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Abstract: This study aims to evaluate the precision of nine distinct hyperelastic models using experi-
mental data sourced from the existing literature. These models rely on parameters obtained through
curve-fitting functions. The complexity in finite element models of elastomers arises due to their
nonlinear, incompressible behaviour. To achieve accurate representations, it is imperative to employ
sophisticated hyperelastic models and appropriate element types and formulations. Prior published
work has primarily focused on the comparison between the fitting models and the experimental
data. Instead, in this study, the results obtained from finite element analysis are compared against the
original data to assess the impact of element formulation, strain range, and mesh type on the ability
to accurately predict the response of elastomers over a wide range of strain values. This comparison
confirms that the element formulation and strain range can significantly influence result accuracy,
yielding different responses in various strain ranges also because of the limitation with the curve
fitting tools.

Keywords: finite element method; hyperelasticity; strain energy function; hyperelastic model calibration;
neoprene

1. Introduction

Elastomers can be classified based on various criteria, including composition and
vulcanization [1]. In contrast to isotropic metals, isotropic rubber demonstrates pronounced
nonlinearity in its elastic behaviour when subjected to stress and strain [2]. Rubber features
an extensive elastic range, often surpassing metals by up to 500%, and it also displays
high internal damping when subjected to dynamic loads. These characteristics make it
particularly well suited for applications such as rubber mounts.

Owing to the extensive elastic range of rubber, the conventional small strain theory is
insufficient for describing its behaviour [3]. Instead, the material’s response is characterized
by its strain energy density function, often referred to as the Helmholtz free energy [1],
which also considers temperature effects. To achieve a complete understanding of the
significant deformations in rubber, continuum mechanics is employed to describe the
motion of each material point [1,2]. Various constitutive equations have been developed to
mathematically capture material behaviour, considering both stress–strain relationships
and temperature effects. Cauchy stress constitutive equations (Equation (1)) [1] establish
a connection between Cauchy stress (σ) and strain energy density (W(F)), factoring in
deformation gradient (F) and volumetric deformation (J).

σ(F) =
1
J

∂W(F)
∂F

FT (1)
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While no material can be considered fully incompressible, elastomers are often treated as
nearly incompressible materials with a Poisson’s ratio assumed to be approximately 0.5. In
the case of incompressible elastomers, when the volumetric deformation (J) equals one [4], the
Cauchy stress constitutive equation can be simplified from Equations (1) and (2) [1]. Here, p
represents the pressure applied to the elastomer, b is the left Cauchy stress tensor, I1 and I2
denote the first and second Cauchy stress invariants, and I represent the identity matrix.

σ = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)
b− 2

∂W
∂I2

b2 + pI (2)

Various strain energy functions (SEFs) (W(F)) are employed in constitutive equations,
each corresponding to distinct stress–strain responses [2].

Broadly, hyperelastic models fall into three categories: phenomenological, micro-
mechanical, and hybrid, a combination of the prior two [2,5]. Phenomenological models
derive from ideal elastomer properties within continuum mechanics [2,5], while micro-
mechanical models stem from the microstructural response at the polymeric chain level [2,5].
Hybrid models integrate both approaches [5] and demand greater computational power
compared to phenomenological models. Yet, recent studies suggest they can relate macro-
scopic mechanical behaviour to physical or chemical structural changes [5].

Phenomenological models encompass neo-Hookean, two-term reduced polynomial,
Mooney–Rivlin, three-term Ogden, two-term polynomial, Yeoh, and Marlow [5], while
Arruda–Boyce is micro-mechanical, and van der Waals is a hybrid model [5].

These models share a common feature as they facilitate nonlinear finite element
analysis (FEA) of various elastomer components like response of oil palm shell-reinforced
rubber (ROPS) composites with different oil palm shell (OPS) contents and shapes [6],
automotive weatherstripping [7], and antivibration systems [8].

Accurate numerical simulations of rubber-like materials (RLMs) necessitate reliable
hyperelastic models. Accuracy of a hyperelastic model is defined by how closely the
predicted stress matches stresses derived from mechanical tests [1]. Thus, many studies
have compared different hyperelastic models’ accuracy under large strain deformation.
Typically, accuracy comparisons rely on stress–strain curves derived from strain energy
functions [9,10], wherein stress–strain curves from three mechanical tests are compared
with model predictions. Recent studies [10–14] have compared the accuracy of a large num-
ber of hyperelastic models, deriving their own strain energy functions. Studies have also
explored how fitting algorithm formulations affect the generation of material parameters
and prediction accuracy [12–14]. Studies have examined accuracy under biaxial deforma-
tion [15], comparing model-predicted stress with mechanical test results. An extensive
study on the Odgen model [16] compared the accuracy of the original Odgen model with
other variations.

A recent study conducted a comprehensive comparison of 85 distinct hyperelastic
models, encompassing models ranging from the early 1990s to more recent ones [10]. The
primary focus of this investigation was centred on hyperelastic responses under static
or quasi-static loads, neglecting stress stiffening, the Payne effect, and similar phenom-
ena [10]. Additionally, the study selected 10 models to undergo numerical simulations for
uniaxial tensile testing with strains below 1.5, employing Abaqus CAE for these simula-
tions. The material was treated as incompressible, and the chosen element was C8D8RH, a
linear hexagonal hybrid element with reduced integration without providing a detailed
description of the zero-energy modes.

Historically, the prior literature has commonly favoured linear hexagonal elements for
numerical simulations involving rubber-like materials [6,8,10]. In cases where components
exhibit intricate curvature, automated meshing tools may also come into play; however,
these tools are typically limited to tetrahedral elements [17].

This study presents an investigation into the accuracy of different hyperelastic mod-
els and element formulations under monotonically quasi-static loading conditions. The
stress–strain response is obtained from a simulation analysing the force displacement data
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to capture the overall response of the simulated specimens. Results from simulations
have been compared against the experimental data used for the curve-fitting of the hy-
perelastic material model. The following hyperelastic models are explored in this study:
two-term reduced polynomial, Arruda–Boyce, Marlow, Mooney–Rivlin, neo-Hookean,
three-term Ogden, two-term polynomial, van der Waals, and Yeoh. Detailed mathematical
formulations are provided in the following section.

2. Hyperelastic Material Models

To comprehensively characterize the intricate behaviour of elastomers, various method-
ologies are available. These approaches result in different formulations of strain energy
functions or models. Hyperelastic models exhibit variations in terms of their complexity
and the number of material parameters involved. Typically, more intricate models involve
a greater number of material parameters and more complex equations. Some models
prioritize user-friendliness, but to achieve this, the strain energy function may undergo
simplification, which might involve omitting the second deviatoric stress invariant and
utilizing fewer material parameters. These divergences can yield fundamentally distinct
stress–strain predictions. As such, this study places significant importance on evaluating
the accuracy of each hyperelastic model, as these models directly impact the precision of
numerical simulation results.

In a three-dimensional space, where the principal stresses align with the main axes [18],
a vector can represent the stress state.

Figure 1 shows a particular stress state of a point “P”. The hydrostatic axis (z) is the
axis in which the three principal stresses are equal σ1 = σ2 = σ3. The plane containing P
and perpendicular to the hydrostatic axis is called the deviatoric plane.
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Figure 1. Three types of coordinate system in the space of principal stresses [18].

P can also be represented geometrically in terms of the three invariants of the stress
tensor. Assuming that the three principal stresses have the following order, σ1 ≥ σ2 ≥ σ3,
the hydrostatic stress or the first stress invariant I1 is the distance from the origin to the
deviatoric plane containing the point P (|OO′|) with the three stress invariants I1, I2, and I3
as follows:

∣∣OO′
∣∣ = √3σm =

I1√
3

(3)

I1 = σ1 + σ2 + σ3 = λ1
2 + λ2

2 + λ3
2 = 3σm (4)
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I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

13 − σ2
23 = λ1

2λ2
2 + λ2

2λ3
2 + λ1

2λ3
2 (5)

I3 = σ11σ22σ33 − σ11σ2
23 − σ22σ2

13 − σ33σ2
12 + 2σ12σ13σ23 = λ1

2λ2
2λ3

2 (6)

The stress invariants can be expressed using stretch ratios (λ1, λ2, λ3). This format for
stretch ratios has been widely adopted in previous studies and research, simplifying the
discussion about hyperelastic models [1,9].

Furthermore, tensors can be decomposed into two components: a deviatoric part and
a volumetric part. Most of the hyperelastic models are based on the decomposition of
Cauchy stress invariants. The process of decomposition is outlined in Equation (7) [1],
where ‘A’ can represent the first, second, or third Cauchy stress invariant. The deviatoric
and volumetric parts are represented by Equations (8) and (9) [1].

A = dev[A] + vol[A] (7)

dev[A] = A− 1
3

tr[A]I (8)

vol[A] =
1
3

tr[A]I (9)

The accuracy of stress–strain responses is assessed in both material element predictions
and numerical simulations. Hyperelastic models can predict large strain deformation accu-
rately under static or quasi-static load [1], without the need for more complex viscoelastic
formulations such as rheological models. For this reason, this work only focuses on large
strain deformation with viscoelasticity and stress softening related to the Mullin effect not
considered [1]. Strain energy functions for each hyperelastic model are reported in brief in
the following subsections.

2.1. Neo-Hookean

Considering the stress tensor and the expression of the invariants of the stress tensor,
the neo-Hookean model is the simplest hyperelastic model amongst those considered in
this study, since it only depends on the first deviatoric invariant I1. The material parameters
for neo-Hookean are C10 and D1, where C10 depends on shear modulus µ, and D1 depends
on bulk modulus κ. Jel is the elastic volume ratio [1].

W = C10
(

I1 − 3
)
+

1
D1

(Jel − 1)2 (10)

2.2. Mooney–Rivlin

The Mooney–Rivlin model is based on the neo-Hookean model with an additional
term featuring the second deviatoric invariant I2. The material parameters for Mooney–
Rivlin are C10, C01, and D1, where C10 and C01 depend on shear modulus µ, whilst D1
depends on bulk modulus κ [1].

W = C10
(

I1 − 3
)
+ C01(I2 − 3) +

1
D1

(Jel − 1)2 (11)

2.3. Two-Term Reduced Polynomial

The two-term reduced polynomial form is also based on neo-Hookean, with an added
term using the first deviatoric invariant I1. The material parameters for two-term reduced
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polynomial are C10, C20, D1, and D2 where C10 and C20 depend on shear modulus µ, whilst
D1 and D2 depend on bulk modulus κ [1].

W = C10
(

I1 − 3
)
+ C20(I1 + 3)2

+
2

∑
i=1

1
Di

(Jel − 1)2i (12)

2.4. Two-Term Polynomial

The two-term polynomial form includes both the first and second deviatoric invariants.
As the two-term polynomial form is more complex than neo-Hookean, it needs more
material parameters. The material parameters are C10, C01, C11, C20, C02, D1, and D2, where
C10, C01, C11, C20, and C02 depend on shear modulus µ, and D1 and D2 depend on the bulk
modulus κ [1].

W =
2

∑
i+j=1

Cij(I1 − 3)i
(I2 − 3)j

+
2

∑
i=1

1
Di

(Jel − 1)2i (13)

2.5. Yeoh

The Yeoh form is very similar to the two-term reduced polynomial form, as it can also
be considered as the three-term reduced polynomial form. The material parameters for the
Yeoh form are: C10, C20, C30, D1, D2, and D3, where C10, C20, and C30 depend on the shear
modulus µ, and D1, D2, and D3 depend on the bulk modulus κ [1].

W = C10
(

I1 − 3
)
+ C20(I1 + 3)2

+ C30(I1 + 3)3
+

1
D1

(Jel − 1)2 +
1

D2
(Jel − 1)4 +

1
D3

(Jel − 1)6 (14)

2.6. Arruda–Boyce

Arruda–Boyce form is also known as the eight-chain form, as this model is based
on how elastomer’s microstructure deforms. Arruda–Boyce only depends on the first
deviatoric invariant. Material parameters for Arruda–Boyce are: µ, λm, and D; notice that
C1 to C5 are not material parameters but just constants. µ is the shear modulus, and D
is a parameter related to bulk modulus κ. Parameter λm is the maximum stretch of the
molecule chain [1].

W = µ
5

∑
i=5

Ci

λm
2i−2

(
I1

i − 3i
)
+

1
D
(

Jel
2 − 1
2

− ln Jel) (15)

2.7. Three-Term Ogden

The three-term Ogden form is dependent on the first, second, and third principle
stretches instead of deviatoric invariants. The model parameters are: α1, α2, α3, µ1, µ2, µ3,
D1, D2, and D3 , where µ1 to µ13 and α1 to α3 are parameters related to shear modulus µ,
and D1 to D3 are related to bulk modulus κ [1].

W =
3

∑
i=1

2µi
αi

2

(
λ1

αi + λ2
αi + λ3

αi − 3
)
+

3

∑
i=1

1
Di

(Jel − 1)2i (16)

2.8. Van Der Waals

The van der Waals form depends on both the first and second deviatoric invariants.
The material parameters are: µ, λm, a, β, and D, where µ is the shear modulus, λm is the
maximum stretch of molecule chain, a is the global interaction parameter, β is the invariant

mixture parameter, and D is a parameter related to bulk modulus κ.
∼
I is a function

containing the first and second deviatoric invariants with β. η is a term that includes
∼
I

and λm [1].



Designs 2023, 7, 135 6 of 19

W = µ

−(λm
2 − 3

)
[ln(1− η) + η]− 2

3
a(

∼
I − 3

2
)

1.5+
1
D
(

Jel
2 − 1
2

− ln Jel) (17)

2.9. Marlow

The Marlow material model in predominantly used in Abaqus with an inbuilt algo-
rithm that automatically characterises the strain energy function from test data; thus, no
material parameters are needed [19].

W = Wdev
(

I1
)
+ Wvol(Jel) (18)

3. Curve Fitting for Hyperelastic Models
3.1. Elastomer Mechanical Test Data

The stress–strain behaviour of elastomers is typically characterised through various
mechanical tests, including uniaxial tension and compression, biaxial tension, and shear
testing. The experimental results used to derive the material parameters required to describe
the nine material models are those produced by Beomkeun Kim [20]. Notably, the set of
experimental data used in this study did not include volumetric test data because neoprene
is considered nearly incompressible [20].

Three types of tests were carried out and reported, namely uniaxial tensile tests, equal
biaxial tensile tests, and planar shear tests. In the uniaxial test, a dog-bone-shaped specimen
was employed, and the nominal stress was computed by dividing the applied force by
the original cross-sectional area of the specimen. In the case of the equiaxial tensile test, a
square hook-shaped specimen was utilized, and similarly, the biaxial nominal stress was
determined by dividing the applied force by the original cross-sectional area of the square
hook specimen. As for the planar shear test, the testing setup resembled that of the uniaxial
test, with the only difference being that the specimen’s length had to be ten times its height.
The nominal stress for this test was calculated by dividing the applied force by the central
section’s area.

Since there are no data for volumetric strain, a strict incompressible constraint is
not enforced in the simulations. Instead, a Poisson’s ratio of approximately 0.475 to
ensure efficient software operation has been assumed as suggested by the Abaqus manual.
Furthermore, for most load cases, the bulk modulus had limited effect and was thus
considered incompressible [1]. The nominal stress–strain curves for uniaxial, equal biaxial,
and planar shear tests are illustrated in Figure 2 [20].
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3.2. Test Data Fitting

Every mechanical test corresponds to a unique deformation state, a concept outlined by
Beomkeun Kim [20]. These deformation states can be depicted as matrices, illustrating how
material elements deform in response to varying tensile strains. In cases of mechanically
uniform deformation tests, these deformation states are clearly defined. The process of
curve fitting for hyperelastic material models employs optimization techniques such as
least-squares minimization to identify the optimal model parameters, including stress
invariants, that govern the relationship between stress and strain.

It is widely recognized that a single experiment cannot fully characterize a rubber-like
material, even when assuming elasticity. As depicted in Figures 3–5, even if the fitting
process successfully converges for a particular mechanical test, there is no guarantee that
it will accurately replicate other loading conditions using the same parameter set. The
assumption of incompressibility imposes limitations on the permissible kinematic field
for rubber-like materials. In the principal axes, this constraint results in all deformation
conditions being determined by just two independent variables, namely, two independent
stretch ratios. Consequently, relationships between equibiaxial extension and compression,
as well as pure and simple shear, have already been established. Therefore, a series of
biaxial tests is shown to be sufficient for a comprehensive characterization of hyperelastic
constitutive models.

In this study, the Abaqus software’s built-in curve fitting algorithm, which is based on
relative error minimization, was employed. The relative error is defined by Equation (19),
where Tth

i represents the nominal stress generated by the hyperelastic model, and TTest
i

corresponds to the nominal stress derived from the test data.

E =
n

∑
i=1

(1− Tth
i /TTest

i )2 (19)

Other than accuracy, Drucker stability needs to be considered as well. The Drucker
stability criteria defines stability as a positive gradient of the nominal strain–nominal stress
function [1].
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3.3. Curve Fitting Results for Each Hyperelastic Model

Stress–strain predictions of each model are shown against test data in Figures 3–7. The
fitting quality of each hyperelastic model were determined using R2 and the values are
reported in each corresponding figure. Only two hyperelastic material models, namely two
polynomial term and Yeoh, experienced instability.

Values of material parameters were obtained at the end of curve fitting procedures,
except for the Marlow model which does not contain material parameters. Each hyperelastic
model’s material parameters with values are demonstrated in Table 1.
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Table 1. Material parameters for each hyperelastic model.

Model Name Material Parameters

Neo-Hookean C10 = 0.911, D1 = 0

Mooney–Rivlin C10 = 0.351, C01 = 0.644, D1 = 0

Two-Term Reduced Polynomial C10 = 0.747, C20 = 0.0284, D1 = 0, D2 = 0

Two-Term Polynomial C10 = 0.672, C01 = 0.267, C11 = −0.132, C20 = 0.0835, C02 = 0.0608, D1 = 0, D2 = 0

Yeoh C10 = 0.678, C20 = 0.0592, C30 = −0.00147, D1 = 0, D2 = 0, D3 = 0
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Table 1. Cont.

Model Name Material Parameters

Arruda–Boyce µ = 2.44, λm = 4.50, D = 0

Three-Term Ogden α1 = 0.957, α2 = 1.165, α3 = 0.744, µ1 = −432, µ2 = 211, µ3 = 223, D1 = 0, D2 = 0, D3 = 0

Van der Waals µ = 1.19, λm = 384, a = −0.594, β = 0.318, D = 0

Marlow No Material Parameter

No compression nor volumetric test data were available in the literature used for this
study [20]. However, these data are needed to ensure accuracy in the fitting and avoid
unstable response when loaded under compression. For this reason, the compressive
stress–strain curves were evaluated with negative strain values and Figures 6 and 7 show
the uniaxial and biaxial compression stress–strain curve of each model.

The Y axis of Figures 6 and 7 use a logarithmic scale calculated with Equation (20) in
order to improve the readability of the graphs.

Logarithmic Stress = −log10 (−Stress) (20)

4. Finite Element Analysis
Numerical Simulations Setup

To assess if stress–strain response from FEA is consistent with material element stress–
strain response, for each hyperelastic model, three homogeneous deformation simulations
were carried out. This is in order to assess the consistency between material model predicted
stresses and numerical simulation stresses, especially how the simulation behaves under
hyperelastic models’ instability range. In addition, FEA simulations are used to assess the
accuracy of hyperelastic models and of element types under large static deformation.

Dog bone specimen for uniaxial tensile testing was modelled together with the cruci-
form shape for biaxial tensile stress and the uniform cross-section for in-plane shear. The
numerical simulations were all implemented in Abaqus CAE and in each simulation, the
different hyperelastic models with the corresponding geometry and boundary conditions
were used. In physical uniaxial tensile test, the top and bottom rectangular sections are
clamped by fixtures. To reproduce that in the numerical simulation, as shown in Figure 8,
the top rectangular section was constrained in all directions, and bottom constrained as
well, except in the Y-direction which allows movement. Reference Point 1 (RP-1) (see
Figure 8) was coupled with the bottom surface of the bottom section, where displacement
was applied, which will then move the whole bottom section down. Figure 9 demonstrates
the numerical setup of the equal biaxial tensile simulation. The rectangular 30 mm× 10 mm
sections at each end are constrained except in the traveling direction to reproduce clamping;
thus, the central square section will be equally deformed in X-Y directions. Reference points
were coupled with the cross-section of each rectangular section. Displacement in X and
Y directions were added to these reference points to apply tensile load; the magnitude of
displacement was identical in all directions. For planar shear simulation, similar to the
uniaxial tensile simulation, the top and bottom of the 10 mm × 300 mm rectangular section
shown in Figure 10 are constrained to reproduce fixture clamping. The 30 mm × 300 mm
section, where deformation takes place, has a length ten times greater than its width as
recommended by the literature. This aspect ratio allows thinning of the centre section with
tensile load; thus, planar shear exists 45 degrees to the stretching direction [20].

The tetrahedral element offers an advantage for the automatic meshing of complex
geometries. However, because the accuracy of the linear tetrahedral element is inferior
to that of the quadratic tetrahedral element [17], using auto meshing with tetrahedral
elements would typically favour the quadratic version for improved precision. Most of
the existing literature has commonly employed linear hexahedral elements for numerical
simulations involving small deformation scenarios, yielding accurate results.
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This study also explores the performance of linear hexahedral elements in the context
of large deformations and analyses the discrepancies when compared to auto meshing
using quadratic tetrahedral elements. Element types selected were linear hexagonal hybrid
element C3D8H and quadratic tetrahedral hybrid element C3D10H. In order to allow
convergence with incompressible material during the numerical simulation, hybrid ele-
ment formulation was used. Figures 11a, 12a and 13a show the hexahedral mesh whilst
Figures 11b, 12b and 13b show the tetrahedral mesh used for uniaxial, biaxial, and in planar
shear simulations.
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5. Numerical Simulation Results

Reaction forces of each reference point (represented in each figure by the point labelled
as RP) shown in Figures 8–10 were recorded for each increment, and by using the reaction
force divided by the original cross-section area, nominal stress can be obtained. The contour
plot of deformation and strain results with different element types and material model
predictions are compared. The nominal stress–strain curves from numerical simulation
of each model with different element type are shown in Figures 14 and 15. Each graph is
referring to one of the material models considered and the simulation results from FEA are
compared against the stress–strain curves from the literature.
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6. Discussion
6.1. Uniaxial Tension Simulations

The results are grouped in Figures 14 and 15 to show uniaxial tensile stress, where the
Marlow model has a R2 equal to 0.999 in uniaxial tension for both tetrahedral and hexag-
onal elements, suggesting that these models can replicate the material behaviour under
pure tensile load independently of the element formulation. The two-terms polynomial
material model has a lower R2 (FEA compared with experiment) because it experiences
instability when the strain value exceeds two and the stress strain curve diverged from
its model prediction results (see Figures 14 and 15). The contour plot illustrating longitu-
dinal displacement in Figure 16a, corresponding to the dog bone specimen model using
the two-terms polynomial material model, remains stable across the strain range under
consideration and exhibits necking in the central section. As the strain range reaches the
unstable range (see Figure 16b), the central section experiences an unrealistic deformation
(it becomes larger) which indicates instability. The Yeoh model also showed instability,
but the numerical results of the uniaxial tension load condition did not show any visible
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distortion at high strain. This could be explained with the strain considered in this study
being within the stable range for this material model.
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Comparison of the simulation results for the different models to the uniaxial tensile
test data is shown in Figures 14 and 15. By using the Marlow model to perform uniaxial
simulation, the results match the test data in the entire strain range, and it can be considered
as the most accurate model out of the nine considered in this study. It was observed that
reduced polynomial and van der Waals models are stable in the strain range between 0 to
0.3, the Ogden model is stable and accurate in the strain range between 0 and 0.75, two-term
polynomial and Yeoh models are accurate and stable in the strain range between 0 and 1.5,
and the Marlow model is stable and accurate in the strain range between 1.5 and 3.2.

6.2. Biaxial Tensile Simulations

The simulation results for the biaxial tensile test did not follow model predictions for
high strain value for most of the material models considered. This was mainly due to the
shape of cruciform specimen used for the simulations of this work. The biaxial mechanical
test generally uses square hook form [20] and, as demonstrated by Avanzini [21], the biaxial
stress for different types of specimens would result in different model parameter values.
The von Mises stress contour shown in Figure 17 highlights a stress concentration effect
similar to the one observed by Avanzini [21]. The central section of the cruciform specimen
cannot uniformly deform, resulting in stress levels different to those attained in square
hook form. It was also observed that biaxial simulations were not converging for larger
strains when tetrahedral elements and either of the models among Marlow, Mooney–Rivlin,
or Yeoh were used. Moreover, the Yeoh model did not converge when hexagonal elements
were used, suggesting that the model instability might contribute to the convergence issue
as well.
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The biaxial simulation outcomes for the two polynomial term, Mooney–Rivlin, and
van der Waals models exhibited deviations from the trends predicted through curve fitting



Designs 2023, 7, 135 16 of 19

for both hexagonal and tetrahedral elements. Additionally, it was noted that the results
generated by the two polynomial term model did not align with expectations due to
instability. Although the Mooney–Rivlin and van der Waals models maintained stability
across the entire biaxial strain range, the biaxial nominal stress derived from the simulation
results, as depicted in Figures 14 and 15, did not correspond to the biaxial stress observed
in the experimental test data.

The deformations of the central section when applying different hyperelastic models
are shown in Figures 17 and 18. The displacement contour shown in Figure 18a, using the
Arruda–Boyce model, shows a more uniform deformation unlike that of Mooney–Rivlin
and van der Waals models (Figure 19). The non-uniform deformation of the central section
was the reason why the biaxial stress calculated from simulation was diverging from model
predictions, explaining why these two models were not accurate in biaxial simulation.
In addition, arms of the cruciform specimen are affecting the load transfer to the central
section due to the excessive deformation experienced by the arms instead of the central
section [21]. Hyperelastic models which depend on the second deviatoric invariant have
more unwanted deformation compared to models which only depend on the first deviatoric
invariant. This suggests that for biaxial simulations like those performed in this study,
the shape of the specimen should be manipulated to evaluate the biaxial accuracy of the
hyperelastic models.
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The comparison of the different material models predictions against the experimen-
tal results shown in Figures 14 and 15 demonstrates that Marlow, Mooney–Rivlin, neo-
Hookean, polynomial, reduced polynomial, van der Waals, and Yeoh models can follow
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the experimental results in the strain range 0 to 0.1, whilst Mooney–Rivlin, neo-Hookean,
and two polynomial term models can match experimental results also in the strain range
between 0.1 to 0.3.

6.3. Planar Shear Simulations

Tetrahedral elements in planar shear simulation provided a close match to hexagonal
elements. However, most simulations using tetrahedral elements except van der Waals and
Mooney–Rivlin models did not converge in the same strain range as hexagonal elements.
Comparing the deformation of the tetrahedral and hexagonal meshes shown in Figures 20
and 21, an asymmetric response is observed for the tetrahedral mesh due to the asymmetric
reduction in thickness. The asymmetric reduction in thickness makes the simulation
converge at higher shear strain challenging. This also suggested that tetrahedral elements
used to model planar shear deformation would produce unrealistic results. The hexahedral
elements produced, instead, symmetric deformation and did not show any issue with
convergence during simulation.
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shear load.

The comparison of the different material models predictions against the experimental
results shown in Figures 14 and 15 demonstrates that Marlow, Ogden, reduced polynomial,
van der Waals, and Yeoh models can follow the experimental results in the strain range
0 to 0.5 whilst the Marlow model can match experimental results also in the strain range
between 0.5 and 1, the reduced polynomial model can match also in the strain range
between 1.1 and 1.6, and the two polynomial term model matches experimental results in
the range 1.9 and 3.2.

7. Conclusions

• The material parameters from each hyperelastic model were employed to create stress–
strain prediction curves for the material element. Through uniaxial, biaxial, and planar
shear simulations, several observations were made:
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• By comparing two-term polynomial model’s uniaxial simulation results shown in
Figures 14–16, the Drucker’s stability of hyperelastic models emerged as a critical
factor, significantly influencing the accuracy and reliability of the results.

• By comparing test data with numerical simulations results in Figures 14 and 15, it
became evident that each hyperelastic model can accurately describe the material
behaviour in a different strain range. In particular:

• For uniaxial tensile, reduced polynomial and van der Waals models are stable in the
smaller strain range (0 to 0.3) whilst two-term polynomial and Yeoh models are stable
in a larger range between 0 and 1.5.

• For biaxial tensile, all the nine models investigated here can accurately predict the
material behaviour up to 0.1, with Mooney–Rivlin, neo-Hookean, and two polynomial
term models that can also provide an accurate response in the strain range between
0.1 and 0.3.

• For planar shear, all the nine models investigated here can accurately predict the
material behaviour up to 0.5, with the Marlow model that can predict the response
in a strain range up to 1, the reduced polynomial model that can match also in the
strain range between 1.1 and 1.6, and the two polynomial term model that matches
experimental results in the range of 1.9 and 3.2.

• From the biaxial simulation results shown in Figures 18 and 19, it can be concluded
that the geometry and configuration of the specimen used in the biaxial test dictates
the maximum biaxial stress levels achievable in simulations before instability occurs.
For this reason, divergence between biaxial tensile test and simulation results for
biaxial strain greater than 0.3 is observed as shown in Figures 14 and 15.

• Hexagonal elements allowed for a greater shear strain range (approximately 30%
greater) compared to tetrahedral elements, as observed comparing Figures 14 and 15.
In addition, tetrahedral elements might pose simulation convergence challenges due
to excessive distortion in higher shear strain scenarios as shown in Figure 20.
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