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Abstract: The primary benefit of metamaterials is that their physical and mechanical properties can
be controlled by changing the structure geometry. Numerical analysis tools used in this work offer a
few advantages over full-scale testing, consisting of an automated process, as well as lower material
and time costs. The investigation is concerned with the behavior of unit cells of the tetrachiral
mechanical metamaterial under uniaxial compression. The base material is studied within an elastic
mathematical model. The influence of topological defects of the unit cell on the metamaterial
properties is studied for the first time. Defects, and especially topological defects, play a decisive
role in the mechanical behavior of materials and structures. The unit cell without defects reveals
orthotropy of properties. Torsion of a cell with a chiral structure is induced by the rotation of all
tetrachiral walls, and therefore it is sensitive to the introduction of defects. There are cases of increased
torsion as well as of no compression–torsion coupling effect. In the latter case, the unit cell experiences
only shear. The effective Young’s modulus is calculated to vary in the range from 23 to 57 MPa for
unit cells of different topologies. With the successive introduction of defects in two walls, the studied
characteristics increase, correlating with each other. A further increase in the number of defects affects
the characteristics in different ways. The introduction of two more defects in the walls decreases
torsion and increases Young’s modulus, after which both characteristics decrease. The introduction
of topological defects in all walls of the unit cell leads to the orthotropic behavior of the cell with the
opposite sign of torsion.

Keywords: mechanical metamaterial; tension–torsion coupling; compression–torsion properties;
deformation mechanism; finite element simulation; architected cellular metamaterials; microstructure–
property relationship

1. Introduction

In the last few decades, great interest has been expressed by researchers and rep-
resentatives of high-tech industries in metamaterials. A separate class of metamaterials
is mechanical metamaterials [1–3]. Crystal lattice cells consist of atoms or ions, while
metamaterials are composed of much larger cells, orders of magnitude larger than the
atom [4]. In fact, mechanical metamaterials are structures composed of certain blocks or
elements [3,5]. The metamaterial structure with a great number of such elements can be
considered an effective continuous medium [6]. The term “metamaterial” is used for media
with effective properties not found in conventional materials [7]. Thus, chiral metamate-
rials are characterized by torsion under uniaxial loading [8], which is referred to as the
tension/compression–torsion coupling effect. This allows the chiral metamaterial to be
treated as a micropolar medium [9]. Chirality is a property of asymmetry when an object
cannot be mapped to its mirror image by rotations and translations alone. Chirality can
be either left-handed or right-handed [10]. A simple chiral element has a central ring and
ligaments extending from it [11]. The number of ligaments determines the name of the
chiral structure.
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For mechanical metamaterials, it is of interest to study their unusual properties and
elastic characteristics, such as (1) Young’s modulus, (2) shear and bulk moduli of elasticity,
and (3) Poisson’s ratio [4], symmetric or even asymmetric effective mass density can be
physically realized as well [12].

Metamaterial, taken as an effective medium with averaged effective properties, can be
described within composite mechanics using the procedure of homogenization of heteroge-
neous materials with a periodic or random structure [13].

The analogy between classical and metamaterials can be extended to the presence
of defects in the studied objects. Plasticity physics extensively studies various types of
defects in the crystal structure [14]. On the basis of the analogy between metamaterials
and spin systems with ferromagnetic and antiferromagnetic interactions, Meeussen et al.
developed an approach to the introduction and analysis of mechanical defects in two- and
three-dimensional structures, as well as in arbitrary cells [15]. Consideration for topological
defects will enable the control of mechanical properties of metamaterials [16], as well as
possible active wave propagation control in metamaterials [12]. The targeted design of
microstructure architectures allows the development of materials with optimum mechanical
and new functional properties [17,18]. The optimum structural ratios are desirable for use
in engineering [1] and biomedicine [19].

The development of orthotropic metamaterials is currently of considerable interest.
They are needed in important fields, such as the development of the multimodal resonator
combining translational and rotational modes [20]. In addition, metamaterials open up
new avenues for broadband sound insulation. The results obtained for two-dimensional
chiral metamaterials demonstrate the possibility of designing the micromechanical mor-
phology that provides the desired macroscopic behavior [21]. The orthotropic behavior of
metamaterials also affects the bearing capacity of related structures, which should meet the
requirements for lightness and high rigidity [22].

Without loss of generality, we can assume that cellular metamaterials have two levels
of structural hierarchy. The lower level is represented by a unit cell. As the number of cells
increases, the next level of structural hierarchy is considered, i.e., a theoretically continuous
medium on the macroscale [23].

Cellular metamaterials consist of a set of unit cells. These cells are connected to each
other in a certain way. If the fact that cells are connected by the overlapping method [24]
is ignored, a unit cell of the mechanical tetrachiral metamaterial can be taken as the
representative volume element.

The present work is devoted to the study of the metamaterial with a tetrachiral
structure. The object of investigation is its cubic unit cell, with one ring and four ligaments
in each wall. Walls are connected by ligaments at the vertices of the unit cell. The aim of
this work is to explore the influence of topological defects on the mechanical response of
tetrachiral metamaterials. Attempts are made to find a correlation between the effective
mechanical properties of a unit cell of the tetrachiral metamaterial and its microstructural
features in order to ensure the programmability of the metamaterial properties. Particular
attention is given to the retention of the orthotropy of mechanical properties. The influence
of the architectural transformation of one wall of the unit cell on its mechanical response
was investigated in the previous work [25]. The novelty of the present paper is in the study
of the influence of successive transformations of all walls of the unit cell.

The rest of the paper is organized as follows. Section 2 provides the materials and
methods, including information about the tetrachiral structure and unit cell of the metama-
terial, properties of the base material from which the metamaterial is built, the mathematical
formulation of the problem and boundary conditions, as well as a description of the numer-
ical model for simulation. Section 3 summarizes the results obtained in this computational
study on the mechanism of structure rotation and sample torsion and the effective Young’s
modulus of the metamaterial. Section 4 discusses the correlation between the abovemen-
tioned characteristics of the metamaterial, and Section 5 concludes the paper.
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2. Metamaterial Structure and Numerical Model
2.1. Tetrachiral Structure and Unit Cell of the Metamaterial

A tetrachiral structure of the unit cell of the metamaterial is shown in Figure 1. It is
characterized by five parameters: wall length l and thickness h, ligament width t, outer
radius r2, and inner radius r1 of the ring. Parameters of the tetrachiral structure used in the
study are presented in Table 1.
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lating the mechanical response of a unit cell, which is assumed to consist of structural 
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Figure 1. Tetrachiral structure of the metamaterial.

Table 1. Tetrachiral structure parameters used in the study.

l h t r2 r1

0 mm 5 mm 5 mm 17.5 mm 12.5 mm

A two-dimensional tetrachiral structure is formed in a solid model with thickness
h by extrusion. The unit cell is the smallest repetitive volume of the cellular material,
which is composed of specially designed geometric elements that form the structure of the
chiral metamaterial. To create a unit cell of the metamaterial, two-dimensional tetrachiral
elements should be formed into a three-dimensional figure, a cube in our case. A simple
example of the formation of such a cell is shown in Figure 2.
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2.2. Mathematical Model

As mentioned earlier, a metamaterial consisting of unit cells exhibits certain effective
properties at the macro level. These effective characteristics can be determined by simulat-
ing the mechanical response of a unit cell, which is assumed to consist of structural elements
of the metamaterial. These structural elements include a set of connected rectilinear and
curvilinear beams, which are made of the base material, namely, a conventional isotropic
material or a solid continuous medium. Therefore, the continuum mechanics approach can
be used for this purpose.



Designs 2023, 7, 129 4 of 12

To simulate the deformation of the unit cell of the tetrachiral metamaterial, the bound-
ary value problem is considered for the system of elastic equations for the fields of dis-
placements ui and stresses σij in a three-dimensional formulation. The system includes
equilibrium equations (1), Cauchy relations (2) for determining strains by displacements,
and constitutive relations (Hooke’s law) (3) relating stresses to strains:

σij,j = 0, (1)

εij =
1
2
(
ui,j + uj,i

)
, (2)

σij = λ·δijεkk + 2·µ·εij. (3)

Here, σij is the stress tensor component, εij is the strain tensor component, ui is the
displacement vector component, λ and µ are the Lamé constants, δij is the Kronecker delta,
and the subscripts with a comma denote the partial derivative with respect to the coordinate
i, j = 1, 2, 3.

The Lamé constants are related to the elasticity modulus E and Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

.

The base material is assumed to be isotropic and homogeneous, and it is therefore
characterized by two material constants. The elastic constants are assumed to have the
following values: Young’s modulus E = 2.6 GPa and Poisson’s ratio ν = 0.4. These values
correspond to acrylonitrile butadiene styrene (ABS) plastic. Note that the effective proper-
ties of metamaterials depend, to a large extent, not on the elastic modulus values of the
base material, but on the macrostructural geometry of the metamaterial.

2.3. Boundary Conditions

Here, consideration is given to the uniaxial compression of the unit cell. One of
the walls has rigid boundary conditions, at which zero displacements are set. Mixed
boundary conditions are imposed on the opposite wall, allowing for the cell compression
perpendicular to this wall and for displacement in the wall plane (the corresponding stress
vector components are zero). Thus, this wall can not only move and change its size but
also rotate due to ligament deformation and ring rotation. The rest walls have free stress
boundary conditions.

For a unit cell compressed by 3% along the Y-axis (Figure 3), these boundary conditions
can be written as the following formulae:

ui = 0 at xi ∈ S1; u2 = −0.03l and σ12 = σ23 = 0 at xi ∈ S2; σijnj = 0 at xi ∈ S3,

where xi is the spatial coordinates, S1 is the outer surface of the fixed wall, l is the size of
the unit cell, S2 is the outer surface of the loaded wall, S3 is the surfaces of the side walls of
the cell and all other surfaces of rings and ligaments that do not belong to S1 and S2, and nj
is the component of the normal vector to surface S3.

It is assumed that the initial stresses and strains are equal to zero:

σij(t0) = εij(t0) = 0.
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2.4. Computational Model

Numerical simulations are performed by finite element modeling using the commercial
ANSYS Ansys WB 2020R2 software. A unit cell is considered the system of rods or beams,
which is modeled as a set of three-dimensional solid elements in finite element calculations.
The sample is deformed without contact interaction of its constituent elements. Simulation
is implemented within large deflection theory.

When developing a numerical model, it is important to perform the mesh convergence
analysis to obtain reliable results, as well as to reduce computational costs. The mesh
convergence study suggests that physics-based finite element size gives the best estimates
of mechanical properties within the context of this work. Since our main interest is in the
description of the torsion of a metamaterial sample, the mesh convergence is analyzed in
terms of the deflection of the upper wall of the sample. During the analysis, the element size
decreased from 5 to 0.4 mm. Three-dimensional finite element models consist of tetrahedral
elements, as shown in Figure 3. According to the mesh convergence analysis performed,
the average mesh element size is 1 mm.

To make sure that the size of the generated mesh is chosen correctly, extrapolation
methods can be used for error calculation [26]. The results of the extrapolation analysis
show that the computational error at the chosen mesh spacing is 0.37%.

3. Results

The problem to be solved in the present paper is the influence of topological defects in
the unit cell of a metamaterial on its properties. The quantities to be determined are the
nontrivial response, i.e., torsion of samples, and the effective Young’s modulus.

3.1. Mechanism of Structure Rotation and Sample Torsion

A distinctive property of the tetrachiral metamaterial is the tension/compression–
torsion coupling effect during its deformation. Uniaxial loading of a unit cell is accom-
panied by its torsion about the loading axis (compression–torsion coupling effect). This
process is caused by the rotation of tetrachiral structures. The rotation of each tetrachiral
structure is determined by the direction of chirality. Since the unit cell has six walls, the
rotation of each wallωi contributes to the total torsion α:

α = α(ωi), i = 1, 2, . . ., 6.
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The conventional analysis of deformation mechanisms is based on kinematic structural
analysis [27]. To do this, it is necessary to know the displacements of each part of the
structure under deformation. In the investigation of the compression–torsion coupling
effect, the vector of the sample torsion is expressed based on the displacement formula [28].
The torsion angle in degrees can also be determined from deflection by the formula [29,30].

αy =

(
180
π

)
arcsin

(
2∆x

l

)
=

(
180
π

)
arcsin

(
2∆z

l

)
,

where ∆x and ∆z are the displacements of the wall vertices along the X- and Z-axes,
respectively, and l is the length of the unit cell.

A unit cell with a regular arrangement of tetrachiral structures (Figure 4) is assumed
to be defect-free (a cell without topological defects) and is denoted by ω0. When look-
ing from within the cell (Figure 4a), the direction of chirality is the same on each wall
(counterclockwise).
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Under uniaxial loading along one of the three orthogonal axes, the vertices of the
moving wall of a cubic cell are displaced along the other two axes. For example, under
loading along the Y-axis, the vertex deflections along the X- and Z-axes due to the cell
torsion are equal and take on the values of +1.51 mm (in the positive direction) and
−1.51 mm (in the negative direction). Similar values of vertex displacements are observed
under loading along the other two axes.

Next, we study the compression–torsion coupling effect in chiral structures with
topological defects. Topological defects reveal themselves in the change of the direction of
chirality in the walls of the cubic cell (Figure 5). Changes occur in the following sequence:

regular (initial) unit cell,ω0 (Figure 4);
the direction of chirality changes in the upper wall,ω1 (Figure 5a);
in unit cellω1, the direction of chirality changes in the lower wall,ω2 (Figure 5b);
in unit cellω2, the direction of chirality changes in the left wall,ω3 (Figure 5c);
in unit cellω3, the direction of chirality changes in the right wall,ω4 (Figure 5d);
in unit cellω4, the direction of chirality changes in the front wall,ω5 (Figure 5e);
in unit cellω5, the direction of chirality changes in the back wall,ω6 (Figure 5f).
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Under the uniaxial loading of a metamaterial unit cell, tetrachiral structures in the
walls rotate and contribute to the total torsion of the cell. The initial (defect-free) unit cell
can be described as an orthotropic body. The introduction of topological defects associated
with changes in the wall chirality affects the cell torsion value. Moreover, torsion values
depend on the loading direction. Therefore, the response of unit cells with the same
topological defects to compression is studied under loading along three orthogonal axes
(Figure 6). Figure 6 shows how this influences the compression–torsion coupling effect.
Both an increase and a decrease are observed in this effect. In structures with certain
topological defects, displacements are asymmetric. One such example is the case of loading
along the Z-axis and deflection along the Y-axis, which is plotted on the far right of Figure 6.
Under loading of unit cell ω3, the positive deflection along the Y-axis increases by 65%.
The negative deflection also changes; it decreases by 24%, which is disproportional and
indicates that the cell experiences not so much torsion as shear. In the transition fromω3 to
ω4, the absolute values of both the maximum and minimum deflections increase by 36% as
compared to initial cellω0. Thus, the range is kept symmetrical.
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Figure 6. Deflection of the surface with the nonzero kinematic boundary condition under loading in
the three orthogonal directions (X, Y, Z).

Then, we focus on the case of loading along the Y-axis (Figure 7) to clarify how the
topological defects affect the compression–torsion coupling effect of the unit cell. The
change in the direction of rotation of the upper wall of unit cellω1 leads to a symmetrical
increase of the absolute values of deflection in the XZ plane. It is seen that unit cells
with defects in the upper and side walls rotate in the same direction, which enhances the
compression–torsion coupling effect (∆ = 1.71 mm). The change in the direction of rotation
of the lower wall further increases torsion (2.05 mm). The change in the rotation of the left
wall reduces the deflection to 1.62 mm as it hinders the cell torsion. The rotation of the right
wall reduces the compression–torsion coupling effect from the previous case (1.39 mm).
The change in the front wall results in almost zero deflection (0.16 mm). This is due to the
symmetrical rotation of the front and back walls, which causes the sample shear. The upper
wall is shifted relative to the lower one in the negative direction along the X-axis. At last,
the change in the back wall leads to the regular arrangement of the wall structures. In this
case, the value of torsion is equal to the initial one, but its direction reverses.
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The introduction of defects causes a wide variety of changes in mechanical behavior.
As shown in [14,15,31–33], this affects the physical and mechanical properties. Therefore,
the dependence of Young’s modulus on the topological defects in the unit cell of the
metamaterial will be considered below.

3.2. Relative Effective Young’s Modulus of the Metamaterial, E/Ebm

The phenomenon of torsion of tetrachiral metamaterials under uniaxial loading makes
it possible to change the effective Young’s modulus by choosing the optimum cell-to-ring
ratio. Figure 8 shows the value range of the effective Young’s modulus E relative to Young’s
modulus of the base material, Ebm. The effective Young’s modulus is determined by the
following formula:

E =
F
S
∆l
l

,

where F is the support reaction force of the fixed wall, S is the cross-section of the cubic
unit cell, ∆l is the displacement after longitudinal compression by 3%, and l is the unit
cell length.
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Let us consider the case of loading along the X-axis. Three levels are distinguished
in the E values. The introduction of one topological defect leads to an increase in Young’s
modulus by 34%. Further changes (unit cells ω2 and ω3) result in an increase in E by
124% and 148% as compared to the regular structure, respectively. In this case, the specific
volume of the base material changes insignificantly, tending to a value of 0.2:

ρrel =
ρmm

ρbm
=

mbm
Vs

ρbm
=

Vbm ·ρbm
l·l·l
ρbm

=
Vbm
l·l·l =

25147 mm3

50 mm·50 mm·50 mm
= 0.2,

where ρmm is the average density of the metamaterial, ρbm is the density of the base material,
mbm is the mass of the base material, Vs is the sample volume (volume of the base material
and pore space), Vbm is the volume of the base material, and l is the unit cell length.

The data derived for the relative Young’s modulus of the metamaterial under loading
along the Y- and Z-axes turn out to be symmetrical with respect to the vertical line that
separates them. Similar dependencies were also observed in Figure 6, particularly in the
following cases: (1) loading along axis Y and deflection along axis Z; (2) loading along axis
Z and deflection along axis Y. Most likely, this is due to the “symmetrical” relationship
between the loading axis and the set of walls with defects.

3.3. Further Actions

In this paper, an attempt is made to describe the influence of topological defects in the
unit cell of a metamaterial on its properties. The analysis results can be used to develop
algorithms for considering such rearrangements in the metamaterial structure. Then, one
can proceed to defects of a larger length scale in metamaterial samples. It is expected that
this will help develop the laws of topological optimization of the cellular structures of
metamaterials. In future works, we are planning to study other topological defects, in
particular in metamaterial samples.

4. Discussion

As was demonstrated in [25], a defect-free unit cell of tetrachiral metamaterial pos-
sessed the orthotropy of mechanical properties. The results presented here show that this
is not the case for unit cells with topological defects in their walls.

The derived numerical results can be used to determine the correlation of the two
quantities under study (deflection and effective Young’s modulus). Table 2 shows how
the studied characteristics change during topological rearrangements, revealing their
correlation. It is seen that, as the number of topological defects in a unit cell grows to two,
the deflection from the initial position increases. At the same time, there should be an
increase in the force to ensure the corresponding strain. With a change in the chirality of the
third wall (ω3), the deflection value decreases, but the expected decrease in E does not occur.
A further increase in the number of defects affects the studied characteristics in different
ways. The introduction of two more defects in the walls leads to a decrease in torsion and an
increase in Young’s modulus, after which both characteristics decrease. This phenomenon
is caused by the fact that adjacent chiral structures rotate in different directions, which
complicates the cell deformation, thus preventing the compression–torsion coupling effect.
It is expected that, when the chirality of all walls changes, the effective Young’s modulus is
equal to that of the initial structure, and the deflection is equal in absolute value but has
the opposite sign.

Table 2. Tetrachiral structure parameters.

Topological Defect ω0 ω1 ω2 ω3 ω4 ω5 ω6

Deflection, mm 1.51 1.71 2.05 1.62 1.39 0.16 –1.51
Young’s modulus, MPa 23 36 44 43 52 31 23
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Ji et al. [34] and Pabst and Gregorová [35], in a preview of scaling laws, suggested that
the relative effective mechanical properties of the porous lattice structures are functions
of their bulk porosity and microstructural characteristics [3,8], and this suggestion is
supported by other related works [23,36], etc. That is why the results in Table 2 are given
for cells of the same specific volume (porosity).

5. Conclusions

This paper dealt with the behavior of a mechanical tetrachiral metamaterial. The key point
was the introduction of topological defects into the unit cell (changing the direction of chirality).
To study the influence of the introduced topological defects, consideration was given to the
mechanical behavior of unit cells, in particular, the rotation of their walls. The influence of these
structural defects on the effective elastic mechanical properties of tetrachiral cellular structures
was also found. The correlation between the elastic effective mechanical properties and the
topological arrangement of tetrachiral structures was determined.

Under loading along three orthogonal axes, a defect-free unit cell did not change its
physical and mechanical properties, which indicates the orthotropy of properties. The same
properties were found in the cell with defects in all six walls. However, the torsion in this cell
was opposite in sign to that in the cell without defects. Consequently, this unit cell can also be
treated as orthotropic. Intermediate structures led to corresponding changes in physical and
mechanical properties. A change in the direction of chirality in the cell walls perpendicular to
the loading axis can either increase or decrease the compression–torsion coupling effect.

The influence of different topological defects as well as of loading along three orthogo-
nal axes on the effective Young’s modulus was studied. The highest value of E was found
to be 57 MPa.

The present paper points to the necessity of consideration for the metamaterial struc-
ture as well as for its topological arrangement, in particular topological defects. The results
obtained confirmed the close relationship between microstructural geometry and mechani-
cal deformation. The introduction of topological defects into metamaterial structures plays
a key role in controlling their behavior. It was shown that a topological defect in a unit cell
of a tetrachiral metamaterial strongly determines its torsional behavior.
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