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Abstract: Solar energy can function as a supplementary power supply for other renewable energy
sources. On average, Vellore region experiences approximately six hours of daily sunshine throughout
the year. Solar photovoltaic (PV) modules are necessary to monitor and fulfill the energy requirements
of a given day. An artificial neural network (ANN) based maximum power point tracking (MPPT)
controller is utilised to regulate the solar photovoltaic (PV) array and enhance its output. The
utilisation of this controller can enhance the efficiency of the module even in severe circumstances,
where reduced current and torque ripples will be observed on the opposite end. The motorised
vehicle has the capability to function at its highest torque level in different load scenarios as a result.
The proposed method is expected to provide advantages in various electric vehicle (EV) applications
that require consistent velocity and optimal torque to satisfy the load conditions. The study employs
a solar battery that is linked to an SVPWM inverter and subsequently a DC-DC boost converter
to supply power to the load. An Artificial Neural Network (ANN) based Maximum Power Point
Tracking (MPPT) control system is proposed for a solar battery powered Electric Vehicle (EV) and the
system’s performance is evaluated by collecting and analysing data under adjustable load conditions
to obtain constant parameters such as speed and torque. The MATLAB® Simulink® model was
utilised for this purpose.

Keywords: permanent magnet synchronous motor; solar array; electric vehicles; DC-DC converter;
maximum power point tracker; three phase inverter

1. Introduction

The power industry is exploring new forms of renewable energy to help meet rising
electricity demands as natural ecological resources become exhausted. Using sources of
renewable electricity is one way to reduce the amount of carbon dioxide in the atmosphere
and combat global warming. Modern renewable energy sources are dominated by solar
photovoltaic systems because of their simple construction. It has been discussed how solar
panel systems may be positioned differently and function in a variety of designs [1]. It is
possible to increase the effectiveness of solar systems using maximum power point (MPP)
controllers and power electronics [2]. The most effective way to determine the maximum
power output is to use of one of the many techniques that have been devised. Under rapidly
changing climatic circumstances, the majority of MPP algorithms in use today are ineffec-
tive due to sluggish and imprecise tracking and oscillation. Their usage efficiency suffers
as a result. To solve this problem, an ANN-based control mechanism is proposed. To lessen
unequal irradiance on this PV module, two distinct MPPTs are utilized in this instance. A
bypass diode is employed to boost energy harvesting and to remove hotspots, while the PV
string is simply linked in series to the block diode to stop the reverse current from existing
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load [3]. The MPP’s two-stage technique is used by the ANN-based MPPT to demonstrate
its independence over time-dependent and transactional characteristics, since the MPP
being monitored by PV led to circumstances without the need for time increments [4]. Dif-
ferential evolution (DE), artificial neural networks (ANN), and conventional MPPTs can be
used to address rapid changes in radiation and temperature, as well as the nonlinear prop-
erties of arrays [5]. When compared to the conventional incremental conductance method,
our proposed MPPT approach significantly improves performance. This maximum power
point tracking technique is based on ANN technology. When compared to Perturb and
Obsevartion (P&O) controllers and incremental conductance, the abrupt shift in patterns
occurs faster. A neural network can quickly improve efficiency, manage uncertainties, and
solve issues without previous information. The learning algorithm changes layer weights
in the artificial neural network to track MPPs more quickly [6]. NN controllers are efficient
and responsive under both rapidly changing irradiance and partial shade.

Intelligent approaches outperform traditional ones, and artificial intelligence solves
the disadvantages of Particle swarm Optimisation (PSO), Grey Wolf Optimisation (GWO),
Genetic Algorithms (GA), Fuzzy Logic (FL), and others. Design and implementation
complexity matter. In contrast to P and O’s inability to match pace with the MPPs when
solar irradiation is fluctuating rapidly, the ANN approach can swiftly do so. Furthermore,
ANN has low-frequency oscillation near the MPP, while the P and O method exhibits
strong oscillation. The introduction of a mean square error (MSE) increases the network’s
accuracy and increases the training network’s efficacy [7]. The utilisation of the two-level
genetic algorithm technique has been documented in the literature [8] for the purpose of
assessing parameters that affect battery power, such as temperature, light intensity, and
junction temperature. For the purpose of tracking and managing solar heat from such a
hybrid system, Particle Swarm Optimization (PSO) is utilized [9]. For boost converters
for isolated solar systems, a back- propagation-focused multilayer deep neural network
with a 10◦ temperature change MPPT is employed to reduce long-term system losses and
boost conversion efficiency [10]. Energy conversion efficiency ranges from 12 to 20 percent
for photovoltaic modules. The associated load and the PV system both have an impact on
energy conversion loss. An MPPT and DC-DC converter, which can only reach the load
voltage at maximum power point levels, avoids this [11]. Our tropical country of India has
not researched solar energy.

Utilising solar battery power technology [12], a Permanent Magnet Synchronous(PMS)
motor drive is linked to an MPPT controller with an inverter to improve its electric driving
system performance. A solar array’s three-phase inverter compensates for output voltage
and current distortion to increase electricity quality even in abnormal conditions [13]. When
managing the PMS motor’s torque to ensure optimal torque control, a genetic algorithm is
used to generate better torque ripple performance [14]. The use of neural vectors for spatial
vector modulation and a comparison of neural networks with traditional systems have
both been presented [15]. The advantage of our ANN-created MPPT algorithm over other
traditional algorithms is that it can control MPPs.

This study designs a MATLAB® Simulink® mathematical model of the proposed
system. The mathematical model incorporates a permanent magnet synchronous motor,
PV cell, battery, and parallel control method. This paper’s main contributions:

• The study focuses on the topology of the proposed system, not its actual feasibility.
• The design attempts to accommodate realistic auxiliary losses to the extent that

mathematical modelling permits. This is to guarantee a step toward resemblance
and proximity to real-world outcomes to attempt to showcase the potential of the
proposed system.

• The study contributes to proving the functioning of the suggested system in a test
condition with diverse scenarios to display its robust architecture.

Previous methods for MPPT include P&O, Incremental Conductance (INC), CV, and
CI (constant voltage, constant current). There are several issues with each of these methods,
and they cannot function in partial shaded condition (PSC) environments. Observing the
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global MPP under PSCs is difficult for traditional algorithms; even if they do manage to
achieve global maximum power point tracking (GMMPT), doing so takes an extensive
amount of time and results in poor tracking accuracy and significant oscillation. This means
that effective algorithms are crucial for GMPP extraction.

â Solar panels with MPPT have been utilised for commercial and residential purposes,
but electric battery vehicles are the first mobile usage.

â The data that we used to train the ANN is from NASA’s prediction of worldwide
energy resources. https://power.larc.nasa.gov/data-access-viewer (accessed on 18
April 2023).

â Most literature utilises irradiance and panel temperature sensors which are costlier
and may raise overall system costs. Such sensors are also inaccurate and fragile. The
suggested ANNMPPT tracks maximum power points effectively and efficiently.

The MPPT technique’s primary innovations:

• ANN-based MPPT algorithms do not require expensive irradiance and temperature
sensors.

• The suggested technique increases tracking performance by readily integrating into
the existing MPPT method.

This article combines optimisation with artificial intelligence to improve photovoltaic
(PV) array tracking and power harvesting. Due to their exploration and optimisation skills,
algorithms can be employed in artificial neural network training to find the most effective
weights to minimise error.

Section 2 covers solar array mathematics. Section 3 presents the MPPT algorithm.
Section 4 covers PMS motor drive mathematical modelling. Section 5 uses MPPTs and
DC-DC converters to boost PV output and motor drive battery supply. Section 6 shows
PMS-driven electric car ANN MPPT MATLAB Simulation results. Section 7 summarises
the study as a whole.

2. Solar Array Mathematical Formulation

The photovoltaic cells are used in solar photovoltaic systems. Panels are formed by
grouping cells, while arrays are created by grouping panels. Equations (1) and (2) specifi-
cally reference the ideal photovoltaic cells, which have been described by the fundamental
mathematical Equation (2).

Imc = Iil − [e
qVmv
kNTjt

Id
− 1] (1)

where Imc is the module current, Iil is the insolation light current, q is e-, k is Boltzmann’s
constant, N is the diode identity, and Vmv is photovoltaic cell voltage [16].

Since an actual PV module is made up of several PV cells, the fundamental equation
for a PV system does not capture I-V characteristics [17]. Instead, extra parametric variables
such as parallel and series resistances (Rp and Rs), which are shown in Figure 1, are needed.
The solar cell’s mathematical equation, given in Equation (2), provides the foundation for
modeling PV modules. Figure 1 shows the equivalent circuit of PV module.

Imc = Iil − Irs

[
e

q( Vmv+ImcRs
NdkNTjt

)
− 1
]
−
[

Vmv + ImcRs

Rp

]
(2)

where Imc is the module current in Amperes, Rs is series resistance in Ω, Rp is the shunt
resistance in Ω, and Vmv is the module voltage. Current values at different irradiance and
temperature is shown in Figure 2.

Iil =
Pirr
[
Is + Tsi

(
Tjt − Tr

)]
Pr

(3)

https://power.larc.nasa.gov/data-access-viewer
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where Pirr is the applied irradiance in W/m2, Pr is the reference irradiance, Is is the short
circuit current of the module, Ts is the temperature coefficient of Is in A/◦K, and Tjt and Tr
are the applied and reference temperatures in kelvin.
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Equation (4) gives the reverse saturation current of the module under nominal condi-
tions as well as a reference temperature [18].

Irs =
Is

e

(
qV0

NkNdTjt

)
−1

(4)

where Is is the saturation current and N is the total number of cells in a module. Even as
the applied temperature rises, the voltage of the module drops, as shown by Equation (5).

Vmv =
NdkNTjt

q
× ln

[
Iil − Irs

Irs

]
(5)

Whereas the saturation current is as follows:

Ist = Irs

(
Ta

Tr

)3
× e

{
qEgo

Nk( 1
Tr

− 1
Ta

)

}
(6)

Egois the energy in the band gap in J/C and Rs is the shunt resistance, where small
variations in the series resistance will have an impact on the output power of the PV, as
the shunt resistance (Rs) is inversely related to the leakage current. Photovoltaic cells only



Designs 2023, 7, 79 5 of 18

generate about two watts when the circuit is open at between 0.5 and 0.7 volts [19]. To
provide the necessary power, the cells must be linked in series. This single diode module
array’s basic current is determined by Equation (7).

IA = NpIil − NprIrs

[
e

q
NdkNTa

( Vmv
Nse + ImcRs

Npr ) − 1
]
−
{

1
Rp

[
NprVmv

Nse
+ ImcRs

]}
(7)

Nse and Npr refer to the number of series and parallel connected modules per string
(two for series, six for parallel). Based on the 1soltech1STH-250 W polycrystalline solar
module’s data sheet specifications, at a maximum power of 305 W with 72 cells per module,
having an open circuit voltage of 44.88 V with a short circuit current of 8.95 A and a voltage
at a maximum point of 35.59 V with a current at a maximum power point of 8.57 A. The PV
array was modeled for 1000 W/m2 at 25 ◦C. The solar panel model in the simulation was
constructed under typical test settings based on the aforementioned characteristics [20].

3. Stated MPPT Algorithm

The MPPT control technique optimises PV module performance under various envi-
ronmental parameters like solar irradiance and temperature [21]. As is widely known, solar
irradiation and temperature significantly affect the PV system’s nonlinear output power
characteristics as functions of irradiance and temperature curves. Daily sun irradiation
fluctuates sharply. To maximise energy generation, the PV system’s operating point must
fluctuate when the PV array’s MPP varies. Thus, MPPT maintains the PV array’s MPP.
MPPT automatically determines the current at maximum power point (IMPP) or voltage at
maximum power point (VMPP) that a PV array should operate at to provide the maximum
output power at maximum power point (PMPP) at a certain temperature and irradiance
level. Most MPPT methods respond to irradiance and temperature variations, while others
operate more effectively in stable temperatures. Some MPPT methods are open-loop and
need periodic fine-tuning, but most automatically adjust to array ageing. In our case, the
module will be connected to a power converter that regulates the PV array-to-load current.

MPPT methods can precisely monitor the maximum power point (MPP); many tech-
niques have been devised. The majority of MPPT algorithms currently in use suffer from
the drawbacks of sluggish and incorrect tracking, as well as oscillation under quickly
changing meteorological circumstances [22]. As a result, usage efficiency is decreased. This
study offers an MPPT control technique based on an artificial neural network to address
these drawbacks [23]. This technique surpasses all other conventional techniques in terms
of system performance and effectiveness. A multilayer feedforward network is employed
in this method [24]. To calculate the irradiance and temperature levels from the photo-
voltaic array current and voltage data, this study uses a deep neural network centered on
MPPT incorporated with polyphase offline training. The ANN uses supervised learning
to eliminate mistakes by calculating the necessary multiplication factor [25]. The methods
described can deliver superior performance with fewer training sets under steady and
transient conditions, even under rapidly varying environmental circumstances, since a
power amplifier delivers the load with the highest possible output voltage [26]. In the
simulation, a training network with a supervised learning feedforward algorithm is used
to compensate for the solar array’s nonlinearity. Figure 3 depicts the flow diagram for the
proposed ANN-MPPT algorithm. According to photovoltaic cells’ output characteristics,
they have an ideal operating point at a specific cell temperature and level of illumination
that is known as the most powerful point. Solar cells have variable maximum power points
under various temperatures and light circumstances; even under identical conditions, the
output power will fluctuate depending on the operating voltage used by the PV cell. It is
therefore necessary to monitor the maximum power point of solar cells so that they can
continuously operate at their maximum efficiency.
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Currently, the perturbation and observation technique (P and O) and incremental
conductivity approach (INC) are the most popular MPPT algorithms. P and O has a
straightforward structure, fewer measurable parameters, and is simple to execute. However,
selecting a step disruption that would satisfy the demands of tracking precision and speed
is challenging. Furthermore, it frequently results in false positives. However, we have
identified two circumstances in which the present change is minimal.

One instance is when a PV cell operates in the range of a continuous current source.
The major control step can now be chosen using the aforementioned procedure. The second
instance is that the MPP of the PV cell is circumvented. The control step currently needs to
be brief, which contradicts the first instance. Consequently, this improved control algorithm
is unable to produce more effective control results.

ANNs are AI technology, and AI outperforms conventional methods. Traditional
approaches fail to monitor maximum power points and respond slowly to fast temperature
and irradiance changes. Figure 3 shows an overview of MPPT ANN, Including solar
temperature and irradiance inputs. The neural network targets the DC-DC converter duty
ratio and will offer a duty ratio for each solar temperature and irradiance fluctuation to
maximise each power point. Levenberg- Marquardt training algorithms create the network
when the duty ratio and ANN are trained for different sun irradiation and temperature
values. Adjusting layer weights during neural network training yields the desired results.
Training weights are adjusted to follow objective values with minimal inaccuracy. ANN’s
performance is measured using mean squared error (MSE).

Training using the Levenberg-Marquardt method yields the network. In order to train
the ANN, we compute the duty ratio for each possible set of solar irradiance levels as well
as temperature values. During training, the neural network’s weights in each layer are
adjusted until the desired outputs are achieved.

Mean squared error (MSE) measures how well a regression line matches a set of data
points. Its value matches the predicted squared error loss and risk function. Mean square
error is calculated by averaging the squared errors from the data analysis in respect to a
function. Throughout the training process, the weights are fine-tuned to obtain the most
accurate tracking of the goal values as possible. Mean squared error is used as the ANN’s
performance metric. The mean squared error is calculated as follows:

F =
1
N ∑N

i=1[ti − ai]
2 (8)

where ti is the target and ai is the present output.
Trial and error determine hidden layers. Output is boosted by the converter duty ratio.

After training, any ANN algorithm can be applied. Learned incrementally, duty ratio data
for the boost converter are recorded while changing irradiance and temperature inputs
for the PV array to monitor solar panel power. To test the neural network, certain training
points are kept.
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3.1. Effectiveness of a Conventional MPPT Controller with Distinct Irradiance (G) &
Persistent Temperature (T)

When the irradiance fluctuates between 100, 250, 500, 800, and 1000 W/m2, the current,
voltage, and irradiation levels of the PV are seen to immediately increase [27]. As a result,
the PV array’s overall net power increases. The conditions mentioned above are represented
by the typical curves in Figure 4 below.
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3.2. Results of Standard MPPT Controller Testing with Variable T, Constant G

The PV current increases as the photovoltaic array voltage quickly increases from
20 ◦C to 50 ◦C and eventually to 60 ◦C. This reduces PV array output. The curves shown in
Figure 5 indicate these characteristics.
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3.3. Performance of MPPT Algorithm Controller under Temperature and Irradiance Change

When both temperature and irradiance levels are changing, the voltage decreases until
the temperature rises, which causes the module current to increase. The opposite is also
true. Additionally, there is not a significant increase in voltage until the irradiance increases,
and vice versa.
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4. Mathematical Modeling of PMSM

Permanent magnet synchronous motor (PMSM) drives are highly favoured by industry
leaders in the automotive sector due to their potential for high power density, high speed,
and excellent operating efficiency. PMSMs are categorised based on the location and style
of the permanent magnets inside the rotors [28]. Three common types of PMSM are surface,
embedded, and interior/buried. Both inset rotor and surface mounted PMSMs are referred
to when the permanent magnets are exposed to an air gap. Due to the fact that the q-axis
inductance may be substantially larger than the d-axis inductance [29], the magnets in the
interior permanent magnet synchronous motor (IPMSM) are hidden within the rotor and
have a greater capacity for flux-weakening. One of the major drawbacks of PMSM drives
is their lack of excitation control. The internal Electro Magnetic Field (EMF) of a motor
increases in tandem with its rotational velocity. As this style of operation often employs
constant volts-per-hertz control, this type of behaviour is preferred in the so-called constant
torque range. The related frequency converter’s voltage limit, however, is reached as the
speed rises. This is referred to as the motor’s “flux-weakening operation,” and it follows its
“neutral” state. As the speed of the converter increases, it becomes essential to increase the
internal voltage to match the external voltage [30]. Since the inverter has to commutate a
larger current at higher speeds, the power factor of the motor changes to leading.

In Cartesian coordinates, Equation (9) is used to represent the voltage expression for
the PMSM, ignoring magnetization circuit saturation, eddy losses, and hysteresis losses [31].

us = Rsis +
dλs

dt
(9)

The equation for the motor’s flux linkage is as follows:

λs = Lsis +ϕfFs(θ) (10)

The three windings’ flux linkage is represented by s. The motor’s voltages, resistances,
and currents are represented by us, Rs, and is respectively [32]. The three-phase inductance
is Ls, and the three-phase angle is Fs [33]. λs is considered the motor flux linkage.

is =

iA
iB
iC

 (11)

Rs =

R
R

R

 (12)

λs =

λA
λB
λC

 (13)

us =

uA
uB
uC

 (14)

Fs(θ) =

 sinθ

sin(θ− 2π
3 )

sin(θ+ 2π
3 )

 (15)

Ls = Lm

 1 cos
( 2π

3
)

cos
( 4π

3
)

cos
( 4π

3
)

1 cos
( 2π

3
)

cos
( 4π

3
)

cos
( 2π

3
)

1

+ Ll

1
1

1

 (16)
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where Lm are mutual inductances, and Ll are inductance leakages. The motor’s torque can
be computed as:

Te =
1
2

Pn
∂

∂θm
(iT

s .λs) (17)

The motor’s pole pairs are denoted by Pn. The dynamic behaviour of the motor can be
expressed by,

J
dωm

dt
= Te − TL − Bωm (18)

where J denotes the motor’s spinning inertia, B denotes its damping coefficient, and TL is
its loading torque [34]. The motor’s angular speed is denoted by ωm. The motor’s primary
specifications are presented in Table 1.

Table 1. Motor Primary Specifications.

S. No. Parameters Quantities (SI)

1 Rated Capacity 500 W
2 Each coil’s number of turns 60
3 Rated Current 8 A
4 The mover plate’s width (w) 0.016 m
5 The coil area’s width (c) 0.010 m
6 Number of poles (p) 8
7 The mover plate’s height (h) 0.016 m
8 The stator’s length (l) 0.350 m

Phasor diagrams analyse surface and interior-mounted permanent magnet motors,
whose control methods have advantages and disadvantages. The unity power factor control
technique optimises system volt-ampere (VA), whereas the constant mutual air gap flux
connection controls restrict air gap flux linkage. Constant torque angle control reduces
the power factor but relates the electromagnetic torque to the stator current magnitude;
energy-saving maximum efficiency controls decrease motor net loss.

4.1. Drive Topology

Three-phase Voltage Source Inverter (VSI)s handle moderate-to-high power. These
topologies provide three-phase output voltage with customizable phase, amplitude, and
frequency [35]. Three-phase dc/ac voltage source inverters enable changeable frequency
and ac voltage magnitudes in motor drives, active filters, power systems, and uninterrupt-
ible power supplies [36]. Figure 6 displays a six-modulation-switched three-phase inverter,
featuring diode-bridge rectifiers, Inductor-Capacitor (LC) or Capacitor(C) filters, and utility
power supplies providing input, represented by dc [37].

Figure 6 depicts the PMSM’s three-phase inverter structure. S1–S6 represent the six
Insulated Gate Bipolar Transistor (IGBT)s and their states [38]. S1 and S4 cannot switch on
simultaneously for a single bridge in the case of a short circuit between Vdc and the ground.
As a result, S4 switches off as soon as S1 does, and vice versa. As shown in Table 1, eight
switching modes for three-phase alternative current motors are produced by six IGBTs. The
eight vectors split the vector plane into six portions for the motor [39].

Two of the eight switching states represented in Table 2 result in output (ac) line
voltages of zero. In this scenario, the higher or lower components are freely cycled by the ac
line currents. The remaining states do not have zero ac line voltages. The inverter alternates
between states to produce a certain voltage waveform. The subsequent ac line voltages
are therefore made up of the discrete voltage values: V, 0, and V [40]. The modulating
technique, which ensures the use of only the viable states, is used to select the states in
order to produce the given waveform.
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Vdc
2

(S1 − S2) = Van + Vno (19)

Vdc
2

(S2 − S3) = Vbn + Vno (20)

Vdc
2

(S3 − S1) = Vcn + Vno (21)

Table 2. Switching States of Inverter.

S1 S2 S3 Va Vb Vc

0 0 0 0 0 0
0 0 1 0 −V V
0 1 0 −V V 0
0 1 1 −V 0 V
1 0 0 V 0 −V
1 0 1 V −V 0
1 1 0 0 V −V
1 1 1 0 0 0

4.2. Three-Phase VSI Using Space Vector Pulse Width Modulation (SVPWM)

In three-phase inverters, space vector pulse width modulation (SVPWM) compares
three sine waves phase-shifted by 120◦ to a very high-frequency carrier signal [41]. The
signals are combined at a reference point where the comparator output is high when the
sine wave, also known as the modulation signal, is greater than the saw tooth wave and
low when the sine wave is smaller. Figure 7 shows this.

This section provides a sinusoidal pulse width modulation technique for a two-level
converter that uses both solar panels and a battery pack as a Direct Current (DC) voltage
source. To achieve a symmetric algorithm pulse with voltage balance, the fundamental
concept and switching order of the SVPWM are provided. Through an ANN-based MPPT
controller, this strategy is employed to regulate the inverter’s output voltage [40]. The
DC voltage is changed into a 3-phase instantaneous voltage reference using this SVPWM
method, as shown in Figure 7.
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5. Proposed ANN MPPT Algorithm with PMSM as Load

The next design depicts the intended architecture of the system through a DC converter.
The solar array has six 250-watt photovoltaic modules that are coupled in series as well as in
parallel to generate greater output voltage and current [41]. Under different circumstances,
the suggested MPPT algorithm, which is based on an ANN, obtains the most power possible
from the photovoltaic system.

The power that reaches the solar array using the ANN MPPT algorithm is fed to the
motor as well as a battery pack using a three-phase PWM-based voltage source inverter [42].
The energy stored in the battery is used when there is less power produced by the PV
array due to dissimilar climatic conditions. As shown in Figure 8, a PMSM receives its
three-phase power from VSI, and the drive axle of the vehicle is connected to the shaft of
the motor along with the differential. The Matlab/Simulink model is shown in Figure 9.

The final configuration of the proposed ANN MPPT is shown in Figure 10, which
consists of its inputs and outputs. The inner layers of the proposed ANN are shown
in Figure 11.
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Figure 11. Layers inside ANN.

A MATLAB/Simulink model was developed for a proposed ANN MPPT-based solar-
battery-powered electric vehicle driven by PMSM. Based on the irradiation (G)/temperature
(T) the developed ANN MPPT extracts maximum power from the solar PV array, a DC-DC
boost converter without a transformer boosts the power [42,43], which is further given as
input to both batteries for storage and PMSM to drive the axle of the vehicle. The G and T
values of an array are given as inputs to the neural network algorithm, and after several it-
erations, the output is given to DC Pulse Width Modulation (PWM) to generate gate pulses
based on its duty cycle [44]. The DC link voltage is given to the battery pack at 80% State of
Charge (SoC). A Space Vector Pulse Width Modulation (SVPWM) VSI gets its DC power
from the battery and converts it into three-phase voltages given as input to the PMSM. The
developed model gets maximum torque at different speeds using field-oriented control.

6. Results and Discussions

Simulink and MATLAB were used to create the suggested model. Solar irradiance
(G) and temperature (T) are the module’s inputs. In standard test conditions (STC), a
module with 72 cells produced 250 watts of power. Two modules form a solar PV array.
The simulation found that the MPP can produce 3100 watts with an open circuit voltage
(VOC) of 44.88 volts and a short circuit current of 8.95 amps. Figure 12 shows these results.

Designs 2023, 7, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 12. PV module I-V and P-V characteristics. 

6.1. Results of a Simulation for an Asynchronous Motor Drive Using an Inverter 
At 1400 rpm as a reference speed and 5 KHz as a switching frequency, the simulation 

goals were achieved. Here, a boost converter and an inverter are used by the motor driver 
to provide a 400 V supply. Figure 13 displays the inverter’s output voltage. 

 
Figure 13. Three-Phase Inverter Output Voltage. 

6.2. Asynchronous Motor Drive Simulation Results in the On Position 
Starting ripple content and maximum torque currents are reduced to provide an 

early steady state for the PMS motor drive. The recommended MPPT produces 2.98 N-m, 
7.596 A, and 1500 rpm of torque, a stator phase current, and speed. The torque’s ripple 
content was 0.31, a significant improvement over previous methods. Figure 14 shows 
this. 

 
Figure 14. PMSM stator phase currents. 

6.3. Results of PMS Motor Drive Simulation 

Figure 12. PV module I-V and P-V characteristics.

6.1. Results of a Simulation for an Asynchronous Motor Drive Using an Inverter

At 1400 rpm as a reference speed and 5 KHz as a switching frequency, the simulation
goals were achieved. Here, a boost converter and an inverter are used by the motor driver
to provide a 400 V supply. Figure 13 displays the inverter’s output voltage.
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6.2. Asynchronous Motor Drive Simulation Results in the on Position

Starting ripple content and maximum torque currents are reduced to provide an early
steady state for the PMS motor drive. The recommended MPPT produces 2.98 N-m, 7.596 A,
and 1500 rpm of torque, a stator phase current, and speed. The torque’s ripple content was
0.31, a significant improvement over previous methods. Figure 14 shows this.

Designs 2023, 7, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 12. PV module I-V and P-V characteristics. 

6.1. Results of a Simulation for an Asynchronous Motor Drive Using an Inverter 
At 1400 rpm as a reference speed and 5 KHz as a switching frequency, the simulation 

goals were achieved. Here, a boost converter and an inverter are used by the motor driver 
to provide a 400 V supply. Figure 13 displays the inverter’s output voltage. 

 
Figure 13. Three-Phase Inverter Output Voltage. 

6.2. Asynchronous Motor Drive Simulation Results in the On Position 
Starting ripple content and maximum torque currents are reduced to provide an 

early steady state for the PMS motor drive. The recommended MPPT produces 2.98 N-m, 
7.596 A, and 1500 rpm of torque, a stator phase current, and speed. The torque’s ripple 
content was 0.31, a significant improvement over previous methods. Figure 14 shows 
this. 

 
Figure 14. PMSM stator phase currents. 

6.3. Results of PMS Motor Drive Simulation 

Figure 14. PMSM stator phase currents.

6.3. Results of PMS Motor Drive Simulation

Figure 15 shows the steady-state responses of the stator phase currents, torque, and
speed of the proposed MPPT. In this figure, the proposed MPPT controller results in a more
optimal response from the torque and speed.
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The ripple content of torque is reduced with the ANN block when compared to the
torque without ANN; the comparison is shown in Figure 16.
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6.4. Outcomes from the Results

• MPP is reached at minimum OCV (open circuit voltage) and Isc (short circuit current).
• While using the proposed MPPT, the rated torque and speed along with a stator phase

current is achieved.
• The torque ripple content is reduced.
• Achieved sustainable improvement over other approaches currently in use.
• Attained better steady-state responses from torque and speed.

7. Conclusions

As the solution to energy demands and environmental problems, the usage of solar
energy is indispensable. Using solar panels, the generation of power is encouraged by
the MPPT algorithm. ANN-based MPPT controllers and PV array models were evaluated.
The ANN-based MPPT controller reduced torque and stator phase current ripples. In
this study, the proposed motor drive achieves both an early steady-state response and an
improved speed response. As a consequence, the recommended MPPT with an ANN-based
controller has considerably boosted the system’s power usage and efficiency. This is crucial
for an electric vehicle. The developed model will be scalable for different electric vehicle
applications as well. A PV system with a DC-DC boost converter and a space vector
modulated inverter may further improve power quality and performance.
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Nomenclature

ANN Artificial neural network
MPPT Maximum power point tracking
SVPWM Space vector pulse width modulation
Imc Module current
Iis Insolation light current
q Charge of electron
K Boltzmann constant
N Diode constant
Vmv Voltage across PV cell
Rp Parallel resistance
Rs Series resistance
Pirr Applied irradiance
Ts Temperature coefficient
Tr Reference Temperature
Ego Energy in band gap
Nse Series PV modules
Npr Parallel PV modules
Impp Current at the maximum power point
Vmpp Voltage at the maximum power point
P&O Perturb and observation
INC Incremental conductance
MSE Mean squared error
G Irradiance
T Temperature
IPMSM Interior permanent magnet synchronous motor
Us Motor voltage
RS Stator resistance
Is Stator currents
λs Motor flux linkage
Lm Mutual inductance
Pn Motor pole pairs
J Motor spinning inertia
B Damping coefficient
TL Load torque
ωm Angular speed
VSI Voltage source inverter
SOC State of charge
VOC Open circuit voltage
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