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Abstract: A variety of bearing profile designs can be used to improve the performance of a rotor–
bearing system in severe conditions, such as operating with a shaft misalignment. Misalignments
usually occur due to a deformation of the journal, bearing wear, and installation errors. This paper
investigates the effects of bearing design parameters under a 3D journal misalignment for a wide range
of length-to-diameter ratios to consider short, finite-length, and long journal bearings. Furthermore,
the dynamic response of the system to journal perturbation considering linear and parabolic bearing
profiles is also investigated. A numerical solution is identified based on the finite difference method,
and the equations of motion are derived based on a linear stability analysis in which the fourth-order
Runge–Kutta method is used to obtain the journal trajectories. The results show that both profiles
help to enhance the rotor–bearing system’s performance regarding the lubricant layer thickness
and pressure distribution, in addition to the shaft critical speed over the entire considered range of
length-to-diameter ratios. This enhancement reduces the misalignment negative effects on the system
performance. The response of the rotor-bearing system to journal perturbation in the case of the
parabolic profile are very close to the perfect alignment case in comparison with a linear modification.

Keywords: three-dimensional misalignment; profile modification; numerical solution; dynamic
response; position perturbation

1. Introduction

A journal bearing, as an essential transmission component in industrial applications,
typically operates at a wide range of rotational speeds and under heavy load conditions.
This type of bearing is used widely in rotating machineries, such as turbines, ship stern
shafts, wind power, and many other applications. Furthermore, their tribological charac-
teristics have a direct effect on the safety and reliability of the rotor system [1]. However,
the operation of this type of bearing suffers from the presence of misalignments, which
occur when the shaft’s axis deviates from its parallelism with the axis of the correspond-
ing bearing. Misalignments are well known to be generated for many reasons, such as
thermal expansion, installation errors, external loads, and manufacturing errors [2]. As a
result, journal misalignment will, in the end, lead to edge wear due to rough contact [3].
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This operation condition negatively affects the general lubrication performance of a rotor–
bearing system [4]. Working under severe levels of misalignment reduces the life of a
bearing and, subsequently, results in the failure of the mechanical system [2–5]. Therefore,
the minimization of the negative effects of misalignment at the edges of a bearing is an
essential subject.

The subject of journal bearing misalignments has drawn significant attention from
researchers for decades. Ebrat et al. presented a detailed analysis of the evaluation of the
dynamic characteristics of a journal bearing with consideration of bearing deformations [6].
The consequences of shaft deformations on the characteristics of journal bearings were
studied by Sun and Gui [7], who found that journal misalignment has negative effects on
oil pressure and film thickness distributions. They also found that the moment required
to achieve a stable operation increases significantly at large eccentricity ratios and high
levels of misalignment. The effect of misalignment on the tribological performance of a
journal bearing with a textured surface was investigated by Manser et al. [8]. Their results
showed that an increase in the degree of misalignment resulted in increases in the frictional
force and maximum pressure. The influences of misalignment on the performance of
a journal bearing under a variety of operating conditions and bearing surface features
were also investigated by researchers [2,9,10], who found a direct relationship between the
drawbacks of the characteristics of the bearings and the level of misalignment. Jamali and
Al-Hamood [11] used a 3D model to investigate the effects of misalignments in journal
bearings. Their study showed that a 3D misalignment results in a sharp drop in the
thickness of the lubricant and a corresponding significant increase in pressure levels. An
interested study presented by Song et al. [1] found that the frictional force increases clearly
as a result of a shaft deviation in the area of the mixed lubrication regime. A more general
model for the journal bearing problem was developed by Padelis G. et al. [12] in order to
find relationships among several parameters, such as the misalignment level, the coefficient
of friction, and the resulting wear depth. They solved this problem numerically using a
wide range of the Sommerfeld number.

Modifications to the bearing profile can be used to reduce the effect of misalignment.
One of the attempts to improve the bearing profile was suggested by Nacy [13], who
experimentally assessed the effect of edge chamfering on a bearing’s side leakage. Another
attempt was made by Bouyer and Fillon [14], who examined defects in the profile of a
bearing under misalignment torque. Strzelecki [15] modified awhole bearing’s profile
using a hyperboloidal curve. It was found that such a change in the bearing’s profile is
useful when the journal bearing is working under misalignment and carrying extreme
loads. The stability of a journal bearing with variable geometry was studied by Chasalevris
and Dohnal [16]. More recently, the axial profile parameters of a bearing were investigated
by Ren et al. [17], who found that using a quadratic profile enhanced the general the journal
bearing performance. An extensive review of simulations of the journal bearing lubrication
problem was presented by Allmaier and Offner [18]. Several topics were addressed in
their study, such as polymer coatings, the lubrication regime, and the effect of using low-
viscosity lubricants. Their review emphasized that the safe operation of journal bearings is
still encountering new challenges, which therefore require more developments in solution
methods for overcoming the previously mentioned problems. Atlassi et al. [19] investigated
the combined effects of surface roughness and a ferrofluid lubricant on the load-carrying
capacity and many other aspects of finite-length journal bearings.

Previous works did not investigate the effects of different forms of bearing profile
modifications on the characteristics of misaligned journal bearings. Therefore, this paper
addresses these effects by considering a wide range of bearing length-to-diameter ratios,
which means studying the effects of the geometrical design parameters on short, finite-
length, and long journal bearings. The bearing profile was modified at the edges using
linear and curved modifications, and comprehensive comparisons between the results of
the two types of profiles are presented. A 3D general misalignment model was used in this
work to accurately simulate misalignments in the vertical and horizontal planes, using a
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numerical solution where the finite difference discretization was considered. Furthermore,
the rotor dynamic behavior under journal position perturbation was also considered in the
analyses on the base of linear stability analyses where the 4th-order Runge–Kutta method
was used to determine the time response of the rotor–bearing system.

2. Equations Related to the Hydrodynamic Lubrication Regime

Figure 1 shows a perfectly aligned journal bearing where the shaft axis is parallel to the
bearing axis. In such an ideal case, the resulting gap (lubricant layer thickness) between the
shaft surface and the bush inner surface is given by Equation (1), and the general solution
is governed by the well-known Reynolds equation (Equation (2)) [11,20].

h = c(1 + εr cos(θ −∅)) (1)

∂

∂x

(
ρh3

12η

∂p
∂x

)
+

∂

∂z

(
ρh3

12η

∂p
∂z

)
= Um

∂ρh
∂x

+
∂ρh
∂t

(2)

where h represents film thickness, c is radial clearance, εr (e/c) is the eccentricity ratio, e
is the distance between the shaft and bearing centers, ∅ represents the attitude angel, θ is
the position angle, p represents the pressure, ρ is density of the lubricant, η is lubricant
viscosity, Um is mean velocity, and t is time.
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In this work, the solution of Equation (2) (this equation is a partial differential equation)
is based on the use of the Reynolds boundary conditions method, which requires the
satisfaction of the following conditions [21]:

n The pressure value: p = 0 at position θ = 0

n The pressure gradient and the pressure value: ∂p
∂θ = p = 0 at position θ = θc.

where θc is the position of the cavitation zone, which can be determined via an iterative
solution [21,22].

The current model is written in a dimensionless form using the following relations:

H =
h
c
= Rθ, P =

p− po

6ηω

(
c2

R2

)
, and Z =

z
L

Using these variables, Equations (1) and (2) are given as follows,

H = 1 + εr cos(θ −∅) (3)

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
− ∂H

∂θ
= 0 (4)
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where:

α =
1

4(L/D)2 =
R2

L2

The supported load in a dimensionless form (W = w
6ηωRL

( c
R
)2
) is given as follows,

W =

√
Wr

2
+ Wt

2 (5)

where

Wr =
∫ 1

0

∫ θcav

0
P cos θ dθ dz (6)

Wt =
∫ 1

0

∫ θcav

0
P sin θ dθ dz (7)

The equation of the attitude angle is [23]:

∅ = tan−1
(

Wt

Wr

)
(8)

3. Three-Dimensional Misalignment Model

The three-dimensional model of misalignment that shown in Figure 2 identifies the de-
viations in the vertical and horizontal planes, representing a comprehensive misalignment
description. This model is essentially adopted from a previous work [11]. The following
equations are used in this model:

∆v(Z) = ∆vo (1− 2Z) f or Z ≤ 1/2
∆v(Z) = ∆vo (2Z− 1) f or Z > 1/2
∆h(Z) = ∆ho (1− 2Z) f or Z ≤ 1/2
∆h(Z) = ∆ho (2Z− 1) f or Z > 1/2

(9)
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These equations are also written in a dimensionless form for the purpose of consistency
with the other equations used in the current work, where ∆ = δ/c and Z = z/L, as ex-
plained previously. This modeling of the misalignment provides a more realistic illustration
for both the horizontal (∆h(z)) as well as the vertical (∆v(z)) journal deviations, which
are given in terms of the position: Z along the bearing width and the maximum vertical
(∆vo) and horizontal (∆ho) deviations at the bearing edges.

As a result of shaft deviation, attitude angle and the eccentricity are no longer constant
along the z direction as in the ideal case, and they vary according to the Z position, as
follows [11],

∅(z) = tan−1 em sin∅m + δh(z)
em cos∅m − δv(z)

when z ≤ L/2

e(z) =
√
(em cos∅m − δv(z))2 + (em sin∅m + δh(z))2 (10)
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∅(z) = tan−1 em sin∅m − δh(z)
em cos∅m + δv(z)

when z > L/2

e(z) =
√
(em cos∅m + δv(z))2 + (em sin∅m − δh(z))2

where
∅m is the attitude angle at z = L/2.
em is the eccentricity at z = L/2.
These equations and Equation (1) can be used to determine the gap resulting from the

misalignment at any position in the z direction.

4. Design of the Bearing Profile

The presence of misalignment causes a severe reduction in the layer thickness of the
lubricant at the edges of the bearing, as explained previously. This is due to the resulting
slope of the shaft in comparison with the axis of the bearing. The thinning of the gap
between the surface of the shaft and the inner surface of the bearing can be overcome to an
acceptable level by modifying the design of the bearing profile over the positions where
the misalignment causes the most drop in the levels of the lubricant layer thickness. This
work considers two types of profile modification, which are the curved modification and
the linear modification. In the former type, the bearing profile’s slope continues at the
modification’s start position, which requires at least a second-order curve, while this is not
the case in the latter type (linear). These two design forms are shown in Figure 3. Figure 3a
shows the curved type, and Figure 3b illustrates the linear type of modification. In both
forms, the modification is performed over a distance zd along the bearing width from both
sides and over a distance cd in the radial direction.
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Using a dimensionless form for the profile modification, where Y = zd/L and
Γ = cd/c, the resulting gap due to this modification is a function of the Z position, which
can be given as follows,

n Curved type:
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Hd(Z) = Γ

(
1

Y2 Z2 − 2
Y

Z + 1
)

for Z ≤ Y

Hd(Z) =
Γ

Y2

(
Z2 − 2(1−Y)Z + (1−Y)2

)
for Z ≥ 1−Y (11)

Hd(Z) = 0 for Y < Z < 1−Y

n Linear type:

Hd(Z) = Γ

(
1− Z

1
Y

)
for Z ≤ Y

Hd(Z) = Γ

(
1 +

1
Y
(Z− 1)

)
for Z ≥ 1−Y (12)

Hd(Z) = 0 for Y < Z < 1−Y

Using the dimensionless forms of the profile parameters with regard to bearing width
(Y = zd/L) and radial clearance (Γ = cd/c) also better visualizes the total material removal
to compensate for the reduced gap due to the 3D misalignment.

In the numerical discretization of the journal bearing problem with the consideration
of the 3D misalignment in addition to the bearing profile change, the film thickness is
identified by the coupling of the related Equations (3) and (9)–(12).

5. Dynamic Characteristics of the Rotor–Bearing System

The determination of the dynamic characteristics of the rotor–bearing system is carried
out in this work based on the theory of linear stability analysis, which essentially linearizes
the nonlinear forces close to the steady state location ((equilibrium state) of the shaft center.

This analysis considers the time-dependent part in the Reynolds equation (Equation (13))
to derive the stiffness and damping coefficients, which will be used later to determine
the critical speed of the rotor in addition to identifying the dynamic response to position
perturbation.

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂z

(
h3

12η

∂p
∂z

)
=

Uj

2
∂h
∂x

+
∂h
∂t

(13)

Equation of the film thickness is given in [24]

h = h0 + ∆x cos θ + ∆y sin θ (14)

The time-dependent term in Reynold equation ( ∂h
∂t ) is written as

∂h
∂t

= ∆
.
x cos θ + ∆

.
y sin θ (15)

The use of the dimensionless variables for Equations (13) and (15) gives

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
=

∂H
∂θ

+ 2(∆
.

Y sin θ + ∆
.

X cos θ) (16)

where
.

X =
R

.
x

Uc
,

.
Y =

R
.
y

Uc
(17)

The hydrodynamic forces in terms of the velocity and displacement in both directions
are [23,25],

Fx = Fx (x, y,
.
x,

.
y)

Fy = Fy (x, y,
.
x,

.
y)

Fx =
∫ 1

0

∫ θc

0
P cos θdθ dZ
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Fy =
∫ 1

0

∫ θc

0
P sin θdθ dZ (18)

From which the total force is F =
√

Fx2 + Fy2.
Therefore, the determination of the eight dynamic coefficients is performed using the

following equations [26],

[k] =
[

kxx kxy
kyx kyy

]
=

[
∂Fx
∂X

∂Fx
∂Y

∂Fy
∂x

∂Fy
∂Y

]
(19)

[c] =
[

cxx cxy
cyx cyy

]
=

 ∂Fx

∂
.

X
∂Fx

∂
.

Y
∂Fy

∂
.

X

∂Fy

∂
.

Y

 (20)

The suggested form for the dynamic coefficients by [25] is used in the current work
as follows

Kxx =
c kxx

F
, Kxy =

c kxy

F
, Kyx =

c kyx

F
, Kyy =

c kyy

F
(21)

Cxx =
c ω cxx

F
, Cxy =

c ω cxy

F
, Cyx =

c ω cyx

F
, Cyy =

c ω cyy

F
(22)

The use of Equations (3), (19) and (20) gives

Kxx =
∫ 1

0

∫ 2π
0 Px cos θ dθ dz

Kxy =
∫ 1

0

∫ 2π
0 Py cos θ dθ dz

Kyx =
∫ 1

0

∫ 2π
0 Px sin θ dθ dz

Kyy =
∫ 1

0

∫ 2π
0 Py sin θ dθ dz

Cxx =
∫ 1

0

∫ 2π
0 P .

x cos θ dθ dz

Cxy =
∫ 1

0

∫ 2π

0
P.

y cos θ dθ dz

Cyx =
∫ 1

0

∫ 2π

0
P .

x sin θ dθ dz

Cyy =
∫ 1

0

∫ 2π

0
P.

y sin θ dθ dz

where
Px =

∂P
∂X

, Py =
∂P
∂Y

, P .
x =

∂P

∂
.

X
, P.

y =
∂P

∂
.

Y
The identification of the eight dynamic coefficients involves calculating the

following derivative,
∂H
∂t = ∆

.
X cos θ + ∆

.
Y sin θ

∂H
∂X = cos θ

∂H
∂Y = sin θ

∂H
∂θ = −∆X sin θ + ∆Y cos θ

Furthermore, the differentiation of the governing equation in relation to
.

X,
.

Y, X and
Y gives

∂

∂θ

(
H3 ∂Px

∂θ

)
+ α

∂

∂Z

(
H3 ∂Px

∂Z

)
= − ∂

∂θ

(
3H2 cos θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 cos θ

∂P
∂Z

)
− sin θ (23)



Designs 2023, 7, 116 8 of 24

∂

∂θ

(
H3 ∂Py

∂θ

)
+ α

∂

∂Z

(
H3 ∂Py

∂Z

)
= − ∂

∂θ

(
3H2 sin θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 sin θ

∂P
∂Z

)
− cos θ (24)

∂

∂θ

(
H3 ∂P .

x
∂θ

)
+ α

∂

∂Z

(
H3 ∂P .

x
∂Z

)
= cos θ (25)

∂

∂θ

(
H3

∂P.
y

∂θ

)
+ α

∂

∂Z

(
H3

∂P.
y

∂Z

)
= sin θ (26)

Determining the pressure derivatives involves a numerical discretization of
Equations (23)–(26) to calculate the eight dynamic coefficients. The determination of
the dynamic response of the journal to position perturbation is performed after calculating
the previously mentioned eight dynamic coefficients. Figure 4 illustrates a schematic draw-
ing of a rotor–bearing system where the equations of motion of this system can be written
as follows [27].

m
..
x′ = −Fx + fex − f sin Ωt (27)

m
..
y′ = −Fy + fey − f cos Ωt + W (28)

where [27,28]
Fx, Fy: bearing forces
f : unbalance force
fex , fey: external loads

x′, y′: axes of whirling around the steady state position.
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The equations of motion ((27) and (28)) can be written using dimensionless variables
as follows

M
..
X
′
= −Fx + Fex − Ru sin T (29)

M
..
Y
′
= −Fy + Fey − Ru cos T + 1 (30)

where

Fx =
Fx

W
, Fy =

Fy

W
M =

m c Ω2

W
and Ru = mu r

Ω2

W
The system’s dynamic response is obtained by solving Equations (29) and (30) [29].

The critical speed is determined from these equations after neglecting all external and
unbalanced forces,

M
..
X
′
+ Fx = 0 (31)

M
..
Y
′
+ Fy = 0 (32)

The bearing forces are given in [25]
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Fx = Kxx X′ + Kxy Y′ + Cxx
.

X
′
+ Cxy

.
Y
′

(33)

Fy = Kyx X′ + Kyy Y′ + Cyx
.

X
′
+ Cyy

.
Y
′

(34)

The substitution of these equations in Equations (31) and (32) and using the following
solution suggested by [24], X′ = Aeiλt and Y′ = Beiλt, we can obtain

(keq− Kxx)
(
keq− Kyy

)
− λ2CxxCyy − KxyKyx + λ2CxyCyx = 0 (35)

where

λ =

√
(keq− Kxx)

(
Keq− Kyy

)
− Kxy Kyx

Cxx Cyy − CxyCyx
(36)

Keq =
Kxx Cyy + KyyCxx − KyxCxy − KxyCyx

Cxx + Cyy
(37)

Ωcrit =

√
keq
λ

(38)

6. Numerical Solution

The numerical solution of a finite-length journal bearing problem under the effect of
3D misalignment and modified bearing profile is performed by discretizing the governing
equations which are the Reynolds equation and the resulting equation of the total gap
due to misalignment and profile variation. The discretization is performed based on the
finite difference method. Then, the resulting equations are solved through the use of the
Gauss–Sedial method under a successive over-relaxation solution. The converged solution
provides the film thickness and the pressure distribution, which are used to determine the
eight dynamic coefficients (stiffness and damping). At this stage, the equations of motion
can now be solved using the fourth-order Runge–Kutta method to determine the dynamic
response under position perturbation. The following equations results, after discretizing
the governing equations, are used to determine the pressure distribution in the iterative
solution,

P(i, j) =
1
β

[
Hb

3 P(i+1, j) + Ha
3 P(i−1, j) + αC2Hc

3 P(i, j+1) + αC2Hd
3 P(i, j−1) − C1H(i+1, j) + C1H(i−1, j)

]
(39)

H(i, j) = (1 + εr(Z) cos(θ(i, j) −∅)) (40)

where C1 = 0.5 ∆θ, C2 = (∆θ/∆Z)2, β = Hb
3 + Ha

3 + α C2Hc
3 + α C2Hd

3 and ∆θ, ∆Z are
steps of discretization.

The numerical solution as well as the discretization of the governing equations were
explained in detail in Reference [11]. The pressure derivative required to determine the
stiffness and damping coefficients in a discrete form is obtained by discretizing Equations
(23)–(26), which is

P(i, j) =
1
ψ

[
(∆θ)2 RHS− Hb

3 P(i+1, j) − Ha
3 P(i−1, j) − αC2Hc

3 P(i, j+1) − αC2Hd
3 P(i, j−1) + C1H(i+1, j) − C1H(i−1, j)

]
(41)

where ψ = −Hb
3 − Ha

3 − α C2Hc
3 − α C2Hd

3.
The right-hand side (RHS) of Equations (23)–(26) is also determined numerically as

follows:

RHS(22) =
(3 cos θb H2

b+3 cos θa H2
a)P(i, j)

(∆θ)2 − 3 cos θb H2
b P(i+1, j)

(∆θ)2 − 3 cos θa H2
a P(i−1, j)

(∆θ)2 +

α
(3 cos θc H2

c +3 cos θd H2
d)P(i, j)

(∆Z)2 − α
3 cos θc H2

c P(i, j+1)

(∆Z)2 − α
3 cos θd H2

d P(i, j−1)

(∆Z)2 − sin θ

RHS(23) =
(3 sin θb H2

b+3 sin θa H2
a)P(i, j)

(∆θ)2 − 3 sin θb H2
b P(i+1, j)

(∆θ)2 − 3 sin θa H2
a P(i−1, j)

(∆θ)2 +

α
(3 sin θc H2

c +3 sin θd H2
d)P(i, j)

(∆Z)2 − α
3 sin θc H2

c P(i, j+1)

(∆Z)2 − α
3 sin θd H2

d P(i, j−1)

(∆Z)2 − cos θ

RHS(24) = cos θ(i, j)
RHS(25) = sin θ(i, j)
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At this step, the solution of the whole equations is performed based on a pressure

convergence criterion of
∑|P(i, j)new − P(i, j)old|

∑ P(i, j)old
< 10−7. After determining the pressure field,

the supported load is determined using numerical integration, and the resulting load is
compared with the applied real load with an accuracy of ∓10−5. If this calculated load is
not within this limit, εr is manipulated, and the whole process of calculating a new pressure
field and film thickness is repeated. After obtaining the pressure and the load convergences,
the 4th-order Runge–Kutta method is used to solve the equations of motion to determine
the system’s dynamic response. Figure 5 shows a flowchart of the solution steps.

Designs 2023, 7, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 5. Main solution steps. 

  

 Yes 

 Yes 

 Yes 

 No 

 No 

Solve for H,  P and W  and ensure pressure convergence   update Er

Wcal = W ?

update Er

Wcal = W ?

Solve for H,  P, W  and ensure pressure convergence  

Mis. and / or New Bearing Design No 

Calculate Dynamic coefficients  

Initial Guess, assume  Er  for aligned case 

Determine Keq and CS

Set the Load and the Mesh size  

 No 
Position Purterbation ?

Solve Eqs. of motion to find trajectory (using Range-Kutta)

Output

 Yes 

Set Geometrical Design Parameters and calculate  Hd(Z).

 Set the L/D ratio 

Start

Figure 5. Main solution steps.



Designs 2023, 7, 116 11 of 24

7. Results and Discussions

This work presents the results in a dimensionless form for the purpose of generality.
They can be easily transformed into a dimensional form using the equations explained in
the previous sections. The results are divided into subsections as follows.

7.1. Effect of Mesh Density and Validation of the Current Model

Figure 6 shows the effect of mesh density on the values of the dimensionless critical
speed and the dimensionless maximum pressure. It can be seen that when the number of
nodes is greater than 16,471, the difference is negligible in the critical speed as well as the
maximum pressure values. However, the number of nodes adopted in this work is 65,341
to minimize any error related to the discretization of the governing equations.
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The results of the current model for the unmodified bearing are compared with
Reference [16], where very good agreement is obtained, as shown in Table 1.

Table 1. The comparison between the results of the current work and the result of Reference [17].

Summerfield
No.

KXX KYY

Ref. [16] Current Work Ref. [16] Current Work

0.319 3.35 3.34 2.10 1.99

1.220 1.62 1.69 2.30 2.21

7.2. Effect of the 3D Misalignment on the Characteristics of the System

Figure 7 illustrates the effects of the 3D misalignment for a wide range of Length/
Diameter ratios (L/D) on the dimensionless maximum pressure (Po) and the dimensionless
minimum film thickness (Ho) when the eccentricity ratio (εr) is 0.6, and the misalignment
parameters are ∆v = ∆h = 0.56. It is well known that, in the case of a perfectly aligned
journal bearing, increasing the ratio (L/D) for the same εr increases the resulting maximum
pressure, as seen in the green bars shown in Figure 7a. The values of Po are 0.227, 0.529,
0.644, 0.858, and 0.928 when the ratios L/D are 0.5, 1.0, 1.25, 2.0, and 2.5, respectively. This
means, in other words, that changing the L/D ratio from 0.5 to 2.5 for the same eccentricity
ratio increases the dimensionless maximum pressure more than three times. The presence
of misalignment, which is practically difficult to avoid, increases the maximum pressure
values for the whole considered range of L/D ratios, which is illustrated by the black
bars in Figure 7a. This increase in the maximum pressure value is more noticeable at
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the higher L/D ratios. The percentage increases due to the presence of 3D misalignment
are 10.5%, 17.1%, 34.2%, 94.1%, and 224.4% for the previously mentioned range of L/D
ratios, respectively. Therefore, it is important to avoid higher values of L/D ratios. On the
other hand, Figure 7b shows the corresponding misalignment effect on the dimensionless
minimum film thickness for the considered range of L/D ratios. In the ideal case of journal
bearing, using an eccentricity ratio of 0.6 for the whole range of L/D ratio results in the
same dimensionless minimum film thickness values. This is obvious from Equation of the
film thickness (H = 1 + εr cos θ), which results in a minimum value of 0.4 when εr = 0.6,
regardless of the L/D ratio. This value (0.4) can be seen by the green bars in Figure 7b.
The 3D misalignment reduces the values of Ho significantly in the whole range of L/D
ratio, as illustrated by the black bars in this figure. The reduction is 74.4%, 76.4%, 79.3%,
83.4% and 89.3% when L/D are 0.5, 1.0, 1.25, 2.0, and 2.5, respectively. Such a reduction in
the minimum film thickness, which is much less than the designed value, will negatively
affect the system’s performance and life. One of the solutions is reducing the supported
load value by the journal bearing to elevate the minimum film thickness, but this is not a
practical solution. This work will show later how changing the design of the bearing profile
will improve the bearing performance with regard to the levels of pressure, film thickness
and many other related factors.
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The misalignment also affects the dynamic features of the system. Figure 8 shows the
misalignment effects for a wide range of Length/Diameter ratios on the dimensionless
equivalent stiffness and the dimensionless critical speed when εr = 0.6 and the 3D
misalignment parameters are ∆v = ∆v = 0.56. It can be seen that (Figure 8a), the equivalent
stiffness coefficient (Ke) increases by 55.4%, 87.1%, 104.4%, 139.6%, and 147.5% when L/D
is 0.5, 1.0, 1.25, 2.0, and 2.5, respectively. These increases in the equivalent stiffness raise
the corresponding dimensionless critical speed by 20.5%, 33.0%, 39.7%, 53.3%, and 66.3%,
respectively. The improvement in the critical speed of the rotor–bearing system due to
the 3D misalignment for the whole range of L/D ratio comes at the price of the reduction
in the static characteristics of the considered system, as mentioned previously (Figure 7)
in terms of the sharp increase in the maximum pressure and the significant drop in the
minimum film thickness. However, changing the bearing profile design parameters will be
shown later to be an excellent compromise in terms of maintaining a relatively thick film
of lubricant and lowering the maximum pressure without losing a significant part of the
enhancement in the dynamic characteristics of the considered system.
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More details about the consequence of the 3D misalignment on the dynamic coef-
ficients of the considered system are shown in Figures 9 and 10. Figure 9 shows the
misalignment effects on the four dimensionless stiffness coefficients (KXX , KXY, KYX and
KYY), while Figure 10 illustrates the corresponding effects on the four dimensionless damp-
ing coefficients (CXX , CXY = CYX and CYY). In all cases (the full L/D range), the presence
of the 3D misalignment changes all the dynamic coefficients, so the critical speed was
changed. It is worth mentioning that the coefficient of stiffness KYX is the first responsible
for journal bearing stability. The negative values for this coefficient lead to instability
problems, while the positive values result in stable operation of the journal bearing [30].
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7.3. Modification Effect on the Characteristics of Misaligned Journal Bearing

The results presented in the previous section showed how the 3D misalignment in-
creased the pressure levels and reduced the film thickness values for the whole considered
range of the L/D ratios. These negative consequences of the misalignment can be mini-
mized by changing the bearing design. This section explains the results related to the use
of two forms of bearing profiles, which are linear and curved modifications. Figure 11
illustrates the effect of varying the bearing geometry on the dimensionless maximum
pressure and the dimensionless minimum film thickness when the design parameters are
Y = Γ = 0.25. These values of the design parameters are chosen after a series of tests
to ensure the use of the optimum values. This figure presents the results of the perfectly
aligned, misaligned (3D), and modified bearing. In Figure 11a, both forms of modifica-
tion reduce the dimensionless maximum pressure, particularly at the higher values of the
L/D ratio. For example, when L/D = 2.0, the dimensionless maximum pressure under
misalignment is changed from 1.66 to 1.03 and 1.10 (37.95% and 33.7%) in the case of
linear and curved modification, respectively. The curved modification produces slightly
higher pressure values at the higher L/D ratios and less value when L/D < 1.25. On the
other hand, changing the profile design has a more obvious and important effect on the
dimensionless minimum film thickness, as shown in Figure 11b. It can be seen that the
profile modification elevates the thickness of the lubricant significantly for the whole range
of L/D ratios. The value of Ho under misalignment when L/D = 1, for example, changed
from 0.094 to 0.271 and 0.258 as a result of the linear and curved modification, respectively.
This means, in other words, if the clearance is 50 µm, then the film thickness would change
from 4.7 µm in the case of misalignment to 13.55 µm and 12.9 µm due to the linear and
curved modification, respectively. These values represent about triple the film thickness
value of the corresponding unmodified design under misalignment. It is worth mentioning
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that Ho is 0.4 for the ideal bearing, which is equivalent to 20 µm for the example of 50 µm
clearance. Therefore, improving the minimum film thickness level from 4.7 µm to about
13 µm in both cases represents a significant step in maintaining an acceptable thickness of
the lubricant layer.
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Therefore, they are not shown here. Figure 12a shows the pressure distribution of the
ideal case. In this case, the pressure distribution is uniform (aligned) and symmetric
about the line of z = L/2. Figure 12b shows the pressure distribution when the system
operates under the 3D misalignment, where it is no longer symmetric about the line of
z = L/2, and pressure spikes appear. These spikes correspond to the positions where
the film thickness reduces significantly due to misalignment. Introducing the profile
modification reduces these pressure spikes, and the pressure distribution becomes closer
to that of the aligned case, particularly at the lower L/D ratio, as shown in Figure 12c,
where the curved modification is only shown in this figure as the almost similar shape
is obtained for the linear modification. The corresponding film thickness distributions
are shown in Figure 13 for the case of L/D = 1.0, as similar behavior is obtained for the
other L/D ratios. Figure 13a shows the film thickness distribution for the perfect case
(without misalignment), where the distribution is uniform and extruded in constant values
over the length L. However, this perfect case seldom exists in the practical uses of journal
bearings. The effect of misalignment on the film thickness is shown in Figure 13b, where
the distribution is no longer uniform and shows red zones (minimum values) at the bearing
edges. The effects of linear and curved modifications on the film thickness distribution
are shown in Figures 13c and 13d, respectively. The film thickness is elevated at the edges
due to these modifications. The curved modification shows a more uniform distribution as
the slope continuity is maintained at the start of modification in contrast with the linear
modification, where the sudden change in the profile is obvious in Figure 13c. This sudden
change might lead to stress concentration, and an elastohydrodynamic solution is required
to assess the linear modification more accurately. However, this is not the case in the curved
modification, as explained previously.

Figure 14 shows the effect of changing the bearing profile using linear and curved
modifications on the dimensionless equivalent stiffness and the dimensionless critical
speed of the finite-length journal bearings for the whole considered range of L/D ratios.
The increases in the equivalent stiffness (Figure 14a) and in the critical speed (Figure 14b)
due to the 3D misalignment are accompanied by the sharp reduction in the thickness
of the lubricant layer and the significant increase in the pressure levels, as mentioned
previously. Therefore, the assessment of the rotor–bearing performance should consider
all the aspects of the system. Using the modified bearing profile has been shown above to
have significant positive results in terms of the levels of pressure, levels of film thickness,
and the shape of the pressure distribution, which reduces its asymmetricity. Figure 14
illustrates that the modification (both forms) reduces the dimensionless equivalent stiffness
and the dimensionless critical speed. However, they are still greater than the corresponding
values of the perfectly aligned bearings. This represents an important outcome as both
modification forms maintain a higher value of critical speed compared with the perfect
aligned case (designed value) in the whole considered range of L/D ratios. As an example,
the critical speed (dimensionless value) when L/D = 1 is 2.694 in the aligned case, which
becomes 3.300 and 3.281 using linear and curved modifications, respectively. In other
words, this represents an increase of 22.5% and 21.8%, respectively, which represents an
additional benefit of the modifications to the major advantage of elevating the value of
the minimum film thickness. Similar behavior is also obtained for the other L/D ratios, as
illustrated in Figure 14.
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L/D = 2.0 (right). (a) Ideal case, (b) 3D misalignment (∆v = ∆h = 0.56) and (c) 3D misalignment
(∆v = ∆h = 0.56) and curved modification (Y = Γ = 0.25).
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Figure 13. Three-dimensional dimensionless film thickness when L/D = 1.0. (a) Ideal case, (b) 3D
misalignment (∆v = ∆h = 0.56), (c) 3D misalignment (∆v = ∆h = 0.56) and linear modification
(Y = Γ = 0.25) and (d) 3D misalignment (∆v = ∆h = 0.56) and curved modification (Y = Γ = 0.25).

7.4. Effect of Modification on the Journal Trajectory

The journal trajectory during the operation explains the system’s dynamic response to
any form of excitation. The operation speed is one of the most vital factors in determining
the amplitude of the dynamic response. The journal trajectories will be explained first
for the unmodified bearing. Then, the corresponding trajectories of the modified bearing
will be explained later for the two forms of modification. Figure 15 illustrates the journal
center trajectories for the unmodified system due to position perturbation when L/D = 1.0
at three different operational speeds, which are half the critical speed, critical speed,
and higher than Ωcrit. Figure 15a shows the journal trajectory at an operating speed of
1.347 (3290 rpm), which is 0.5 Ωcrit. The journal center returns to the steady state position
(equilibrium) after a certain period of time, representing the system’s stable condition.
Figure 15b shows the corresponding path at an operating speed of 2.694 (6580 rpm),
which is Ωcrit of the system. It is clear that the journal continues to rotate around the
equilibrium position, which represents the critical response of the system where any
increase in the operating speed will produce higher amplitude, and the system moves to
unstable conditions. Figure 15c illustrates the journal trajectory at an operating speed of
6800 rpm, which is just 1.033 Ωc of the system. The amplitude of the trajectory starts to build
up until the shaft’s touches the bush surface. This extremely dangerous situation results
from operation under unstable cases, which must be avoided under any circumstances.
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Extending the range of the operating speed in which the system operates under stable
conditions represents a significant enhancement in the design of the considered system,
as the operation under severe conditions for a long period of time will certainly impact
the designed values of the dynamic characteristics. Modifying the bearing profile helps
in this direction in addition to the main improvements in the values of Ho and Po, as
explained previously.
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Figure 16 shows the dynamic response to shaft perturbation when L/D = 1.0 for
the modified bush under different operating speeds. Figure 16a compares the trajectories
when the rotational speed is half Ωcrit for the two modification forms in addition to the
unmodified bearing. The trajectory of the unmodified system illustrated previously in
Figure 15a is repeated here for the purpose of comparison. It can be seen that the journal
trajectories of both modified bearings are returned to the equilibrium position with slightly
different paths. The curved modification produces a path closer to the unmodified bearing.
Figure 16b shows the shaft trajectories of the modified bearings when the operating speed
is equal to Ωcrit of the unmodified bearing (see Figure 15b for the journal trajectory of
the unmodified bearing at critical speed). This figure illustrates that the journal centers
return to the steady-state position for both forms of modification in contrast with the
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continuous rotation around the equilibrium position in the unmodified case. The journal
of the modified bearing can operate safely at a speed greater than Ωcrit of the unmodified
design, as shown in Figure 16c, where the operating speed is 6800 rpm. In this case,
the journal center also returns to the steady state position compared with the growing
journal amplitude of the unmodified bearing at this speed. Further comparison of the
eccentricity ratio variation with time for the unmodified and modified bearings is shown in
Figure 17. The operating speed for the results shown in this figure is Ωcrit of the unmodified
bearing. The eccentricity ratio in the case of unmodified bearing (shown in red) fluctuates
continuously around 0.6 (the steady state value) at this speed, while the corresponding
eccentricity ratios in both forms of modification reach a steady state value after a period of
time. The curved modification produces an eccentricity ratio (shown in green) closer to the
steady state value of 0.6. It is worth mentioning that similar behaviors are obtained for the
other L/D ratios, which shows a sense of generality in the results.
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8. Conclusions and Remarks

This work investigated the use of two types of bearing profiles on the general perfor-
mance of rotor bearing systems: linear and curved profiles. The journal bearing considered
in this work has a wide range of L/D ratios to represent short, finite-length, and long
bearings. The system’s performance was evaluated under the effect of 3D misalignment,
which considers both the horizontal and vertical deviations in the axis of the shaft. The
numerical solution was based on the finite difference method with the use of the iterative
Reynolds boundary condition method. This work examined the effect of misalignment and
the new design of the bearing profile on the pressure distribution, the film thickness levels,
and the dynamic characteristics of the rotor–bearing system under position perturbation
where the 4th-order Runge–Kutta method was used to determine the trajectory of the shaft
center. It was found that the variation in the bearing profile, using both types, reduced
to a large extent the maximum pressure value and significantly elevated the minimum
film of the lubricant, which faced a sharp reduction due to the presence of misalignment.
Furthermore, the time response of the modified bearing design using a curved profile was
closer to the ideal case in comparison with the linear profile design. The results of this
work explain the possibility of enhancing the performance of considered system under
severe misalignment conditions, which certainly has a positive effect on the system’s life
and reliability.
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