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Abstract: With the qualitative development of DC microgrids, the usage of different loads with unique
conditions and features is now possible in electric power grids. Due to the negative impedance
features of some loads, which are called constant power loads (CPLs), the control of DC power
converters faces huge challenges from a stability point of view. Despite the significant advances in
semiconductors, there is no upgrade in the control of gate drivers to exploit all potential of power
electronic systems. In this paper, quantum computations are incorporated into artificial intelligence
(AI) to stabilize a full-bridge (FB) DC-DC boost converter feeding CPL. Aiming to improve the bus
voltage stabilization of the FB DC-DC boost converter, a quantum deep reinforcement learning (QDRL)
control methodology is developed. By defining a reward function according to the specification of
the FB power converter, the desired performance and control objectives are fulfilled. The main task
of QDRL is to adjust the control coefficients embedded in the feedback controller to suppress the
negative impedance effect resulting from deploying the CPLs. By deploying the potential advantages
of quantum fundamentals, the deep reinforcement learning improved by quantum specifications
will not only enhance the performance of the DRL algorithm on conventional processes but also
advance related research areas such as quantum computing and AI. Unlike the basic quantum theory,
which requires real quantum hardware, QDRL can be executed on classic computers. To examine the
feasibility of the QDRL scheme, hardware-in-the-loop (HiL) examinations are conducted using the
OPAL-RT. The comparison of the proposed controller with the classic state-of-the-art methodologies
reveals the superiority and feasibility of QDRL-based control schemes in both the transient and
steady-state conditions to other schemes. Analysis using various performance criteria, including the
integral absolute error (IAE), integral time absolute error (ITAE), mean absolute error (MAE), and root
mean square error (RMSE), demonstrates the dynamic improvement of the proposed scheme over
sliding mode control (approximately 50%) and proportional integral control (approximately 100%).

Keywords: microgrid; full-bridge (FB) DC-DC boost converter; quantum deep reinforcement learning
(QDRL); hardware-in-the-loop (HiL)

1. Introduction and Preliminaries

With the vast penetration of non-conventional energy sources (photovoltaic (PV),
hydropower, wind, geothermal, etc.) into modern power systems, the concept of integrating
these technologies into microgrid (MG) form has drawn a lot of academic interest over
the past 15 years [1–3]. These MGs’ benefits include low-cost energy, high local resiliency,
simple connection to power source units, and the growth of users who can be connected to
them. Unlike AC microgrids (ACMGs), which face many challenges in the appearance of
harmonics and reactive power and frequency synchronization, DC microgrids (DCMGs)
are projected to play a particular role in power networks. Practically, various power
interface converters and filters are embedded in the configuration of DCMGs to convert
the energy of various types of sustainable sources for supplying DC/AC loads. Moreover,
the distributed structure of integrated power systems can be created by paralleling power
electronic interfaces [4,5].
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Thanks to the excellent performance of wide-bandgap (WBG) semiconductors (e.g.,
the silicon carbide (4H-SiC) [6] and gallium nitride (GaN) [7,8]), it has become possible
to achieve power converters with significant characteristics such as faster, fewer losses
and more compactness. However, this potential performance can only be fulfilled if these
technologies are incorporated into power converters that can handle them. Despite the
remarkable advances at the device level by semiconductor manufacturers, a corresponding
improvement has not occurred at the system level (control algorithms); as a result, a large
portion of that potential is being lost.

Additionally, the configuration of loads might appear in the DC MGs with time-
varying specifications during various operations of the system. As a result of such charac-
teristics, higher standards for the system’s stability are required from the control design
perspective. The challenges of MG stabilization are heightened when its power source
units supply the constant power loads (CPLs) [9–12]. In fact, such loads have negative
impedance properties, which lead to a destabilization impact on DC MGs. To address
this issue, robust H-infinity [13], backstepping-based sliding mode control (SMC) [14],
offset-free composite model predictive control (MPC) [15,16], passivity-based control [17],
etc., are utilized. For instance, Kaplan and Bodur [9] proposed a super-twisting-based
second-order SMC (SOSMC) for stabilizing the output of the DC-DC buck converter in the
presence of CPLs. The authors of ref. [18] developed a passivity-based control (PBC) to
mitigate the destabilization effect of the power converters when supplying a CPL and a
constant voltage in an MG system. Moreover, a nonlinear disturbance observer (NDO) was
required to estimate line and load variation to ameliorate the performance of the designed
PBC. Boukerdja et al. [13] developed H∞ control at the source side of the buck converter to
disappear the output fluctuations caused by the CPL at the load-side converter. Karami
et al. [19] proposed a finite control set MPC (FCS-MPC) for DC-DC boost converters feeding
nonlinear CPLs by minimizing a finite-prediction horizon objective function. These robust
controllers have significantly contributed to the stability of power converters connected
to CPLs, but a large part of the full potential of semiconductors still remains untapped.
In ref. [20], Ullah et al. proposed a non-integer version of terminal sliding mode (TSMC)
to suppress the destabilization impact resulting from constant power loads in DC boost
converters. By adopting Lyapunov’s theorem, a guaranteed stability performance was
achieved with the non-integer TSMC.

Recently, the concept of the quantum process was incorporated into artificial intel-
ligence with the aim of enhancing the essential functions of conventional deep neural
networks (DNNs) [21,22]. In this regard, a quantum-inspired experience replay (QER) was
developed [23] to ameliorate the training capability of deep reinforcement learning (DRL)
without the need to adjust the hyperparameter. Quantum deep reinforcement learning
(QDRL) was proposed in refs. [24,25], which combined the quantum superposition theory
and deep RL algorithm. In QDRL, deep neural networks are used to predict the next sys-
temic state to improve the quality of control commands. The simulation and experimental
outcomes in various applications revealed that with the application of QDRL [23,26,27], a
larger search space, quicker training, and more tradeoff between exploration and exploita-
tion would be achievable in comparison with the classic version of DRL (CDRL) algorithms.
Theoretically, it was demonstrated that for a wide class of learning problems, QDRL could
produce quadratic progress in training effectiveness and significant feasibility in perfor-
mance. The resilience of this QDRL algorithm was further illustrated by the generalization
of this method to more effectively modify weights on favorable actions. Additionally, by
adopting quantum computation, more control commands can be generated to provide
accurate control [25,28].

In this paper, a robust control scheme is adopted by the training ability of the QDRL
algorithm to stabilize the voltage output of a full-bride power converter feeding CPLs in
the DCMGs architecture. In this application, a time-varying CPL is applied to the test
system, which imposes the highest level of instability on the DCMG from an electronic
power perspective. The main contributions of this work are provided as follows:
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• A full-bridge boost converter feeding constant power loads is modeled in the form of
microgrids. For this purpose, the average dynamics of the power interface system are
provided.

• Quantum computation based on deep reinforcement learning is developed to control
the FB power converter.

• Extensive examinations and comparative analyses are conducted to validate the effi-
ciency of the proposed FB DC-DC power converter.

• HiL tests based on OPAL-RT are developed to test the feasibility of the proposed
QDRL algorithm.

This article is organized as follows. In Section 2, the model of a full-bride power
converter supplying CPL is illustrated. Then, all parts of the suggested control methodology
are introduced in Section 3. Section 4 is devoted to the real-time examinations of the power
electronic case study. The outcome of the work is concluded in Section 5.

2. Dynamic Model of Full Bridge Converter under CPL

The isolated full-bridge (FB) DC/DC converter is a practical and extensively adopted
solution for isolated power converter systems. Full-bridge converters, when compared
to other DC-DC converters, are suitable for integrated power systems where maximum
voltage and maximum power are required. The feasible structure of the FB converter is
depicted in Figure 1, which is constructed from a DC source, a boost converter, an isolated
FB, and a constant power load [29,30].
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Figure 1. The configuration of the FB DC-DC converter connected to the CPL.

On the left side of the converter, a boost converter is configured, which steps up the
input voltage (E or Vdc) to a higher level. In the context of MG, many generation units, such
as fuel cells and photovoltaics, can be adopted as the input source. The main contribution
of full-bridge FB is the transformation from a high-voltage bus to an intermediate level. The
input voltage of the full-bridge converter should be set to 110 according to the reference
voltage Vre f . Moreover, a transformer with an LC filter is implemented to transfer power
instantaneously from the output of the FB converter to the external CPL load.

The dynamic equation of the CPL is given as [31]:

iCPL =

(
PCPL

vo

)
∀vCPL > ε, (1)

where vo and iCPL denote the output voltage and current of the boost converter, respectively,
and PCPL is the CPL’s power. The average model of the boost converter is formulated as [31]:

diL
dt

=

(
E
L

)
−
(

1− u
L

)
vc, (2)

dvc

dt
=

(
1− u

L

)
iL −

(
PCPL

L

)
vc, (3)
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where vc is the voltage of the inductance L and iL is the current of the capacitor C in the
boost converter.

3. Quantum Deep Reinforcement Learning for FB Power Converter

The control objective of the FB DC-DC converter is to regulate the output voltage
in the structure of DC MG to its nominal voltage in the load bus. This work aims to
stabilize the output voltage vo under a time-varying CPL using quantum deep learning.
For this purpose, a feedback controller with a structure of classic proportional-integral (PI)
is adopted for the FB DC-DC system. The overall control structure of the FB DC-DC boost
converter with the quantum process is depicted in Figure 2. According to Figure 2, quantum
deep reinforcement learning is developed from three main components, including deep
belief nets, reinforcement learning, and the quantum process. The deep neural network of
QRL is trained in such a way that adjusts the gains of the established feedback controller
(kp and ki) to reach a good control behavior so transient and steady-state conditions can be
realized.
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3.1. Principal of RL

In every subordinate RL section of the quantum technique, a Q-value renovated
procedure, a p-value renovated procedure, an action procedure, and quantum computation
is included. In this structure, deep belief neural networks are adopted for prediction states
O′i to update the Q-value. In the p-value process, the p-value will be updated to reach the
index of actions. The action will be chosen from activity space A. In the final step, the real
action δ′i will be generated by the quantum procedure.

Since the quantum deep RL includes a general RL architecture, it can ameliorate
the efficiency and feasibility of power electronic equipment. The RL algorithm is made
from four components consisting of states, actions of RL-agent, returns (rewards), and
environment. The RL agent evaluates the environment, decides in accordance with the
information acquired, and then communicates that choice to the system (action). According
to the defined optimal policy, the agent will be trained in such a way that obtains more
reward from the system. In the RL, the position of the current system is represented by the
state that shows the agent’s situation.

The control actions will be delivered to the system by updating the matrices of the
Q-value:

QRL
(
O′, δ

)
= QRL(O, δ) + ζRLy, (4)

y = PRL
(
O,O′, δ

)
+ γRLmax

δ∈A
QRL

(
O, δ′

)
−QRL(O, δ), (5)

and p-value [24]:

PRL
(
O′, δ

)
=

{
PRL(O, δ)− µRL(1− PRL(O,O′, δ)), i f δ′ = δ
PRL(O, δ)− (1− µRL), i f δ′ 6= δ

, (6)
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where ζRL is the learning factor, γRL is the discount factor, and µRL is the updated factor. It
is assumed these coefficients are selected in the range of [0, 1]. Likewise, O denotes the
current state, δ denotes the action, and O′ denotes the predicted next state.

For the FB DC-DC converter, the reward function of QDRL is defined as:

RRL
(
O,O′, δ

)
=

{
β2
|Eerror | i f Eerror ≤ 0.05
−β1|Eerror| i f Eerror > 0.05

, (7)

where β1 and β2 are the constant factors and Eerror is the difference between output voltage
and its reference, i.e., Eerror = vc(t)−VRe f (t). According to the defined reward function,
the QDRL algorithm tries to generate the action signals in such a way that mitigates the
voltage fluctuations against the CPL.

3.2. Deep Belief Nets (BBNs) Based on Restricted Boltzmann Machines

Restricted Boltzmann machines (RBM) are a variant of Boltzmann machines that can
be adopted to fine-tune deep belief nets (DBNs) using a greedy technique. Standard RBM
are made from binary-valued visible and hidden units and comprise of a weight matrix W
with a size of m× n. In RBM, the relationship between the hidden layer

(
hij
)

and the visible
layer (vi) is represented by the weight component

(
wij
)
. Moreover, some bias weights

(offsets) are used, including bvi and bhi for vi and hi, respectively. Based on the biases and
weights, the energy level of RBM of deep belief networks considering the test variables of
θ =

{
WR, bv, bh

}
is computed by [23,32]:

E(v, h; θ) = −
NLayer

∑
i=1

bvivi −
NHidden

∑
j=1

bhihi −
NLayer

∑
i=1

NHidden

∑
j=1

viwR
ij hj, (8)

where NLayer and NHidden represent the hidden layers and hidden units, respectively. Addi-
tionally, E(v, h; θ) can be defined by the following notion:

E(v, h; θ) = −aTv− bTh− vTWh. (9)

The following is the marginal probability for each potential hidden layer:

P(v; θ) =
∑h e−E(v,h;θ)

∑v,h e−E(v,h;θ)
. (10)

According to the Gibbs sampling theory, the probability distribution can be given as:

P
(
hj = 1

∣∣v; θ
)
=

1

1 + e(−(bj+∑i viwR
ij ))

, (11)

P
(
vj = 1

∣∣h; θ
)
=

1

1 + e(−(di+∑j vjwR
ij ))

. (12)

3.3. Quantum Computation

A quantum bit, also known as a qubit, is the fundamental data carrier in the quantum
process, and it has the ability to exist in a super situation state of its eigenstates |0〉 and |1〉,
which is defined by the following expression [23]:

|ψ〉 = γ|0〉+ ζ|1〉, (13)

where γ and ζ are complex constants qualifying |γ|2 + |ζ|2 = 1.
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The ith action of DRL with the quantum process is generated as:

δ′i,out = δk +
δ(k+1) + δ(k−1)

2

(
qi(δ)−

1
2

)
, (14)

where both the terms of a(k+1) and a(k−1) are considered the actions of set A, while the
action δk is chosen from set A using the learning procedure of QDRL. Additionally, qi(δ)
denotes the output probability with the condition 0 ≤ qi(δ) ≤ 1, which will be obtained by:

qi(δ) = |δNA
δ 〉 =

KQ︷ ︸︸ ︷
11 . . . 1

∑
δ=00...0

Cδ|δ〉, (15)

where |Ca|2 is the likelihood that action |δ〉 occurs among the sequence of
∣∣∣δNA

δ

〉
; KQ

denotes the quantum bit count.
A detailed illustration of the quantum process based on DRL is depicted in Figure 3.
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4. Experimental Results

To demonstrate the robust performance and quick transient behavior of the proposed
QDRL scheme, the real-time examinations of the FB system were accomplished using the
OPAL-RT platform. A photograph of the OPAL-RT setup for the FB power converter is
provided in Figure 4. The parameters of the FB power converter are shown in Table 1.
The initial values of proportional and integral gains of the feedback controller were set
as kp0 = 0.3 and ki0 = 40. The actions of QDRL were generated to adjust the gains of the
feedback controller as kp = kp0 + δp and ki = ki0 + δi. Here, the terms of δp and δi are
the actions of QDRL used to adjust the coefficients of the feedback controller. The sliding
mode control (SMC) and classic PI controller were also designed for the FB DC-DC boost
converter for comparison purposes.
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and (b) procedure of the real-time scheme.

Table 1. Parameters of the FB power converter.

Parameters Values Parameters Values

Inductance of boost
converter, L 1 × 10−3 H

Inductance of output
filter, L0

5.3 × 10−6 H

Capacitor of boost
converter, C 0.9 × 10−3 F

Capacitor of output
converter, C0

2.09 × 10−6 F

Input voltage, E 48 V Reference voltage,
Vre f . 110 [V]

Scenario I: In the first step, a constant power load with the power of 300 [W] was
connected to the full-bridge converter. The real-time responses of FB DC-DC converter in
terms of capacitor voltage and output voltage (CPL’s voltage) are provided in Figure 5a,b,
respectively. From the real-time responses of the FB converter, it was revealed that, despite
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the CPL imposing a high level of instability on the system, the designed controllers stabi-
lized the output voltage at the desired range regarding the reference value. Moreover, a
lower level of current fluctuations appeared using the proposed QDRL compared to the
other designed controllers (SMC and classic PI controllers), as shown in Figure 6. Therefore,
the proposed controller (realized by QDRL) improved the system stability and enhanced
the system performance in terms of overshoot and settling time.
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Scenario II: In this step, a time-varying CPL was connected to the full-bridge converter
with the following changes.

PCPL =


300 0 < t ≤ 0.3s
550 0.3s < t ≤ 0.7s
450 0.7s < t ≤ 1s

(16)

Figure 7 demonstrates the real-time outcome of the FB power converter, including
the voltage bus and CPL’s voltage under changes in the CPL’s power [16]. The current
signals of inductor for various controllers have been depicted in Figure 8. It is shown that
when the CPL’s power was changed during the experiment, the QDRL effectively stabilized
the system outcomes. When the QDRL method was adopted, the settling time of the FB
DC-DC power converter was significantly reduced in comparison with the two other ones.
In addition, the system outcomes of the FB DC-DC power converter with the application of
the proposed QDRL based on the controller experienced less overshoot than SMC and the
classic PI controller.
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For quantitative analysis of the FB power converter, various performance indices
were considered to quantitatively evaluate the behavior of the designed controllers. For
this purpose, the integral absolute error (IAE), integral time absolute error (ITAE), mean
absolute error (MAE), and root mean square error (RMSE) were adopted as good options
to demonstrate the superiority of the suggested QDRL technique. According to definitions
of the above criteria, the best performance was obtained when the value of error was close
to zero. The values of the performance index with the application of the PI controller, SMC,
and QDRL control technique are shown in Table 2. For example, the values of IAE for case
1 with the proposed QDRL-based controller (IAE = 0.4889) were less than the SMC scheme
(IAE = 0.6415) and classic PI controller (IAE = 0.8839). Additionally, for case 2, the values
of IAE using the proposed QDRL-based controller (IAE = 0.6202) were smaller than the
SMC scheme (IAE = 0.8343) and classic PI controller (IAE = 1.2599). According to these
outcomes, the value of the performance index for IAE, ITAE, MAE, and RMSE for case 2
was more than for case 1, which indicates that the time-varying CPL’s power imposes more
of a destabilization effect than the ideal CPL. In addition, the proposed scheme (realized by
the QDRL algorithm) obtained the lowest value of the performance index under ideal and
time-varying CPL than the SMC scheme and classic PI controller.

Table 2. Values of performance criteria with the application of various controllers.

Performance
Index

Classic PI Controller SMC Scheme Proposed QDRL Controller

Case1 Case2 Case1 Case2 Case1 Case2

IAE 0.8839 1.2599 0.6415 0.8343 0.4889 0.6202

ITSE 0.1108 0.2705 0.0942 0.1728 0.0775 0.1410

RMSE 4.6063 4.8075 4.4450 4.5547 4.1177 4.2382

MAE 0.8867 1.2625 0.6443 0.8370 0.4916 0.6229

Scenario III: In many cases, the voltage level of the DC source may change during the
supply loads, which may affect the overall performance of the power electronic interfaces.
Thus, in the final stage, the power’s CPL and input source are changed simultaneously
to examine the feasibility of the designed controller in the worst condition of the power
converter system. For this purpose, the DC source voltage was reduced by 5% at t = 0.3s
from its nominal voltage (t = 45.6s) and was also increased by 5% at t = 0.7s from its
nominal voltage (t = 50.4s) (see Figure 9). The capacitor voltage waveforms of the FB
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DC-DC power converter with the time-varying CPL and changes of DC source with the
application of classic PI controller, SMC, and QDRL algorithm are depicted in Figure 10.
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5. The Justification and Advantages of the Proposed Scheme

With the progress in the production of wide-bandgap (WBG) semiconductors, the
performance of power interface systems has been remarkably enhanced at the device
level. However, much of that potential is being lost since the system level (drivers, control
algorithms, etc.) has not experienced matching advancement. This gap motivated the
researchers to develop advanced control algorithms to exploit the maximum potential
of semiconductors for improvement of the system performance. In particular, quantum
computation can be adopted as a promising technique to control semiconductor devices
with high-speed motor drivers, which was addressed in this paper.

The advantages of the QDRL technique for the power electronic case study are pro-
vided as follows:

(i) In comparison with model-based schemes (MPC, backstepping, SMC, etc.), which
need model identification, a model-free QDRL learning scheme was developed to
regulate the coefficients of the feedback controller.

(ii) Since the QDRL-based controller was developed in a model-free framework, the
proposed QDRL scheme can be applied to a wide range of power electronic test
systems.

(iii) In comparison to conventional controllers, which only have optimal performance at
the operating condition, the proposed controller was adaptively adjusted by QDRL,
which ensured the high efficiency of the FB DC-DC boost converter for all changes to
the CPLs.

(iv) While ideal CPLs were often considered in previous works, in this study, a time-
varying CPL was applied to evaluate the flexibility and effectiveness of the suggested
QDRL-based controller.

6. Conclusions

In this paper, adaptive controller-based quantum computing was designed to suppress
the effect of constant power loads in full-bridge converters in the form of a microgrid. By
employing the training capability of the quantum deep reinforcement learning (QDRL)
technique, the control parameters embedded in the feedback controller were adjusted
appropriately and resulted in a robust controller with quick response. By using the error
system in the reward function, the training of the QDRL algorithm was realized to stabilize
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the output voltage of the FB DC-DC boost power converter feeding constant power load.
To verify the efficiency of the suggested technique (realized based on the QDRL algorithm),
real-time examinations with the OPAL-RT platform were conducted under two typical
scenarios of microgrids. It was validated that despite the CPL being connected to the DC
bus on the load side, the power electronic interface system operated in the ideal condition
from a systematic point of view. In addition, the proportional-integral controller and sliding
mode control were also designed and applied to the FB power converter for comparison
purposes. The HiL outcomes of the QDRL technique-designed feedback controller showed
a higher level of dynamic performance than other state-of-the-art techniques. In future
work, a prototype of the FB power electronic system should be built to assess the feasibility
of the proposed controller-based quantum theory from an experimental point of view.
Additionally, the quantum principle can be adopted as a promising option to design model-
predictive control for control output of the next generation of power electronic systems.
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Abbreviations

List of abbreviations
MG Microgrid
DCMG DC microgrid
ACMG AC microgrid
WBG Wide-bandgap
SIC Silicon carbide
GAN Gallium nitride
PI Proportional-integral
SMC Sliding mode control
MPC Model predictive control
PBC Passivity-based control
FCS-MPC Finite control set MPC
DNN Deep neural network
RBM Restricted Boltzmann machine
CPL Constant power load
PV Photovoltaic
NDO Nonlinear disturbance observer
DRL Deep reinforcement learning
QDRL Quantum deep reinforcement learning
QER Quantum-inspired experience replay
WDRL Quantum DRL
CDRL Classic DRL
FB Full-bridge
IAE Integral absolute error
ITAE Integral time absolute error
MAE Mean absolute error
RMSE Root mean square error
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List of symbols
vo Output voltage
VRe f (t) Reference of output voltage
iCPL Current of CPL
PCPL Power of CPL
ζRL Learning factor of _Q-value
γRL Discount factor of Q-value
µRL Updated factor of p-value
A Set of action space
O Current state
δ Action
O′ Predicted next state
β1, β2 Constant factors of the reward function
Eerror Voltage error
W Weight matrix of RBM
hij Hidden layer
vi Visible layer
wij Weight component
bvi Bias weights of visible layer
bhi Bias weights of hidden layer
NLayer Number of hidden layers
NHidden Number of hidden units
qi Output probability of QDRL
KQ Quantum bit count
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