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Abstract: The development of an effective sensor system that can detect carcinogenic hydrazine is
of prime scientific interest for the protection of human health and the environment. In the present
study, MoS2 quantum dots (QDs) with an average diameter of ~5 nm were synthesized using a facile
one-step, bottom-up hydrothermal method using cysteine as reducing as well as capping agents. The
presence of cysteine was evaluated by FTIR spectroscopy. The synthesized MoS2 QDs were applied to
modify the conventional glassy carbon electrode (GCE) in order to detect hydrazine electrochemically
in neutral pH conditions. In the cyclic voltammetry (CV) study, the MoS2 QDs-modified electrode
revealed much better catalytic activities for hydrazine electro-oxidation compared to the bare GCE
surface. The smaller size of the QDs with high surface area and the presence of carboxylic acid
containing cysteine on the surface of the QDs enhanced the adsorption as well as the electrocatalytic
activity. The amperometric response of MoS2-QD-modified GCE unveiled excellent electrocatalytic
sensing properties towards neurotoxic hydrazine with a very high sensitivity of 990 µAmM−1cm−2

(R2 = 0.998), low LOD of 34.8 µM, and a broad linear range. Moreover, this high-sensitive, binder
and conducting filler-free MoS2-QD-based sensing system is very promising in agile amperometric
detection of neurotoxic hydrazine for environmental monitoring in industrial sectors.

Keywords: MoS2 QDs; hydrazine; electrochemical sensing; electro-oxidation; modified electrode

1. Introduction

Hydrazine and its derivatives are the low molecular weight common inorganic com-
pounds that are widely used in many industrial applications such as corrosion inhibitors,
reducing agents, pharmaceutical intermediates, catalysts, oxygen scavengers, emulsifiers,
insecticides/herbicides, and textile dyes [1–4]. The flammable and highly explosive nature
of hydrazine also made it suitable for propellants in spacecraft, rockets, and missile propul-
sion systems [5,6]. Despite its extensive potential applications in different sectors, long-term
exposure to hydrazine in humans can cause serious health problems, especially in the lungs,
brain, and central nervous system [7,8]. Not only the long-term health hazards in high con-
centration, but low concentration exposure can also cause dizziness, irritation of the eyes,
nose, and throat, etc. [9]. As a result, the World Health Organization (WHO) categorized hy-
drazine as a group B2 human carcinogenic compound [10]. Therefore, it is necessary, with
prime scientific significance, to develop an effective sensor system that can detect hydrazine
for the protection of human health and the environment. In literature, the common methods
utilized for hydrazine detection are basically colorimetry/fluorometry [11–13], chromatog-
raphy [14], chemiluminescence [15], flow injection analysis [16], etc. These processes are
quite time-consuming and require sophisticated instrumentation, using environmentally
unfriendly solvents, sample incubation or pretreatment, etc. Thus, a nimble and viable
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detection technique is much desired for the onsite monitoring of hydrazine in an easy way.
In this regard, electrochemical sensing has received widespread attention owing to its easy
sample preparation process, faster responses with higher sensitivity, the scope of using
environment-friendly green solvents such as water-based buffer solutions, and feasible
miniaturization [17–20]. Therefore, electrochemical sensing techniques have been widely
utilized for the determination of hydrazine using various modified electrodes [8,9,18,21–27].

The judicious choice of electrode materials is the cornerstone for high-performance
electrochemical sensing systems. Generally, the electrochemical sensing of hydrazine is
based on its oxidation on the surface of the electrode. However, on the surface of the
unmodified conventional bare electrode, the hydrazine oxidation is kinetically sluggish
with larger oxidation overpotential and inferior current response. In this regard, developing
an efficient material that can modify the conventional electrodes is worth researching as
it can provide the solution to the above problems [28,29]. Accordingly, various novel
nanomaterials-modified electrodes have been explored for their possible applications in
electrochemical sensing [30–32].

Nanomaterials are very unique in the construction of modified electrodes as they
possess very unique properties such as increased mass transport, low diffusion length,
large surface-to-volume ratio, high surface reaction activity, strong adsorption ability, high
electrocatalytic ability, etc. [30–36]. Thus, nanomaterials are widely used as the modi-
fied electrode compared to microelectrodes [21]. Diverse nanomaterials, including metal
nanoparticles, metal oxides, or quantum dots (QDs), were developed to enable swift
electron transfer in nanomaterial-modified electrode surfaces [30–36]. The QDs are very
promising in this category due to their chemically tunable surface with the desired function-
alities by a bottom-up approach, electron transfer efficiency, and high catalytic effect [37–41].
Owing to these abovementioned superiorities, QDs are used to detect hydrazine in some
cases. Kalaivani et al. fabricated CdSe QDs@nickel hexacyanoferrate [21], Sha et al. re-
ported biomass-derived carbon QDs [8], Qureshi et al. designed heptazine-based graphitic
QDs [42], Centane et al. developed graphene QDs [43], Chen et al. studied the Au-
nanoparticle containing carbon dots [44], etc. to detect/sense hydrazine electrochemically.
However, the finding of new QD-based electrode materials for the electrochemical detection
of hydrazine is much desired in developing an effective and high-performance detection
system for neurotoxic hydrazine.

In recent years, molybdenum disulfide (MoS2) QDs have gained tremendous attention
from researchers owing to their earth abundance, high specific surface area, their higher
number of edge atoms for high electrocatalytic activity, excellent photoluminescence for
bioimaging superior charge trapping properties in electronics [45–48]. The more edge
atoms that result in the lack of coordination of the surface atoms and unsaturated bonds
are beneficial to the catalytic activity toward analytes by high surface activity and high
adsorption capabilities [49,50]. To utilize these high electrocatalytic activities of MoS2-QDs,
herein, we have synthesized the cysteine-functionalized MoS2-QDs by bottom-up synthesis
approach to modify the Glassy Carbon Electrode (GCE) for the detection of hydrazine. The
presence of cysteine functionalization can enhance the additional interaction with hydrazine
for better adsorption over MoS2 QDs-modified electrode surface and can improve the
electrocatalytic oxidation of hydrazine. The electrochemical studies unveiled that this new
sensor has an excellent electrocatalytic activity to oxidize hydrazine with numerous benefits
such as operational simplicity, higher sensitivity, etc.

2. Materials and Methods
2.1. Chemical and Reagents

Analytical-grade reagents were purchased and used without purification for the
preparation procedures. Deionized (DI) water (Millipore Milli-Q water, 18 MU cm, and
25 ◦C) was used wherever necessary. L-cysteine (98%), and sodium molybdate dehy-
drate (Na2MoO4·2H2O) (98%) were bought from Avra Synthesis Private Limited, India.
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HCl, sodium hydroxide (NaOH), sodium dihydrogen phosphate, and disodium hydrogen
phosphate were delivered by S D Fine-Chem Limited.

2.2. Synthesis of MoS2 Quantum Dot (MoS2 QD)

The synthesis of MoS2 QDs was performed by adopting the reported bottom-up
protocol taking the Na2MoO4·2H2O and L-cysteine in a 1:2 weight ratio for complete
reduction of Na2MoO4·2H2O [46,47,51]. In a typical procedure, 0.25 g of Na2MoO4·2H2O
was first dissolved in 25 mL of water and 0.5 g of L-cysteine was dispersed in 50 mL of
water, then sonicated for 10 min. Next, both solutions were mixed and sonicated for another
15 min. The pH of the mixture was then adjusted to ~6.5 by adding an HCl solution, and
the dispersed L-cysteine was completely dissolved. The whitish-yellow colored solution
was taken into a 100 mL Teflon-lined stainless-steel autoclave and kept at 200 ◦C for 36 h to
complete the hydrothermal synthesis. Then the solution was cooled to room temperature
and centrifuged at 14,000 rpm for 30 min. The yellow-color supernatant was collected and
further filtered through 0.2 µm filter paper. The filtrate was lyophilization to provide the
MoS2 QD residue as a fluffy powder.

2.3. Characterizations

Fourier-transform infrared spectroscopy (FTIR) was carried out by making KBr pellets
of the compounds using a JASCO/FTIR-4200 instrument (Tokyo, Japan). IR spectra were
acquired by preparing the KBr pellet of the QD powders after sufficient drying using
IR lights. The accurate size range distribution of MoS2 QD was confirmed by High-
Resolution Transmittance Microscopy (HRTEM) using the Tecnai G2, F30 (Atlanta, GA,
USA) transmittance electron microscope under an accelerating potential of 300 kV.

2.4. Electrochemical Characterizations

All CV and amperometric measurements were performed using an Autolab potentio-
stat PGSTAT128 N (Utrecht, The Netherlands). The typical three-electrode measurement
system was utilized for the measurements taking MoS2 QD modified glassy carbon elec-
trode as the working electrode, a Pt wire as the counter, and an Ag/AgCl as the reference
electrode. The 0.1 M phosphate buffer solution (PBS) was used as the electrolyte. The MoS2
QD-modified glassy carbon electrode was prepared by drop-casting 20 µL of MoS2 QD
solution (2 mg in 1 mL of ethanol) and subsequently dried in air and in a vacuum at 60 ◦C
for 8 h.

3. Results and Discussion

The facile bottom-up hydrothermal approach, as shown in Scheme 1, was employed
to prepare the cysteine functionalized MoS2 QDs according to our previous work [46]. The
sodium molybdate precursor was reduced by the cysteine during the hydrothermal process
to prepare the MoS2 QDs. Simultaneously, the QDs are capped by cysteine, which acts as
the surface passivating agent to limit agglomeration.

The HRTEM imaging study determined the morphology and size of the synthesized
MoS2 QDs. The HRTEM images are shown in Figure 1a,b. The images unveiled the
homogeneously distributed spherical MoS2 QDs. The size distribution plot of the QDs
from the TEM image, as shown in Figure 1c, revealed an average particle size of 5 nm.
Furthermore, HRTEM analysis in Figure 1b displayed the characteristic lattice fringes with
~0.28 nm spacing for the interplanar distance. To reach better insight, we studied the
powder X-ray diffraction of the prepared MoS2 QDs, and the plot is given in Figure 1d.
The PXRD pattern revealed a highly intense peak at 2θ = 31.8 (d = 0.28 nm). Comparing
with earlier literature, we concluded that the peak at 2θ = 31.8 is for the (101) plane [52].
The interplanar distance of the (101) plane was exactly matched with the lattice fringe of
0.28 nm evaluated from the HRTEM study. The surface capping of QDs with cysteine was
further evaluated using FTIR spectroscopy by comparing the FTIR spectra of L-cysteine
and MoS2 QDs. Figure 1e unveiled the characteristic sharp peak at 1624 cm−1 for the
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C=O stretching of the carboxylic acid group, and a broad peak ~3000 cm−1 band for O–H
and N–H stretching. The presence of cysteine would provide the characteristic peaks for
carboxylic acid and amino groups and the characteristic peaks of L-cysteine were retained
in MoS2 QDs. The FTIR spectra, depicted in Figure 1e, revealed a sharp peak at ~1640 cm−1

owing to the C=O stretching of the carboxylic acid group from the cysteine part. Alongside
this, the spectra also exhibited the other well-resolved peaks at 2195 cm−1, 1570 cm−1,
and 1410 cm−1 assigned to the stretching vibrations of C–H, N–H, and C–N, respectively,
present in the cysteine moieties on the surface of MoS2. Again, the typical broad stretching
vibration in the region of ~3345–3440 cm−1 could be assigned to the accumulated band
for O–H and N–H stretching. The presence of a small but significant peak ~475 cm−1

confirmed the Mo–S vibration in MoS2-QDs. The energy-dispersive X-ray spectroscopy
(EDX) of prepared MoS2 QDs was studied to characterize the elemental composition. The
study revealed the presence of C, N, Mo, O, and S as the elements in the QDs (Figure 2).
The elemental mapping also demonstrated the presence of the aforementioned materials
in MoS2-QDs.

The electrochemical characteristics of MoS2-QDs were performed by CV measure-
ments using a 0.1 M PBS buffer solution having neutral pH (pH ~7.0) as electrolyte. The bare
GCE and MoS2-QDs on GCE both revealed no oxidation peak in the absence of hydrazine,
as shown in Figure 3a. However, compared to the bare GCE, MoS2-QDs modified GCE
exhibited an increment of ~4.5 folds higher anodic current to suggest the improved electro-
catalytic efficiency of the MoS2-QDs on GCE while using PBS solution-based electrolyte.
Again, in the presence of 1 mM of hydrazine, a broad oxidation peak with little anodic
current enhancement was observed in bare GCE. However, in the presence of hydrazine,
the MoS2-QDs modified GCE showed a large enhancement (~80 fold) in anodic current
with a well-defined peak at ~0.61 V to imply the clear oxidation of hydrazine over the
MoS2-QDs modified surface. Interestingly, in the presence of hydrazine, the voltammo-
gram in Figure 3b revealed the absence of any reduction peak denoting the irreversible
oxidation of hydrazine over MoS2-QDs modified electrode surface. To obtain a better
insight regarding the anodic current increment in the presence of hydrazine on MoS2-QDs
modified electrode surface, we studied the voltammograms of the process with stepwise
addition of hydrazine starting from 100 µM to 1 mM. Figure 3b revealed the gradual
increment of the anodic peak current with increasing concentration of hydrazine. The scan
rate-dependent CV study of MoS2-QDs modified GCE in the presence of 0.4 mM hydrazine
revealed an increment of anodic current with increasing scan rates (Figure 3c). Again,
the anodic peak current revealed a linear relation with the square root of the scan rate, as
shown in Figure 3d. This linearity denoted that the electrochemical process was diffusion
controlled in nature.

To evaluate the detection efficiency of the MoS2-QDs modified electrode, the am-
perometric measurements of the MoS2-QDs modified electrode were performed with the
successive addition of hydrazine (100 µM to 1 mM) at the potential of 0.61 V in 0.1 M PBS
buffer electrolyte. The results are shown in Figure 4a. The anodic current at 0.61 V was
gradually increased systematically upon the addition of hydrazine with a response time
of ~2 s. However, we made the successive addition in 25 s intervals. The amperometric
response was very stable after addition of every portion of hydrazine. The oxidation of
hydrazine molecules in the presence of an aqueous 0.1 M PBS buffer to generate the nitro-
gen and water at the surface of the MoS2-QDs modified electrode, as shown in Scheme 1,
was the reason for the increment of the anodic current. The release of the electron in this
oxidation process and the generation of oxidative species effectively increased the anodic
current as the signal of the sensory system.
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Figure 3. (a) CVs recorded of bare GCE and MoS2-QDs modified GCE in 0.1 M PBS solution (pH 7)
in the absence of hydrazine and in the presence of hydrazine at a scan rate of 100 mV/s. (b) Cyclic
voltammograms of MoS2-QDs modified GCE in the presence of different concentrations of hydrazine.
Scan rate: 100 mV/s. (c) Scan rate-dependent CV study of the MoS2-QDs modified GCE in the presence
of 0.4 mM hydrazine, and (d) corresponding anodic peak current vs. square root of scan rate plot.
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Figure 4. (a) Amperometric response of the MoS2-QD modified GCE towards sequential addition of
hydrazine at 0.61 V vs. Ag/AgCl in 0.1 M PBS solution; (b) calibration curve representing the response
of MoS2-QD modified GCE with different concentrations of hydrazine in a three-electrode system.

The calibration plot in Figure 4b revealed the linearity of current with the concentration
of hydrazine. The evaluated R2 value of the calibration plot was 0.998. The value confirmed
the excellent linearity of the current with hydrazine concentration. The long-range of
linearity (100 µM to 1 mM as measured here) of the calibration plot also denoted the better
efficiency of the MoS2-QDs modified electrode. From the slope of the calibration plot, we
have derived the sensitivity and lower limit of detection (LOD) of our sensory system. The
sensitivity (sensitivity = m/A where m is the slope of the plot and A is the geometrical
surface area of the used electrode) was calculated as 990 µA mM−1 cm−2, which is quite
higher than other reported electrochemical hydrazine sensor systems [8,18,21]. The LOD
can be determined using the equation, LOD = 3 S/m, where S is the standard deviation of
the response and m is the slope of the calibration plot. The calculated LOD was 34.8 µM. To
highlight the sensing superiority, we have compared the sensitivity and the LODs of recently
reported electrochemical hydrazine sensors in Table 1. From the table, it is envisioned that
our sensory system has the potential to be used as a high-performance sensor for hydrazine,
as it shows very high sensitivity and low LOD with a large linear range of detection. It
should be noted that the MoS2-QDs used here are synthesized by a single-step bottom-up
hydrothermal process with a high yield. As we didn’t use any precious metal nanoparticles,
the MoS2-QD-based sensing system would be economically beneficial. Again, the MoS2-
QDs-based electrode was capable of detecting hydrazine with high sensitivity, so we didn’t
need to add any conducting filler such as carbon nanotubes, etc. Alongside this, we
employed only the simple drop-casting technique for the electrode preparation, unlike the
other reports, which used sophisticated screen-printing technology, etc.

Table 1. Comparison of the performances of MoS2-QD-based hydrazine sensors with other reported
electrochemical hydrazine sensors.

Electrode
Materials

Sensitivity
µAmM−1cm−2 LOD Linear Range Reference

GO-Chitosan-Pt 104.6 3.6 µM 20 µM–10 mM [24]
Carbon QDs 151.5 39.7 µM 125–1125 µM [8]

Mn-hexacyanoferrate-graphite–wax 0.4753 6.65 µM ~33 µM–8 mM [53]
MWCNT/Chlorogenic acid 4.1 - 2.5 µM–5 mM [54]

β-nickel hydroxide nanoplatelets/CPE 1.33 0.28 µM 1–1300 µM [5]
Pt NPs/TiO2NSs/GCE 187.4 2 µM 20–900 µM [25]

CuO/CNT/SPE 70.72 5 µM 5–50 µM [27]
Carbon QDs 151.5 39.7 µM 125–1125 µM [8]

Au@Pt-NFs/GO/GCE 1695.3 0.43 µM 0.8–429 µM [23]
ferrocene-derivative/ionic

liquid/CoS2-CNT/CPE 0.073 0.015 µM 0.03–500 µM [18]

N-doped Graphene-PVP/AuNPs/SPE 1.37 0.07 µM 2–500 µM [26]
MoS2-QD on GCE 990 34.8 µM 100–1000 µM This work
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4. Conclusions

In summary, a MoS2-QD-modified GCE-based electrochemical sensing system for
hydrazine detection was developed by synthesizing the MoS2-QDs using a one-step bottom-
up hydrothermal process. HRTEM images unveiled the spherical QDs with an average
diameter of 5 nm. The FTIR study revealed the presence of cysteine moieties with carboxylic
acid and amine groups on the surface of the QDs. The MoS2-QD-modified GCE exhibited
excellent electrocatalytic properties than bare GCE, as well as a very high sensitivity of
990 µAmM−1cm−2 (R2 = 0.998) and low LOD of 34.8 µM towards hydrazine. The higher
electrocatalytic surface area due to the smaller size of the QDs and the presence of carboxylic
acid containing cysteine on the surface of the QDs enhanced the adsorption as well as
the electrocatalytic activity. Finally, this high-sensitive, binder and conducting filler-free
MoS2-QD-based sensing system can be used for low-cost, nimble amperometric detection
of neurotoxic hydrazine in environmental monitoring and industrial applications.
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