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Abstract: As a result of the Internet of Things (IoT), smart city infrastructure has been able to ad-
vance, enhancing efficiency and enabling remote management. Despite this, this interconnectivity
poses significant security and privacy concerns, as cyberthreats are rapidly adapting to exploit IoT
vulnerabilities. In order to safeguard privacy and ensure secure IoT operations, robust security strate-
gies are necessary. To detect anomalies effectively, intrusion detection systems (IDSs) must employ
sophisticated algorithms capable of handling complex and voluminous datasets. A novel approach
to IoT security is presented in this paper, which focuses on safeguarding smart vertical networks
(SVNs) integral to sector-specific IoT implementations. It is proposed that a deep learning-based
method employing a stacking deep ensemble model be used, selected for its superior performance in
managing large datasets and its ability to learn intricate patterns indicative of cyberattacks. Experi-
mental results indicate that the model is exceptionally accurate in identifying cyberthreats, exceeding
other models, with a 99.8% detection rate for the ToN-IoT dataset and 99.6% for the InSDN dataset.
The paper aims not only to introduce a robust algorithm for IoT security, but also to demonstrate
its efficacy through comprehensive testing. We selected a deep learning ensemble model due to its
proven track record in similar applications and its ability to maintain the integrity of IoT systems in
smart cities.

Keywords: anomalies; smart vertical networks; smart city; security; IoT infrastructure; mobility

1. Introduction

It is possible to find intelligent and sustainable solutions to urbanization’s problems in
“smart cities”, which are built on the foundation of data and communication technology.
An intelligent city aims to intelligently convey data by integrating diverse systems. There
have been many proposals for “smart city” concepts as a means of better utilizing resources
and limiting the expansion of metropolitan areas. The rapid proliferation of IoT devices
has ushered in a new era of interconnectedness, enabling a wide range of applications that
enhance convenience, efficiency, and automation. A wide range of IoT applications have
become an integral part of modern life, from smart homes to industrial processes. The
vision of smart cities can be realized through the use of ICTs (information communication
technologies), particularly the IoT, which is crucial for ensuring efficient operations [1]. In
order for IoT devices to exchange data with nearby items, nodes, and cloud-based apps,
they need an internet connection. Using IoT devices in the healthcare setting has enabled
the intelligent extension of healthcare services by interconnecting patients with clinicians.

Considering that IoT devices are used in smart cities, cyberattacks may be able to
gain unauthorized access to citizens’ daily lives without their consent, or they may be able
to remotely reconfigure gadgets to an unsafe setting [2–4]. According to Symantec, the
number of attacks on the IoT platform this year has increased by 600%, as hackers attempt to
exploit the interconnected nature of the targeted devices. A number of security concerns are
associated with smart city applications. In the first place, smart city apps are not immune to
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zero-day attacks, which take advantage of security flaws in various protocols. Secondly, can
network-based cyberattacks be intelligently detected in time to prevent disruption of smart
city operations? A third problem is that due to resource limitations (e.g., memory), smart
city IoT devices are limited in their capacity to protect themselves and transfer gathered
data to remote computers. IoT gadgets are not considered in current intrusion detection
system (IDS) solutions.

In the cloud, IoT data are stored on powerful computers with a large amount of
storage space. Nevertheless, as the number of IoT devices increases, so does the amount
of data transmitted from the IoT terminal layer to the cloud, resulting in latency and
congestion issues. In order to address these concerns, the concept of fog computing has
been developed [5]. Now, a greater share of the computational work sent to the cloud can
be distributed among devices in the fog layer. In this way, data storage and transmission
can be addressed while reducing energy consumption, network traffic, and latency. It also
aims to speed up the response time of IoT-based smart city applications by bringing the
processing closer to the edge device. As a result of the fog layer’s ability to detect cyber
assaults, there are two main benefits [6]. In the first instance, if assaults are detected in the
fog layer, the ISP or network administrator can take precautions in order to limit the extent
of the damage.

In spite of these challenges, this paper makes several significant contributions to the
field of IoT security in smart cities:

1. A novel security framework: in this paper, we propose a comprehensive security
framework that makes use of fog computing to alleviate congestion and reduce latency,
thereby enhancing the responsiveness of IoT-based applications in smart cities.

2. In this article, we present a method that uses artificial neural networks (ANNs) based
on deep learning to detect vulnerabilities and respond to security threats within smart
vertical networks (SVNs).

3. Threat detection and response in real time: our approach utilizes deep learning
techniques to identify and mitigate real-time threats.

4. We emphasize the adaptability of our deep learning models, demonstrating their inte-
gration into existing IoT infrastructures in order to strengthen the security framework
holistically.

5. Detailed validation: through rigorous experimentation and case studies, we demon-
strate that our proposed method is effective in strengthening the SVN component of
IoT infrastructures, which is crucial for the smooth operation of smart cities.

In focusing on smart vertical networks, this research contributes to strengthening the
IoT landscape and ensuring its security and reliability. As a result of our research, we
advocate for a nuanced approach to IoT security, combining deep learning’s predictive
power with strategic security measures, as a means of advancing towards a resilient smart
city paradigm.

2. Related Works

Researchers have developed different optimization methods to address these threats. A
novel approach utilizing machine learning was proposed [7] for forecasting IoT connection
activity using machine learning. This technique focuses on monitoring the interaction
between services within a distributed multidimensional IoT microservices framework
deployed within an IoT environment. The authors intend to correct IoT service forecasting
of behaviors solely based on this observation. Within an IoT environment, the technique
described in this study focuses on the continuous learning of microservice models. In order
to cluster the data, K-means- and BIRCH-based clustering techniques are used [8]. As a
result of this particular scenario, the clustering algorithm considers cluster centers that fall
within a range of three standard deviations to be part of the same cluster.

Through the incorporation of an online learning communication model, the proposed
model aims to enhance the process of cluster formation. According to previous research [9],
researchers have proposed a novel defense mechanism called joint trust light probe-based
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defense (TLPD). In an industrial IoT setting, the goal of this approach was to identify hostile
network nodes responsible for On and Off attacks. An On and Off attack occurs when a
node within an IoT network is deliberately targeted when it is either active (On) or inactive
(Off). To assist in anomaly detection, a light sample routing method was incorporated into
the framework. This mechanism also involves assessing each node’s confidence level.

In their study, Ref. [10] proposed a novel approach for detecting anomalies in IoT
backbone networks. In order to implement the proposed technique, two stages were
involved, namely, dimension reduction and classification. These attacks were of particular
interest due to their potential negative consequences. PCA and linear discriminant analysis
were used to reduce the dimensionality of the dataset. In order to detect anomalies,
they applied naive Bayes and K-nearest neighbor (KNN) algorithms. According to their
evaluation of their approach, they were able to identify 84.82% of the candidates. In
previous research, Kozik et al. [11] described a new method for detecting assaults. The
technique utilized the Apache Spark cloud architecture and the extreme learning machine
(ELM) method. Netflow packets can be efficiently and effectively analyzed and processed
using the ELM architecture and its associated properties.

In the field of artificial intelligence, machine learning has emerged as a prominent
area. This has led to significant success in solving computational challenges in a range of
domains. Recent years have seen a dramatic increase in the use of deep networks, including
deep learning, extreme learning, and deep extreme neural networks [12–14]. Most novel
attacks share certain characteristics with known attacks. Due to their complexity and
intricacy, it can be challenging to describe and represent relationships.

Using deep learning techniques, it is possible to model intricate non-linear relation-
ships. The system accomplishes this by learning multiple levels of data representations in
order to gain a comprehensive understanding of the data. As a result of these represen-
tations, the system is able to capture and comprehend complex patterns and structures
within the data at varying levels of abstraction. An increasing amount of attention has
been paid to the use of deep neural networks in the detection of threats in social networks.
In these networks, multiple layers of non-linear processing units are arranged in a hier-
archical structure. As a result of this architecture, deep neural networks are capable of
extracting and transforming features, making them a promising approach for detecting
attacks on social networks. The purpose of this study is to determine whether or not a
specific intervention has an effect on a specific outcome.

To determine whether IoT contexts meet the secrecy and safety requirements, Ref. [15]
examines legal concerns and regulatory methods. A number of studies have been per-
formed regarding the security and confidentiality of the widely distributed IoT, including
those by [16,17]. They also discussed the benefits of dispersed IoT in terms of security and
privacy, along with some challenges. According to a recent survey, ransomware attacks and
other security issues are only two examples of the rising risks and vulnerabilities associated
with IoT schemes. According to [18], data privacy and security are important considera-
tions in the IoT environment. Additionally, the researchers identified three obstacles to the
development and deployment of machine learning in the IoT. There has been considerable
research conducted on how to classify security threats associated with the IoT [19,20].

In [21], a cyberattack alert system based on fog–cloud architecture and ensemble
learning is proposed. As a result of the ensemble method, a number of models are in-
tegrated, such as Decision Trees, Naive Bayes, and Random Forests, developed by the
learners. In [22], we see an innovative method for detecting anomaly-based assaults in
an unbalanced dataset using an LSTM autoencoder. During training, only samples from
typical classes are used. In [23], the focus is on modeling the available characteristics and
extracting the most relevant ones. Using deep learning, the researchers sort intrusions into
categories. L. Rondon et al. [24] contend that cybersecurity is overlooked or not considered
in the design of IoT devices. M. Alajanbi et al. have written a review study highlighting
the efficacy of several intrusion detection methods [25]. We summarize in Table 1 the key
contributions of the existing literature on IoT security and their implications for smart
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cities. As a result of association rule mining and artificial neural networks (ANNs), F. Safara
et al. [26] developed a system for identifying intrusions in communication networks. Addi-
tionally, the proposed method is based on ANNs. However, it has been developed with the
intention of detecting intrusions in Internet of Things networks. It has been demonstrated
that deep learning algorithms can be utilized in IoT security by M. Abdel-Basset et al. In
addition, they discussed the use of deep learning in the context of IoT privacy. The creation
of rule-based intrusion detection systems tailored to a particular network, however, is more
straightforward. As long as they are used in the proper system, they perform exceptionally
well. The knowledge-driven, rule-dependent, system collapse attack intrusion prevention
system was developed by [27,28].

Table 1. Comparative analysis of literature on IoT security: a synopsis of advantages, disadvantages,
and contributions to smart city applications.

Ref. Authors and Year Main
Contribution Advantages Disadvantages Applicability to

IoT Security

[7] Saba et al., 2022
Anomaly-based

IDS for IoT
networks via DL

High detection
accuracy, adaptability

to new threats

Requires
substantial

training data, may
have longer

training times

Highly applicable
for network

security

[10] Guo et al., 2023

Traffic
management in

IoT networks with
SDN orchestration

Efficient traffic
handling, enhanced
through GNN and

MAB

Complexity in
deployment and

maintenance,
possible overhead

Applicable for
managing network

traffic

[16] Patel and Patel,
2022

Blockchain for IoT
healthcare data
confidentiality

Enhanced data
integrity and access

control

Blockchain
complexity,

scalability issues

Applicable for
secure healthcare

data

[22] Elsayed et al., 2020

Network anomaly
detection using

LSTM-based
autoencoder

Effective for sequential
data, captures

temporal
dependencies

Can be
computationally

intensive,
challenging to tune

Applicable for
continuous data

streams

[23] Elsayed M et al.,
2020

Improved CNN for
IDS in SDNs

Higher accuracy in
detection with an

improved learning
approach

Specific to SDNs,
may not generalize
to other network

types

Applicable for
intrusion detection

in SDNs

[14] Sriranjani et al.,
2023

Machine learning
for detecting

replay attacks in
smart grid

Effective in identifying
specific replay attack

patterns

Limited to smart
grid environments

Applicable for
smart grid security

[18] Rao and Deebak,
2022

Security and
privacy in smart
cities/industries

Comprehensive
review of technologies

and applications

No new model or
algorithm
proposed

Provides a
framework for

addressing smart
city security
challenges

[21] Kumar et al., 2021
Cyberattack

detection for IoMT
networks

Uses ensemble
learning and

fog–cloud architecture
for efficiency

Requires specific
infrastructure

setup

Highly applicable
for IoMT security

3. Database Description

The effectiveness of an IDS is dependent on the data used for training. The inability to
test detection algorithms on a current real-world dataset is a major roadblock. Privacy and
legal concerns are the primary reasons why public datasets are unavailable in the intrusion
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detection field. Two of the most current practical datasets, ToN-IoT and InSDN, are used to
train and test the proposed method.

3.1. ToN-IoT Dataset

For the ToN-IoT dataset, researchers from the Australian Defense Force Academy
(ADFA) turned to the Cyber IoT Lab at the School of Engineering and Information Technol-
ogy (SEIT) at UNSW Canberra [29]. The dataset was assembled via machine learning, and
it contains many different types of cyberattack and non-attack events from the Internet of
Things systems. To replicate the performance and scalability of the automotive IoT and
Enterprise 4.0 systems through the integration of several digital and physical resources,
as well as hacking infrastructure, cloud and fog environments, and IoT sensors, a new
testbed was built at the IoT laboratory. The latest distributed denial of service (DDoS)
and ransomware attacks against smart cities are included in this collection. Attacks on
the IoT network target web apps, IoT gateways, and other computer systems. There are
43 features in all, and the 461,043 remarks are split between 300,000 “normal” remarks and
161,043 “attack” observations, as shown in Figure 1. In total, 70% of the information was
put to good use in the form of instruction, while the remaining 30% was put to the test.
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3.2. InSDN Dataset

Probe, DoS application, online assaults, brute force attack, password speculation, U2R,
and DDoS attacks are only a few of the numerous attack types included in the InSDN
dataset. Furthermore, there are a number of shared characteristics of InSDN normal traffic.
To more accurately reflect the nature of real-world assaults, the dataset includes intrusions
from both internal and external networks. CSV formatted data on 80+ metrics, including
protocol, duration, bytes, packets, etc. There are a total of 343,939 occurrences in the dataset,
consisting of 68,424 occurrences of “normal” traffic and 275,515 occurrences of “attack”
traffic, as shown in Figure 2.
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4. Proposed Methodology

This study presents a comprehensive approach to safeguard the IoT infrastructure
within smart cities from cyberthreats, with a special focus on SVN. The overarching pro-
cessing flow, as shown in Figure 3, encompasses multiple key stages, starting with the
acquisition and preparation of a smart city dataset, followed by rigorous pre-processing to
ensure data quality and compatibility. A pivotal component of the methodology involves
the utilization of stacked ensemble deep learning techniques, a unique and robust approach.
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Figure 3. The overall structure of proposed methodology.

The system’s core is the deep learning classifier, finely tuned to discern normal net-
work behavior from anomalous activities. Subsequently, the refined system proceeds to
attack recognition, adeptly identifying and differentiating various cyberattacks within the
IoT ecosystem. The final stage encompasses attack detection and classification, where
the system’s learned insights are leveraged to swiftly and accurately categorize detected
threats. This holistic approach promises to bolster the resilience of smart cities’ IoT infras-
tructure against evolving cyberthreats, explicitly addressing the intricacies of smart vertical
networks for a comprehensive and effective defense mechanism.
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Stacked Ensemble Model

The proposed deep ensemble model combines the predictive power of the Xception
convolutional neural network (CNN) and the bidirectional long short-term memory (Bi-
LSTM) model to effectively detect and classify attacks within the IoT infrastructure of
smart cities, with a focus on SVN, as shown in Figure 4. This ensemble model harnesses
the strengths of both models to enhance accuracy and robustness. The input features for
the ensemble model consist of the raw data representing the network behavior, which
are carefully pre-processed to extract relevant patterns and features. These features are
then fed into the Xception CNN and the Bi-LSTM model for individual attack predictions.
The Xception CNN excels in capturing spatial features from the data, leveraging deep
convolutions, while the Bi-LSTM focuses on sequential and temporal patterns, adept at
modeling the dynamic nature of network activities.
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Once the individual attack predictions are obtained from both models, a majority
voting mechanism is applied to determine the final attack classification. This approach
capitalizes on the collective decision-making process, ensuring that the last forecast is
based on the consensus of the Xception and Bi-LSTM models. Through the use of this
ensemble strategy, the impact of potential false positives or false negatives from either
model may be mitigated, and the accuracy and consistency of attack detection will be
improved. By combining the unique capabilities of the Xception CNN and the Bi-LSTM
model through a majority voting mechanism, the proposed ensemble approach delivers a
robust and comprehensive solution to safeguard the IoT infrastructure of smart cities against
cyberattacks, specifically tailored to address the intricacies of smart vertical networks.

Xception CNN Model

The Xception (Extreme Inception) model is a deep CNN architecture that is based
on the idea of separating feature learning into two stages: one for spatial features (us-
ing depthwise separable convolutions) and another for channel-wise features (using
1× 1 convolutions). This separation of feature learning helps the network learn more
efficient and discriminative representations. Figure 5 is the basic structure of the Xcep-
tion model, which consists of repeated blocks of depthwise separable convolutions and
1× 1 convolutions. The input of the Xception model is an image or a feature map from
a previous layer. The entry flow part of the network performs initial feature extraction
and reduction. It usually consists of a series of convolutional, pooling, and activation
layers to reduce the spatial dimensions while boosting the channel count. The middle part
of the network is where the depthwise separable convolutions are applied, enabling the
network to capture spatial features efficiently. It is not unusual for this part of the graph
to be composed of repeated blocks of separable convolutions and residual connections. A
channel-wise feature is combined using convolutions, and then a global average pooling
algorithm and softmax are applied to the network exit flow prior to classification.
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Entry Flow (C1–C5)

In the entry flow, the input image is first processed. Typically, it consists of the
following components:

Convolutional Layers: These are initial standard convolutions (not depth-separable)
with increasing numbers of filters, typically beginning with 32 or 64. The purpose of
these algorithms is to quickly reduce the spatial dimension of the input. Convolutional
Blocks with Depth Separation: After the initial standard convolutions, depthwise separable
convolutions are introduced. Each of these layers separates the convolution operation into
depthwise spatial convolutions (which act on each input channel separately) and pointwise
spatial convolutions (1 × 1 convolutions that combine the outputs of the depthwise spatial
convolutions). Maximum Pooling: Maximum pooling is often used to reduce the spatial
dimensions of feature maps between blocks.

Middle Flow (C6)

This flow is the core of the network and consists of a number of identical blocks (e.g.,
eight). Typically, each block contains the following information: Convolutional Layers with
Depth Separation: These layers are the basic building blocks of the middle flow, which
can be used to extract features from the input data. Bottlenecks: This involves the use of
1 × 1 convolutions with a reduced number of filters to compress the feature representation.
The middle flow does not alter the dimensions of the feature maps, but instead concentrates
on extracting more complex features.

Exit Flow (C7–C9)

Exit flows complete the process and prepare feature maps for final classification. In
general, it consists of:

Flows with depth-separable convolutional layers: Similar to the previous flow, but
with a greater number of filters. Pooling Layers: It is common to use global average pooling
to reduce each feature map to a single value. Fully connected layers: These are used at
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the end of the network to facilitate classification. There are typically as many neurons in
the last layer as there are classes in the classification task. This process helps in enhancing
the representation of the input data by incorporating information from different channels.
Mathematically, the depthwise separable convolution operation can be represented as

D(x) = ∑ Wd·x [ f or each channel], (1)

And pointwise convolution as

P(D(x)) = ∑ Wp·D(x), (2)

where x is the input feature map (for a single channel), Wd is the depthwise convolution
filter, Wp is the pointwise convolution filter, D(x) is the intermediate feature map after
depthwise convolution, P(D(x)) is the final output after pointwise convolution.

The output of the depthwise convolution has Cin feature maps. Mathematically, for a
depthwise convolution operation, the output at position (i, j) in feature map c is given by
the depthwise convolution equation:

D(x, y, z) = ∑m,n (input(x·S + m, y.S + n, z)·DepthwiseFilter(m, n, z)) , (3)

where (x, y, z) represents the position (x, y) in the c-th channel of the output feature
map, S is the stride of the convolution, DepthwiseFilter(m, n, z) is the depthwise filter
at position (m, n) in channel c, input(x·S + m, y.S + n, z) is the input value at position
(x·S + m, y.S + n, z).

The output of the pointwise convolution has a reduced number of channels (controlled
by the number of 1 × 1 filters). Mathematically, for a pointwise convolution operation, the
output at position (i, j, Cout ) is given by

P(x, y, Cout ) = ∑c (DW(x, y, c)·PointwiseFilter(c, Cout )) , (4)

where (x, y, Cout) represents the position (x, y) in the Cout-th channel of the output feature
map, PointwiseFilter(c, Cout) is the pointwise filter that combines input channel c to pro-
duce output channel Cout, DW(x, y, c) is the result of the depthwise convolution at position
(x, y) in channel c.

An Xception block typically consists of depthwise separable convolutions, batch
normalization, activation functions (e.g., ReLU), and residual connections. The residual
connections help with gradient flow and make training deeper networks more stable.
Mathematically, an Xception block can be represented as follows:

Y = Activation(BN(Depthwise_Conv(X) + X)), (5)

where X is the input feature map, Depthwise_Conv is the depthwise separable convolution
operation, BN is batch normalization, Activation is the activation function (ReLU), Y is
the output of the Xception block. This basic structure of the Xception model captures the
essence of its design, focusing on efficient feature learning using depthwise separable con-
volutions and 1× 1 convolutions. In practice, the model architecture may have additional
complexities, such as multiple Xception blocks, pooling layers, and fully connected layers
for classification. The equations for the forward and backward LSTM cells are as follows:

Input Gate:
it = σ(Wxixt + Whiht−1 + bi) (6)

Forget Gate:
ft = σ

(
Wx f xt + Wh f ht−1 + b f

)
(7)

Output Gate:
ot = σ(Wxoxt + Whoht−1 + bo) (8)
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Candidate Cell:
c′t = tanh(Wxcxt + Whcht−1 + bc) (9)

Cell State:
ct = ft � ct−1 + it � c′t (10)

Hidden State:
ht = ot � tanh(ct) (11)

In the development of an IoT intrusion detection system, the initial step involves
partitioning the dataset into distinct subsets for training, validation, and testing. Through
this data division, the Bi-LSTM model is trained using the training subset, fine-tuning its
internal parameters such as weights and biases. Validation occurs concurrently, with the
model’s performance assessed on the validation set to prevent overfitting and optimize its
generalization abilities via backpropagation and gradient descent. Subsequent to training,
the trained Bi-LSTM is applied to make predictions regarding the nature of network traffic:
distinguishing between normal traffic and signs of a potential intrusion. This task primarily
involves binary classification, where the model aims to accurately classify instances as either
benign or indicative of an intrusion, based on the learned patterns from the training data.

Majority voting in the context of an ensemble model combining an Xception CNN and
a Bi-LSTM is a technique used to make predictions based on the consensus of individual
models. The goal is to advance the overall accuracy and robustness of intrusion detection
in IoT. In the majority voting scheme, both the Xception CNN and the Bi-LSTM models
make individual predictions on the same input data. These predictions are then combined
through a voting mechanism to determine the final prediction. The group that receives the
most votes wins from the two models is chosen as the ensemble’s final prediction.

Let us denote the output probabilities from the Xception CNN as PXception(ci), where ci
represents the class label for class i. Similarly, let the output probabilities from the Bi-LSTM
be denoted as PBiLSTM(ci). The majority voting ensemble decision can be represented
as follows:

PEnsemble(ci) =
1
2
(

PXception(ci) + PBiLSTM(ci)
)

(12)

In this equation, we take the average of the predicted probabilities from both models,
effectively giving equal weight to each model’s prediction. The class label ci with the
maximum PEnsemble(ci) is selected as the final forecast. This majority voting approach helps
to mitigate the weaknesses of each individual model by leveraging their diverse capabilities.
As a result, the IoT intrusion detection system functions better as a whole, leading to more
reliable and accurate predictions. Xception CNN and Bi-LSTM are combined to take use of
their synergies, the ensemble effectively handles both feature extraction from raw data and
sequential pattern recognition, improving the overall effectiveness of intrusion detection in
IoT environments

Upon completing the intrusion detection phase, thorough evaluation of the system’s
effectiveness is essential. This evaluation hinges on the use of a dedicated testing dataset,
enabling the assessment of the model’s performance in real-world scenarios. Commonly
employed evaluation metrics, including accuracy, precision, recall, F1-score, and the area
under the receiver operating characteristic (ROC) curve (AUC-ROC), provide valuable
insight into the model’s ability to effectively recognize and discriminate between nor-
mal and malicious network behavior, forming a critical aspect of the system’s overall
robustness assessment.

5. Result and Discussion

The experimental setup for evaluating the proposed in the context of intrusion detec-
tion was conducted using MATLAB on a computer system equipped with an Intel Core-i7
processor, 8 GB of RAM, and running the Windows 10 operating platform. The proposed
solution implemented on this hardware configuration, and its effectiveness in detecting
intrusions, was rigorously tested. Two key evaluation metrics were utilized: the confusion
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matrix and the ROC curve. The confusion matrix serves as a structured table commonly
used in multiclass assessment scenarios. It provides vital data on the operation of the
system, detailing the number of instances correctly and incorrectly classified for each class.
This matrix aids in understanding the distribution of predicted classifications compared to
the actual ground truth labels. Additionally, the ROC curve offers insight into the system’s
capacity to tell the difference among favorable and unfavorable situations across various
threshold settings. The accuracy is the fraction of dataset samples where the network
successfully predicted all of the data points.

Accuracy(Ac) =
Trps + Trng

Trps + Trng + Faps + Fang
(13)

The precision of a model to identify attacks is defined as the fraction of false positives
that are corrected out of all false positives that the model detects.

Precision(Pr) =
Trps

Trps + Faps
(14)

The recall (Rr) is the proportion of successful tests relative to the number of rectified
samples detected by the model.

Recall(Rr) =
Trps

Trps + Fang
(15)

The percentage of true negatives (TNRs) identified accurately is the measure of speci-
ficity.

specificity(Sp) =
Trng

Fpps + Trps
(16)

The F1-score measures the reliability of a test by averaging the percentage of true
positives.

F1− score(F1) = 2× Pr× Rr
Pr + Rr

(17)

According to Table 2, configurations with three LSTM layers and 300 hidden layers
showed the highest accuracy of 99.8%, making them promising choices for IoT intrusion
detection. The model’s performance is significantly affected by the number of LSTM
layers and hidden layers. The InSDN dataset is analyzed in Table 3 by a specific model
known as the stacked deep ensemble model (SDEM). Based on factors such as the number
of LSTM layers and size of hidden layers, the SDEM is evaluated and compared across
various configurations. As indicated in subfigures (a) and (b), Figure 6 illustrates the
accuracy performance of the SDEM in two distinct scenarios. As a result of the SDEM’s
accuracy percentages, instances within each dataset are correctly classified. According to
subfigure (a), SDEM made 99.8% accurate predictions on the ToN-IoT dataset. It indicates
that the model successfully and consistently discriminated between different categories or
groups of data instances in the ToN-IoT dataset.

The InSDN dataset, accuracy is 99.6% according to subfigure (b). We are therefore
able to classify instances very accurately within the InSDN dataset thanks to our model.
The model’s predictions had a high level of reliability, indicating that it was capable of
identifying a variety of threats in the InSDN dataset. The accuracy percentages provide
valuable insight into the robustness and efficiency of SDEMs applied to these specific IoT
datasets. This figure illustrates the model’s remarkable performance given the demanding
task of multiclass classification in cybersecurity and the Internet of Things.
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Table 2. Performance analysis of the model comparing the specified configurations of the ToN-IoT
dataset.

LSTM
Layers

Hidden
Layers Accuracy ROC Precision Recall F1-Score

1 100 98.2% 0.95 0.92 0.89 0.905
1 200 97.6% 0.94 0.91 0.87 0.89
1 300 98.0% 0.95 0.92 0.88 0.9
1 400 97.4% 0.94 0.90 0.86 0.88
2 100 98.4% 0.96 0.93 0.90 0.915
2 200 98.6% 0.97 0.94 0.91 0.925
2 300 98.8% 0.97 0.95 0.92 0.935
2 400 98.7% 0.97 0.94 0.91 0.925
3 100 99.0% 0.98 0.95 0.93 0.94
3 200 99.1% 0.98 0.96 0.93 0.945
3 300 99.8% 0.99 0.98 0.97 0.975
3 400 99.5% 0.98 0.97 0.95 0.96
4 100 98.8% 0.97 0.94 0.92 0.93
4 200 98.9% 0.97 0.95 0.92 0.935
4 300 99.6% 0.98 0.97 0.96 0.965
4 400 99.2% 0.98 0.96 0.94 0.95

Table 3. Performance analysis of the model comparing the specified configurations of the InSDN
dataset.

LSTM
Layers

Hidden
Layers Accuracy ROC AUC Precision Recall F1-Score

1 100 95.2% 0.951 0.942 0.962 0.952
1 200 96.5% 0.965 0.954 0.974 0.964
1 300 97.1% 0.971 0.962 0.978 0.970
1 400 96.8% 0.968 0.957 0.975 0.966
2 100 97.5% 0.975 0.968 0.978 0.973
2 200 98.3% 0.983 0.978 0.983 0.980
2 300 98.7% 0.987 0.982 0.987 0.985
2 400 98.5% 0.985 0.980 0.988 0.984
3 100 98.8% 0.988 0.983 0.989 0.986
3 200 99.1% 0.991 0.986 0.992 0.989
3 300 99.8% 0.998 0.996 0.998 0.997
3 400 99.5% 0.995 0.994 0.995 0.995
4 100 99.0% 0.990 0.988 0.991 0.989
4 200 99.2% 0.992 0.990 0.993 0.992
4 300 99.6% 0.996 0.995 0.997 0.996
4 400 99.3% 0.993 0.992 0.994 0.993

This figure illustrates the proposed model’s ROC curve analysis for the ToN-IoT
dataset. A classification model’s effectiveness is assessed by ROC curves. In multiclass
situations, they can also be used for binary categorization. In this context, the ROC curve
demonstrates how well the SDEM distinguishes between different classes or categories
within the ToN-IoT dataset, typically representing a variety of IoT device behaviors.

Figure 7 displays the ROC curve analysis results for the stacked deep ensemble model
(SDEM) when applied to the InSDN dataset. The ROC curve in this figure demonstrates
how effectively the SDEM differentiates between different classes or types of threats within
the InSDN dataset. The ROC curve shows the tradeoff among sensitivity and specificity
(the number of false positives) at various cutoffs for making a diagnosis.
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Figure 8 displays the confusion matrix analysis results specifically applied to the
ToN-IoT dataset; a collection of data instances related to the IoT. The confusion matrix is
a structured table that provides comprehensive insight into the model’s performance in
classifying different categories; in this case, various IoT device behaviors categorized as
threat types. The provided values within the confusion matrix entries denote the accuracy
of classification for each threat type within the ToN-IoT dataset. These values range from
0.98 to 1.00, and are associated with specific threat categories. For instance, a value of
0.99 for the “Normal” class indicates that the model correctly classified normal behavior
with a high accuracy of 99%. Similarly, values of 1.00 for categories like “Injection”, “XSS”,
“Ransomware”, and “DOS” suggest that the model achieved perfect accuracy in classifying
instances from these classes. Additionally, values such as 0.98 for the “DDOS” category and
0.99 for “MITM” reflect slightly lower but still impressive accuracy levels in identifying
these specific threat types.
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Figures 9 and 10 presents a confusion matrix for the InSDN dataset that offers a
comprehensive view of the performance of a multiclass classification model applied to
a diverse set of classes representing different types of network activities or behaviors.
Understanding the model’s ability to predict may be gleaned from the confusion matrix,
specifically in terms of how well it correctly assigns instances to their respective classes,
as well as where it might have encountered difficulties. The provided high accuracy
rates for some classes (e.g., ‘DoS-Application = 1.0’, ‘DDOS = 1.0’, ‘Bruteforceattack = 1.0’,
‘WebApplication = 1.0’, ‘U2R = 1.0’) suggest that the model is remarkably adept at identify-
ing instances from these categories. On the other hand, slightly lower accuracy rates for
other classes (e.g., ‘Normal = 0.99’, ‘Probe = 0.99’, ‘DoS-Network = 0.99’, ‘Botnet = 0.99’)
still indicate strong performance, with very few instances being misclassified.
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6. Conclusions and Future Work

In the context of smart cities, the importance of cybersecurity cannot be overstated. In
these environments, the exponential growth of IoT devices exposes new vulnerabilities that
may be exploited by malicious actors. In order to ensure the safety and secrecy of citizens’
data and critical infrastructure, it becomes increasingly important. By utilizing deep
learning techniques, particularly the SDEM, this study proposes an innovative approach to
fortify the IoT infrastructure of smart cities, specifically SVN. This study demonstrates the
effectiveness of the proposed SDEM in identifying cyberattacks within the IoT ecosystem of
smart cities. With 99.8% accuracy for the ToN-IoT dataset and 99.6% accuracy for the InSDN
dataset, this approach illustrates the potential of this approach for intrusion detection and
cybersecurity. As evidenced by the SDEM, stacking offers promising results and represents
a significant advancement.

The weakness can be addressed by combining deep learning with other security mea-
sures, including rule-based systems, anomaly heuristics, and physical security measures.
It is also possible to mitigate privacy concerns when using deep learning for IoT security
by focusing on data anonymization and privacy-preserving techniques. It is also crucial
to monitor the performance of deep learning models in real-world IoT environments on a
regular basis in order to maintain the effectiveness of security.

A future study in this area should investigate the scalability and robustness of the
proposed model in real-world smart city environments. To ensure long-term security, it is
imperative to take into account the dynamic nature of IoT systems, evolving cyberthreats,
and the need for continuous adaptation. Additionally, research should focus on integrating
the SDEM with operational smart city networks and assessing its performance under a
variety of attack scenarios. In order to safeguard the digital backbone of modern urban life,
advanced cybersecurity solutions will be vital to ensuring a safer, more efficient, and more
resilient future for our cities, as smart cities continue to evolve.
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