildings and bridges; however, one
of the major issues for concrete structures is crack formation and propagation during its
service life. These cracks can potentially introduce harmful agents into concrete, resulting
in a reduction in the overall lifespan of concrete structures. Traditional methods for crack
detection primarily hinge on manual visual inspection, which relies on the experience and
expertise of inspectors using tools such as magnifying glasses and microscopes. To address
this issue, computer vision is one of the most innovative solutions for concrete cracking
evaluation, and its application has been an area of research interest in the past few years.
This study focuses on the utilization of the lightweight MobileNetV2 neural network for
concrete crack detection. A dataset including 40,000 images was adopted and preprocessed
using various thresholding techniques, of which adaptive thresholding was selected for
developing the crack evaluation algorithm. While both the convolutional neural network
(CNN) and MobileNetV2 indicated comparable accuracy levels in crack detection, the
MobileNetV2 model’s significantly smaller size makes it a more efficient selection for crack
detection using mobile devices. In addition, an advanced algorithm was developed to
detect cracks and evaluate crack widths in high-resolution images. The effectiveness and
reliability of both the selected method and the developed algorithm were subsequently
assessed through experimental validation.

Keywords: structural inspection; concrete crack evaluation; computer vision; mobilenetv2;
adaptive thresholding

1. Introduction
Concrete is widely selected for diverse types of infrastructures, ranging from mono-

lithic skyscrapers to complex bridge systems due to its notable compressive strength,
environmental resilience, and adaptability in form. However, one of the major issues for
concrete structures is the cracks during its service life. Concrete cracking can arise from
a myriad of reasons, from physiochemical processes such as hydration-induced shrink-
age to external factors like mechanical stresses and environmental conditions, leading to
significant challenges for structural inspection and health monitoring [1,2]. Those cracks
can potentially introduce harmful agents like chlorides, carbonates, and moisture into the
structures, affecting the structural integrity and reducing the overall lifespan of the concrete
members [3].
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Traditional methods for crack detection primarily depend on manual visual inspection,
which relies on the experience and expertise of inspectors using tools such as magnify-
ing glasses, microscopes, and calipers to identify surface defects and crack lengths and
widths. While this hands-on approach has been a trusted method for years, it is often
time-consuming, labor-intensive, and can be subject to human error or oversight, espe-
cially in areas that are difficult to access or have complex geometries [4–8]. To address
these issues, researchers have explored non-destructive testing techniques like ultrasonic
pulse velocity, impact echo, and ground-penetrating radar, which offer better accuracy
and can cover larger areas more efficiently [9–16]. However, these techniques require
specialized equipment and trained personnel, which can significantly increase the overall
inspection cost.

In addressing the complexities of infrastructure evaluation, computer vision, a spe-
cialized branch of artificial intelligence dedicated to equipping machines with visual data
processing capabilities, has emerged as a significant innovation [17]. Integrating infras-
tructure monitoring and inspection with computer vision paves the way for revolutionary
methods that surpass the limitations of traditional manual vision inspection. Thus, large-
scale inspections can be conducted with a fraction of the manpower and time traditionally
requisitioned, offering both efficiency and breadth through the deployment of computer
vision systems such as unmanned aerial vehicles (UAVs) [2,8]. In addition, the precision
and consistency of computer vision algorithms distinctly differ from human-led inspec-
tions. Human structural inspectors, despite their expertise, can sometimes be influenced
by subjective biases, variability, and fatigue. In contrast, computer vision algorithms de-
liver consistent performance, and document defects while providing measurable data that
enhance assessment precision [4,18].

The application of computer vision in concrete crack detection has been an area of
research interest in the past few years. Several researchers have explored diverse techniques
to achieve high accuracy and reliability in detecting defects, especially cracks in concrete
structures. Koch et al. (2015) provided an extensive review of computer vision-based
methods for automated crack detection on concrete and asphalt surfaces [17]. Their discussion
spanned across methods ranging from traditional image processing to more advanced
machine learning techniques, highlighting the progression and challenges in the domain.
Subsequently, Cha et al. (2017) proposed a crack detection method that employed deep
convolutional neural networks (CNNs) [19]. They trained the network using extensive
datasets to recognize the patterns inherent to concrete cracks. Their method was significant as
it demonstrated the robustness and potential of deep learning techniques for concrete surface
inspections. Zhong et al. (2018) explored the application of convolutional neural networks
combined with unmanned aerial systems for bridge inspections [20]. Their methodology
integrated the scalability and efficiency of drones with the precision of computer vision
techniques, facilitating comprehensive and efficient structural assessments. Meanwhile,
with the rapid advancements in technology in recent years, there has been an explosion in
the development of sophisticated deep-learning algorithms for concrete defect detection
using different types of CNN-like neural networks, such as two-stage CNN model, back-
propagation (BP) neural network, and you-only-look-once (YOLO) algorithm [18,21–31].

Using deep learning techniques with computer vision, the field of concrete crack de-
tection has seen significant advancements in recent years. For instance, recent works have
demonstrated the application of AI-empowered inspection pipelines for robust concrete
structures, even under challenging conditions [32]. Moreover, a comprehensive framework
for automated concrete structure inspection, integrating mobile data collection with 360◦

cameras and LiDAR, defect detection using deep learning, scene reconstruction, defect assess-
ment, and Building Information Modeling for streamlined facility management, validated by
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a case study on concrete cracks and spalls [33]. As explored in this work, these contributions
form a strong foundation for advancing lightweight models like MobileNetV2.

The focus of this study revolves around the utilization of the MobileNetV2 neural
network for concrete crack detection. MobileNetV2, which is an evolution of its precursor
MobileNetV1, symbolizes the advancements in deep learning models designed specifically
for mobile and embedded vision platforms [34]. The major advantage of MobileNetV2 lies
in its adeptness in offering an optimal equilibrium between computational economy and
performance. Such a balance ensures that the model remains resilient in various vision
assignments without sacrificing processing speed or model compactness [35]. However,
very few studies have been conducted to evaluate the performance of MobileNetV2 in
concrete defect detection, especially cracks.

In this research, the MobileNetV2 neural network was employed as the primary
methodology for concrete crack detection. A dataset of 40,000 images was adopted and
preprocessed using various thresholding techniques, of which adaptive thresholding was
selected for developing the crack evaluation algorithm. While both CNN and MobileNetV2
indicated comparable accuracy levels in crack detection, the MobileNetV2 model’s sig-
nificantly smaller size set it apart as a more efficient selection. In addition, an advanced
algorithm was developed to detect cracks and evaluate their width in high-resolution
images. The effectiveness and reliability of both the selected method and the developed
algorithm were subsequently assessed through comprehensive experimental validation.

2. Dataset and Preprocessing
2.1. Dataset Description

The dataset used in this study is a comprehensive collection developed by Ozgenel [36],
which includes 40,000 high-resolution images of concrete surfaces. These images represent a
diverse range of scenarios, from uncracked concrete surfaces to those with cracks of varying
intensities. Each image in the dataset has a resolution of 227 × 227 pixels, offering a detailed
view crucial for concrete crack detection. The images within the dataset are systematically
classified into two distinct subsets—“Positive” and “Negative”. The “Positive” subset
includes images of concrete surfaces with visible cracks, representing the challenges often
encountered in real-world concrete structures. Conversely, the “Negative” subset comprises
images of uncracked concrete surfaces, serving as a control group to help train the model
in recognizing surfaces without defects. A set of sample images is shown in Figure 1.
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A notable feature of this dataset is its extensive coverage and variety. With 40,000 im-
ages, it ensures that models trained on it are exposed to various scenarios. Furthermore,
the consistency in the resolution across images guarantees that the model receives uniform
input, removing potential biases or discrepancies that might arise due to varying image
sizes. By presenting both “Positive” and “Negative” images in equal numbers and main-
taining a consistent resolution, the dataset establishes a balanced and rigorous training
environment. The extensive collection of images within the dataset ensures a consistent
training process, leading to enhanced model accuracy and generalization capabilities in
real-world scenarios.

2.2. Image Preprocessing

Image preprocessing plays an important role in ensuring that machine learning mod-
els receive clean and standardized input data, which can considerably enhance their
performance. Before the main analysis, images are processed using multiple techniques to
optimize their quality and ensure consistency. In the image preprocessing phase, grayscale
conversion is implemented followed by advanced thresholding techniques. Grayscale
conversion reduces computational complexity by eliminating color channels, enabling the
model to concentrate on the inherent structural patterns and contrasts that are crucial for
identifying cracks in concrete. Thresholding simplifies image content by segmenting it
into distinguishable features, enhancing contrast, and facilitating efficient and consistent
computational analysis. Figure 2 shows some concerns in the unprocessed images with
surface textures, colors, and illumination issues.
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2.2.1. Grayscale Conversion

One of the primary steps during the image preprocessing is the conversion of images
to grayscale. Grayscale conversion is the process of transforming a full-color image into
shades of gray, ranging from black to white. In the context of concrete crack detection, the
surface textures, shades, and patterns of the concrete are often more critical than the actual
color information. By converting images to grayscale, the color data are removed, allowing
the model to focus more on the textual and structural features in the image, which can
significantly affect the accuracy during crack identification.
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The conversion to grayscale was achieved by taking a weighted sum of the three
RGB channels (Red, Green, and Blue) for every pixel. The formula used in this study is as
follows [37]:

Grayscale Value = 0.2989 × Red + 0.5870 × Green + 0.1140 × Blue (1)

The weights used in the grayscale conversion equation are based on the luminance
values that account for the human perception of colors [38]. Human vision does not perceive
all colors with equal sensitivity. Specifically, our eyes are more sensitive to green light,
followed by red light, and are less sensitive to blue light. These weights ensure that the
grayscale image’s brightness corresponds closely to the perceived brightness of the original
color image, making it more in line with how a human observer would perceive the scene in
monochrome. Figure 3 shows the grayscale processing for the dataset used in this study.
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Grayscale conversion offers several advantages during image processing tasks. First, the
conversion emphasizes luminance over chrominance, enabling models to focus on concrete
crack detection rather than shade, pattern of concrete, etc. This is particularly advantageous
as cracks manifest predominantly as variations in luminance rather than color deviations.
Moreover, by converting images to grayscale, computational resources are optimized since
grayscale images require fewer computational parameters than their colored counterparts.
This efficiency is especially pertinent when processing high-resolution images. Furthermore,
the human-perception-based weighting provides a standardized brightness perception, en-
suring that the grayscale images closely resemble how a human observer would perceive
the scene in monochrome. This is beneficial in applications where the end goal is human
interpretation or assessment. Additionally, grayscale images offer consistency across datasets,
eliminating potential biases introduced by varying color hues in materials like concrete,
which can change color due to age, moisture, or constituent materials.

2.2.2. Thresholding

Thresholding is a technique designed to split images into distinct regions based on
pixel intensity values in image processing. Through this method, an image is transformed
by assigning each pixel a new value, depending on whether its current value is above
or below a specified threshold. The outcome is an enhanced contrast between regions of
interest, making them more distinguishable from their surroundings.

During concrete crack detection, concrete surfaces exhibit different surface patterns,
textures, and occasional discolorations, all of which can dramatically affect the accuracy of
automated analysis techniques. The application of thresholding techniques in this study
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highlights cracks by focusing on intensity differences against the uniform background of
the concrete. Thresholding not only helps with the identification of cracks but also improves
the conditions of the image for deep learning by reducing noise and eliminating redundant
features. This optimization directly leads to increased precision in crack identification,
highlighting thresholding’s critical importance in this research. A total of six thresholding
methodologies were assessed and compared in this study, with Table 1 details the specifics
of each technique.

Table 1. Comparison of Thresholding Methods [39].

No. Thresholding
Approach Optimal for Computation Time Sensitivity to Noise Note

1 Global Uniform
Illumination Fast High Simple, fixed threshold for

whole image

2 OTSU Bi-model
Histograms Moderate Moderate Maximizes

interclass variance

3 Adaptive Variable
Illumination Slow Low Threshold varies over

image regions

4 Triangle Sparse
Histograms Moderate High Useful for images with

sparse histogram

5 Isodata Multi-Model
Histogram Moderate Moderate Iteratively refines

the threshold

6 Gaussian
Mixture Model

Complex
Histogram Slow Low

Use Gaussian distribution
to model background

and foreground

Six thresholding methods were compared in this study. Global thresholding, best
suited for images with uniform illumination, offers a fast but noise-sensitive approach
by setting a fixed threshold for the entire image. Otsu’s method optimally segments bi-
modal histograms by maximizing interclass variance. For images with inconsistent lighting,
adaptive thresholding adjusts the threshold across different regions, although at a slower
computational pace. Triangle thresholding is tailored for images with sparse histograms,
while the Isodata method continually refines the threshold, which makes it ideal for multi-
modal histograms. The Gaussian Mixture Model (GMM) employs Gaussian distributions to
depict the background and foreground, making it apt for images with intricate histograms.
Figure 4 shows the comparison of different thresholding approaches.

In this study, adaptive thresholding was finally chosen as the noise reduction tech-
nique during the crack detection process. Utilizing adaptive thresholding brought several
advantages. Firstly, unlike global thresholding which uses a single value for the entire
image, adaptive thresholding determines the threshold for a pixel based on a small region
around it. This ensures that the method can handle variations in lighting or shadow effects
more effectively. Additionally, it proves beneficial for images with varying background
intensities. Adaptive thresholding’s ability to adjust to localized image regions makes it
particularly effective in detecting subtle cracks often missed by other methods. Figure 5
shows the results of adaptive thresholding applied with different parameter settings. These
parameters need to be carefully calibrated during the crack detection process to ensure
precision in various scenarios.



Infrastructures 2025, 10, 42 7 of 18Infrastructures 2025, 10, x FOR PEER REVIEW 7 of 25 
 

 

Figure 4. Thresholding using Different Approach: (a) Global; (b) OTSU; (c) Adaptive; (d) Triangle; 
(e) Isodata; (f) Gaussian. 

  

Figure 4. Thresholding using Different Approach: (a) Global; (b) OTSU; (c) Adaptive; (d) Triangle;
(e) Isodata; (f) Gaussian.

Infrastructures 2025, 10, x FOR PEER REVIEW 8 of 25 
 

 

In this study, adaptive thresholding was finally chosen as the noise reduction tech-
nique during the crack detection process. Utilizing adaptive thresholding brought several 
advantages. Firstly, unlike global thresholding which uses a single value for the entire 
image, adaptive thresholding determines the threshold for a pixel based on a small region 
around it. This ensures that the method can handle variations in lighting or shadow effects 
more effectively. Additionally, it proves beneficial for images with varying background 
intensities. Adaptive thresholding’s ability to adjust to localized image regions makes it 
particularly effective in detecting subtle cracks often missed by other methods. Figure 5 
shows the results of adaptive thresholding applied with different parameter settings. 
These parameters need to be carefully calibrated during the crack detection process to 
ensure precision in various scenarios. 

 

Figure 5. Adaptive Thresholding with Different Block Sizes and Constant C. 

2.2.3. Normalization 

Prior to feeding the images into the neural network, the total pixel values ranged 
from 0 to 255 were converted to a scale between 0 and 1. Such normalization ensures faster 
convergence during training and helps in maintaining consistent weight updates, espe-
cially for neural networks like MobileNetV2. In this study, normalization was imple-
mented using the following equation: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 ൌ  𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 െ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 െ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 (2)

For the dataset used in this study, the maximum pixel value is 255 and the minimum 
pixel value is 0. Therefore, the normalization equation can be simplified to the following: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 ൌ  𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 255  (3)

As shown in Figure 6, all images are brought to a consistent scale, regardless of their 
original lighting conditions or capture settings. With more consistent data, the neural net-
work can learn features more effectively, leading to better generalization and potentially 
higher accuracy during validation and testing. 

Figure 5. Adaptive Thresholding with Different Block Sizes and Constant C.

2.2.3. Normalization

Prior to feeding the images into the neural network, the total pixel values ranged from
0 to 255 were converted to a scale between 0 and 1. Such normalization ensures faster
convergence during training and helps in maintaining consistent weight updates, especially
for neural networks like MobileNetV2. In this study, normalization was implemented using
the following equation:

Normalized Pixel Value =
Original Pixel Value − Minimum Pixel Value

Maximum Pixel Value − Minimum Pixel Value
(2)

For the dataset used in this study, the maximum pixel value is 255 and the minimum
pixel value is 0. Therefore, the normalization equation can be simplified to the following:
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Normalized Pixel Value =
Original Pixel Value

255
(3)

As shown in Figure 6, all images are brought to a consistent scale, regardless of their
original lighting conditions or capture settings. With more consistent data, the neural
network can learn features more effectively, leading to better generalization and potentially
higher accuracy during validation and testing.
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3. Development of Deep Learning Model
3.1. Architecture of MobileNetV2 and CNN Neural Networks

The efficiency and effectiveness of the MobileNetV2 architecture were optimized to
address the task of concrete crack identification in this study. The architecture’s unique
design principles, optimized for mobile and embedded devices, proved beneficial for
processing high-resolution concrete images, which often present challenges due to their
intricate patterns and textures. The architecture of the MobileNetV2 neural network used
in this study is shown in Figure 7.
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The MobileNetV2 model developed in this study accepts input images of size
227 × 227 × 3 pixels. The images were preprocessed by conducting grayscale, threshold-
ing, and normalization to ensure the optimal format for training. The initial layer of the
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MobileNetV2 block consists of a 3 × 3 convolutional layer equipped with 32 filters. This
initial layer is vital for capturing the primary features of the input image and sets the stage
for the subsequent bottleneck layers.

One of MobileNetV2’s signature features is its bottleneck residual blocks. In this study,
several bottleneck residual blocks were utilized in sequence. Each block typically undergoes
an expansion of channels using 1 × 1 convolutions, followed by depth-wise convolutions
and a projection back to the original channel depth. This strategy, termed as inverted
residuals, drastically reduces computational cost without compromising feature extraction
capability. The ReLU activations are omitted since each bottleneck block culminates in
a linear bottleneck. This ensures that small-scale features crucial for crack identification
are preserved. However, ReLU was employed in other layers to further enhance the
architecture’s efficiency, which makes it particularly well suited for the low-precision
computations that our study aimed for.

A global average pooling layer was used to minimize overfitting and ensure spatial
invariance. This was followed by a fully connected layer with a sigmoid activation func-
tion to better fit our binary classification task, which was used to identify the presence or
absence of cracks. Inherent to the MobileNetV2 architecture, the neural network model
developed in this study resulted in a compact size model which required significantly fewer
computations compared to larger architectures. This not only accelerated our training pro-
cess but also ensured that the model could be deployed in real-world, resource-constrained
environments for on-site concrete inspections.

The performance metrics derived from the MobileNetV2 model were compared with
those achieved using a traditional convolutional neural network (CNN). This comparative
analysis was to highlight the relative performance and efficiency of the two architectures.
Moreover, an important objective of this study was the potential deployment of the neural
network model on mobile devices. To this end, the physical size of the models would
also come into consideration, as mobile deployment necessitates compact and lightweight
models for seamless integration. The structure of the CNN model is shown in Figure 8.
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3.2. Results and Comparison

The dataset was divided into two subsets, namely training and validation. Up to
80% (32,000) of the images were allocated to the training set and 20% (8000) of the images
were assigned to the validation set. Partitioning is essential to prevent overfitting and to
ensure the model’s performance metrics. An in-depth comparison was conducted to evalu-
ate the efficiency of various thresholding methods and the performance of CNN model in
concrete crack detection. The comparisons of training and validation accuracies are shown
in Figures 9 and 10. It was observed that most thresholding techniques yielded remarkably
similar results. After training for 10 epochs, these methods consistently achieved an accu-
racy around 99%. The method using grayscale images without any thresholding provides
an accuracy of 96%, which demonstrates the effectiveness of thresholding in refining image
quality and enhancing detection precision.
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The traditional CNN model was also compared with the MobileNetV2 model devel-
oped in this study. The accuracy metrics of the CNN model were closely aligned with
those obtained through MobileNetV2 models with thresholding. However, a significant
difference was noted in the comparison of model size. The CNN model, despite its high
accuracy, had a substantial model size of 134.1 MB. In contrast, the MobileNetV2 model,
which delivered comparable accuracy, was significantly more compact with a size of just
9.4 MB.
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4. Development of Crack Identification Algorithm
4.1. Overview of Crack Identification Algorithm

During structural inspection or health monitoring, high-resolution images are com-
monly used in order to obtain fine details, especially when identifying minor cracks or
defects. However, these high-resolution images bring issues such as computational burdens
and model compatibility issues. To leverage the detailed nature of these images and the
specific input dimensions expected by previously developed MobileNetV2 frameworks,
the sliding window technique was adopted in this study as a potential solution. The sliding
windows technique, by systematically parsing images into overlapping segments, ensures
comprehensive crack detection while aligning with model input requisites.

However, the utilization of the sliding window technique introduces the potential
redundancy of detecting the same crack multiple times due to window overlaps. The
Non-Maximum Suppression (NMS) method was adopted to address this issue through
crack localization methodology. This approach consolidates redundant detections, offering
a precise representation of each crack. Furthermore, the algorithm tries to evaluate the
width of each crack, translating the crack’s width in pixel to real-world dimensions by
capitalizing on the known camera–concrete distance. Figure 11 shows the basic procedures
for crack identification.
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4.2. Sliding Windows and Non-Maximum Suppression

As shown in Figure 12, the sliding (movable) windows technique was adopted in
developing the crack identification algorithm to dissect the high-resolution image into
smaller, more manageable segments. These small segments of predetermined sizes slide
across the image, with some overlap, ensuring every portion of the image is systematically
evaluated. The decision to have these overlaps is intentional; it guarantees that cracks lying
at the borders of two windows are not inadvertently split or missed.

In this study, a window size of 227 × 227 pixels was selected in order to match the
input size of the customized MobileNetV2 model. The stride of the sliding window, which
determines the step size the window takes before capturing the next segment, was set to
ensure a 50% overlap between consecutive windows. This overlap was a strategic decision
to enhance the likelihood of capturing cracks that might lie on the boundaries of two
adjacent windows. Through this overlap, the continuity and consistency in crack detection
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across the image can be ensured. Moreover, the Non-Maximum Suppression technique
was implemented to accurately detect the cracks and eliminate redundancy, as shown in
Figure 13.
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Following the application of the NMS, the focus shifted to accurately mapping the
coordinates of each distinctly identified crack. An algorithmic methodology was developed
to capture the specific spatial data, defined by the top-left and bottom-right vertices of
the bounding boxes. This process yielded a detailed perspective on the crack’s position
and proved essential in the formulation of analytical reports, reinforcing the precision and
consistency of the spatial data.

4.3. Width Estimation

Crack width estimation is essential to understanding the severity and potential im-
plications of observed defects in concrete structures. In this study, an approach based on
image processing and mathematical modeling was adopted to determine the width of
detected cracks with a high degree of precision. This method evaluates the width of the
crack based on the spatial distribution of pixel intensity values across the crack’s span. The
distance to the closest zero (or background) for each pixel of the crack is calculated, thereby
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giving a representation of the crack’s breadth at various points. The mathematic equation
is given by the following:

D(x, y) = min(i,j)∈Ω

√
(x − i)2 + (y − i)2 (4)

where D(x, y) is the distance of a point (x, y) from the closest zero pixel in the set Ω.
From the derived distance map, the maximum distance represents half of the crack

width since the distance is calculated from the center of the crack to one edge (as shown in
Figure 14). Therefore, the estimated crack width in pixels is given by the following:

Win pixel = max (D(x, y)) (5)

While the width estimation in pixel units offers a relative measurement, converting
this to real-world dimensions is significant for practical applications. Given the known
distance from the camera to the concrete surface, the ratio of real dimensions to pixel
dimensions was calculated. The formula adopted in this study for this conversion is based
on the relationship between the real-world size (width) of an object and its size on the
image sensor of a camera, which is governed by similar triangles as shown in Figure 15.
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If we know the focal length of the camera, the distance from the camera to the object,
and the size of the object on the image sensor, the real-world size of the object can be
estimated using the following equation:

Wreal =
Wpixel × D

Fpixel
(6)

where Wreal is the real-world width of the crack, and Wimage is the width of the crack
as it appears in the image with the unit in pixels. D is the distance from the camera to
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the concrete surface, and Fpixel is the focal length in pixels. The focal length in pixels is
proportional to the focal length in millimeters based on the ratio of the image width in
pixels to the sensor width in mm, as follows:

Fpixel = Fmm ×
Wsensor in pixel

Wimage in pixel
(7)

where Fmm is the focal length in millimeters, Wsensor is the sensor width and Wimage is the
image width.

It is important to note that this estimation assumes a perpendicular capture angle
between the camera and the surface. If the camera is tilted, the estimation can be off,
and more advanced methods involving camera calibration and pose estimation would
be needed.

5. Experimental Validation
In order to evaluate the performance and accuracy of the crack detection algorithm

developed in this study, experimental validation was conducted. The image used for testing
was captured using a Nikon D5100 camera with a resolution of 4928 × 3264 pixels. The
precision in capturing this image was ensured by gauging the distance from the camera to
the concrete surface with a laser distance measure, which indicated a distance of 518 mm.
The camera settings were appropriately adjusted with a focal length of 18 mm and given
the image sensor’s width of 23.6 mm. Figure 16 shows the original image used in the
experimental validation.
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Considering the intricacies involved in capturing images, especially challenges due
to varying lighting conditions and the textural characteristics of concrete, denoising was
applied to filter out the undesired noise and improve the lighting conditions before applying
the crack detection algorithm. Figure 17 shows the denoised image. This process refined
the image details, enhancing the prominent features of the concrete surface, and ensuring
that the actual cracks became more distinguishable.

During the evaluation of the high-resolution image, a sliding window technique was
employed to systematically scan through the entire image. At each step, a window of
predefined size (227 × 227 pixels) traversed the image, analyzing the portion of the image
within its frame. When the model detected the presence of a crack within this window,
the coordinates were noted. NMS technique was implemented to eliminate redundancy
during this process. After processing the entirety of the image, these individual detections
were merged to produce a comprehensive mask. This mask effectively illustrated the
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overall crack pattern across the image. By highlighting these crack regions, the mask
provided a visual representation of the extent and trajectory of the cracks, making it easier
to discern and analyze their patterns. Figure 18 shows the sliding windows and crack
location tracking process in this study.
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The results obtained from this analytical process were presented in a visual format for
clarity and better understanding. A mask image distinctly showcased the detected cracks,
making it easy to visually differentiate between the damaged and undamaged regions of
the concrete. Another significant visual output was an image highlighting the position of
the maximum crack width, with its value labeled. The results were promising with the
widest crack having a width of 8.79 pixels, which equated to a real-world width of 1.21 mm
when converted using our established method. The crack width estimation results using
the MobileNetV2 neural network, as shown in Figure 19a. The width was also measured as
1.22 mm using a caliper (Figure 19b), which indicated the high accuracy estimation of crack
width using the algorithm developed in this study.
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6. Conclusions
This study presents a comprehensive approach for concrete crack detection, highlighting

the strengths of deep learning using the hybrid MobileNetV2 neural network with tradi-
tional image processing techniques. The methodology of this study leaned heavily on the
MobileNetV2 neural network, which has a compact model size suitable for deployment on
mobile devices. Therefore, the algorithm developed in this study can be effectively and
efficiently implemented in real-world scenarios for structural concrete detection and width
evaluation. Based on the findings of this study, the following conclusions can be drawn:

1. Considering the complexities of concrete textures and potential inconsistencies in
image capture settings, preprocessing techniques, such as grayscale, thresholding,
and normalization play an important role in enhancing the accuracy and efficiency of
the neural network model.

2. The compactness of the MobileNetV2 architecture, combined with its impressive
performance, reinforced its suitability for concrete crack detection and width evalu-
ation. Compared with traditional CNN architectures, the MobileNetV2 model can
potentially be effectively used in mobile devices without compromising on accuracy.

3. The sliding windows technique can efficiently localize cracks, ensuring no details are
overlooked in the segmentation process.

4. The integration of camera settings with real-world metrics facilitates the conversion of
pixel-level crack width into real-world dimensions. This digital-to-physical transition
proves essential for practical applications and field-level implementations.

5. The experimental validation confirms that the methodology and algorithm developed
in this study are effective and reliable during the concrete crack evaluation. The
validation provides confidence in the application of the developed approach for
practical scenarios.

While this study has made significant effects in advancing the field of concrete crack
detection, there are inherent limitations that need to be addressed. The model’s perfor-
mance may vary under different environmental conditions, especially in low light or with
varying concrete textures. Additionally, while MobileNetV2 provides the advantage of
reduced model size, there could be trade-offs in terms of accuracy when compared with
larger, more complex models. In addition, the method used in this study requires the
distance between the camera and the concrete surface to be perpendicular when evaluating
crack width. Any angular deviation might compromise the accuracy of the width measure-
ments, as the current methodology does not account for perspective distortions induced by
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angled observations. For future work, it would be beneficial to further refine the algorithm
to better handle varying environmental conditions and explore the integration of other
sensors for improved accuracy. Incorporating real-time feedback mechanisms for on-site
adjustments and expanding the dataset to include a wider variety of concrete types and
crack characteristics can also enhance the model’s performance and applicability.
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