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Abstract: This article deals with quality of service (QoS) in internet protocol (IP) telephony by
applying software-defined networking (SDN) tools. The authors develop a new design that determin-
istically classifies real-time protocol (RTP) streams based on data found in session initiation protocol
(SIP) using SIP proxy as a mediator, and the concept making this possible is called SDN. Compared
to traditional networks, SDN allows us to approach network configuration differently. SDN networks
are programmable through software applications running on top of the SDN controller. One of the
technologies that might benefit from this concept is IP telephony, which often needs an additional
priority management configuration to ensure consistent quality of its real-time media exchange.
Typically, a session protocol for real-time communications is SIP, and as such, its infrastructure may
be used to classify the traffic in question and take advantage of the centralized approach of SDN
networks to distribute the class information across the switching devices. Different approaches
and possible applications are discussed in the conclusion. The contribution of this paper lies in
the proposal of SDN-based QoS mechanisms. The entire design of the concept was implemented
and validated in a laboratory environment. The results clearly demonstrate the efficiency of the
proposed approach.

Keywords: SDN; SIP; VoIP; QoS; OpenFlow; traffic classification

1. Introduction

In current internet protocol (IP) networks, various types of traffic share the same
network resources, and even though the networks’ performance has advanced considerably,
so has the amount of data and especially real-time media that require particular attention
to their qualitative parameters. Those typically include latency, jitter, and packet loss.
To maintain the quality of real-time services and, more importantly, to preserve the user
experience, these undesired elements must be prevented from exceeding certain levels.
In relation to the network, the term quality of service (QoS) is used.

Quality of service is a concept that stands behind some network devices and tools
whose functions may be divided into two basic components:

• Local operations—the application of specific QoS tools on each network device such
as a router or a switch.

• Source signalization—packet identification making it possible for each network de-
vice to deterministically and consistently decide which local operations should be
performed.

Two main QoS standards are integrated services (IntServ) described in RFC1663 [1]
and differentiated services (DiffServ) described in RFC2475 [2]. IntServ has been developed
as a protocol for resource reservation on an end-to-end basis. However, it has never been
widely used, although some of its characteristics have been inherited in multiprotocol label
switching (MPLS) networks by the resource reservation protocol (RSVP).
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The DiffServ model, on the contrary, is intended to differentiate between a number
of predetermined traffic classes. Each type of traffic is assigned to a class which is linked
to a per-hop behavior (PHB) on each network device. There is no signalization present
between neighbors or end points, and PHB implies that the behavior is determined by each
device’s local configuration. Although this makes DiffServ much more scalable than IntServ,
the information available on the data sessions and packets is limited. Upon classification,
network devices can forward class information to the headers of a packet, but the success
lies in the consistency of the configuration of each network device on the particular data
path [3].

Even DiffServ, though, finds its challenges in today’s networks. When speaking of
QoS, the crucial step is to differentiate and classify different types of traffic. The typical
classification method is port-based classification, which expects the packets to use com-
monly known ports for each type of service [4]. However, the growing use of dynamic
ports and tunneling compromises this method. Another option is to inspect the payload
and determine the class of service accordingly, and while it may not even be possible in
some implementations due to encryption, it raises security concerns as well [5–7].

One of the traffic types that is typically desired to be handled differently is voice traffic
typically supported by the session initation protocol (SIP) that exchanges the routing infor-
mation between the end devices, in other words, signalization. Given that this information
can be effectively forwarded to network devices, it should be possible to dynamically
prioritize specific media flows without further knowledge of their parameters.

For this purpose, the concept of SDN appears to be attractive [8]. It is a relatively
new concept that, in contrast to traditional IP networks, separates the control plane from
network devices. The control plane is then represented by an entity called an SDN con-
troller, and the data plane is represented by multiple SDN switches. An SDN controller
contains all the network logic and accordingly feeds SDN switches, which are on their
own very simple devices, with instructions that are stored in the form of tables. A typical
example, as a protocol in charge of communication between an SDN controller and SDN
switches, is OpenFlow. Although there are newer versions, the most common version that
manufacturers implement in their equipment is 1.3 [9]. As far as performance goes, SDN
switches have been proven to be comparable to traditional ones [10,11].

A fundamental characteristic of SDN, considered its main value proposition, is the
ability to interact with applications through its application programmable interface (API)
[12]. In the position of such an application would be an SIP server which is able to select
the desired information from SIP messages and forward it to the SDN controller.

In this paper, we demonstrate an example of ensuring QoS policies achieved by
such cooperation of SIP and SDN infrastructures, highlighting the potential of the design.
Classification of real-time protocol (RTP) streams will be controlled by SIP signalization of
the respective VoIP calls and will therefore not depend on standard classifiers that would
in some cases be found to be unreliable. Moreover, the configuration will be performed
dynamically and in a centralized manner, which are features that have been missing in
traditional networks [13].

2. Related Work

Some research has been conducted on SDN and QoS synergy, for example, focusing
on QoS techniques that decide which route traffic should take [14,15] or related topics
such as speech quality estimation [16]. These works generally take advantage of the SDN
controller’s ability to oversee the number of SDN switches and the traffic going through
them. In [15], Akella and Xiong tested a method that guarantees bandwidth allocation
between two points in the network using predefined values. The solution presented in this
paper would be able to give such methods dynamic control by taking advantage of SIP that
contains not only the routing information of the end points, but also the exact bandwidth
needed for the particular session as well as a respective point in time when it is safe to
release the reserved resources.



Designs 2022, 6, 123 3 of 12

On the subject of traffic classification, some studies propose the use of machine learning
algorithms. Nevertheless, there is a trade-off in both setup time and accuracy. It is worth
noting that these algorithms were tested for use in smart city networks which are found to
be problematic in terms of traffic classification [7].

There was an attempt to use SIP for QoS management in [17]. The authors suggested
that SDN switches would listen on port 5060, which is a standard port for the SIP protocol,
and forward duplicates of the corresponding traffic to an SDN controller. Then, the SDN
controller analyzed the SIP packets and found the desired information. This approach will
accomplish the goal, but in a broader picture, it would be rather problematic.

Firstly, unnecessary redundancy is created when duplication occurs for every whole
SIP packet. Secondly, if encryption is used, the SDN controller is not able to read the
contents. Finally, unless the SDN controller contains the entire logic of an SIP server,
the authentication requirements are not met. An analytical experiment was performed
in [18], inspecting RTP packets instead of SIP. Further analysis on this matter will be
included in the Comparison section. Therefore, we propose leaving the logic of QoS
parameters provision on an SIP server. SIP servers already perform most of the processes
needed for such an application and should be achieved with minimal drawbacks.

The most similar approach was developed in [19], which suggested programming the
entire SIP server logic into an SDN controller. This unquestionably solves the drawbacks
mentioned above, but, in terms of design, we believe that these entities should remain
separate and that SDN controllers should not be incorporated into the infrastructures of
other applications. An SDN application that exchanges information with an SIP server was
presented in [20]; however, its primary purpose is a call admission control.

3. Technologies and Concept Design

The main components of this concept are an SIP server, an SDN controller, and SDN
switches. We decided on the following implementations:

• SIP proxy Kamailio;
• SDN controller Ryu;
• Open vSwitch (OvS) SDN switch

One of the features of an SDN network is an option to communicate with external
applications through a central control element, an SDN controller. With each SIP dialog,
the SIP server should inform an SDN controller about the active voice streams represented
by RTP sessions aligned with SIP messages as described in RFC3261 [21]. The system
should perform the following operations:

1. Upon successful assembly of a voice session, the SIP server forwards network pa-
rameters of its RTP session to the SDN controller. These parameters are contained in
requests INVITE and responses 200 OK.

2. An SDN controller ensures that the configuration prioritizing given RTP streams is
distributed across the SDN switches.

3. Upon terminating the voice session, that is, upon receiving a request BYE, the SIP
server informs the SDN controller that discards given configuration across the SDN
switches.

The SDN controller Ryu is remotely programmable via its REST interface. This re-
quires sending hypertext transfer protocol (HTTP) messages of the proper method and
syntax accordingly to its documentation described in [22]. Based on these presumptions,
it may be deduced that Kamailio needs to be able to extract information from an session
description protocol (SDP) body, save the information for later use, and send it via an HTTP
configuration message to the SDN controller. Such functions are feasible with Kamailio’s
modules:

• Sdpops to access an SDP body [23];
• Dialog to keep variables accessible within the entire SIP dialog (by default, Kamailio

keeps variables alive only for the duration of the transaction) [24];
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• Http_client and http_async_client for sending HTTP requests [25,26].

With these modules available, Kamailio was configured to extract and save an IP
address and port values from the media parameter of an SDP body of requests INVITE
and responses 200 OK. After processing a response 200 OK this way, these values are sent
within an HTTP message POST to the SDN controller, aligning given RTP streams with the
preconfigured priority queues on the SDN switches.

In the response, the SDN controller includes an identifier, which Kamailio saves as
a dialog variable. This identifier is used at the end of a session when one of the user
agents sends out a request BYE which terminates the call. Kamailio then sends an HTTP
message DELETE to the SDN controller, discarding the configuration associated with a
particular session.

There are many QoS tools that may be used. Typically, it is DiffServ due to its scalability
and then some local mechanisms dealing with various traffic classes, such as queues.
For purposes of validation, we used simple priority queues, but that part is interchangeable
with any other standard method according to the character of the particular network.
DiffServ may be used in larger networks as well. However, compared to the best-effort
approach, the quality of calls should be preserved under congestion even with no other
traffic classifier available.

An SDN network was emulated in the Mininet network emulator running on one Linux
system altogether with an SIP server Kamailio and an SDN controller Ryu. SIP user agents
were configured separately on other devices connected to the Linux system that served them
as a transition network. Aside from the proposed functionalities and basic connection, this
topology illustrated in Figure 1 allowed us to simulate a congestion, capture transitioning
packets, and analyze them in terms of QoS parameters. The topology is explained further
in Sections 4.1 and 4.2; the first focuses on establishing the connection and subsequent
dynamic configuration and the second on RTP flows and QoS measurements.

User Agent 1 
(UA1)

User Agent 2 
(UA2)

Open vSwitch 
S1 

Open vSwitch 
S2 Host 1

(H1) 
Host 2
(H2) 

Standard  
switch

Standard  
router

SDN controller
Ryu

Linux
Mint

SIP proxy
Kamailio

Network
interface

Mininet

Figure 1. Physical topology.

To specify the components used:

• Mininet configured with OvS SDN switches (OpenFlow v1.3);
• OS Linux Mint; i7-1165G7 @ 2.80 GHz; 16 GB RAM;
• 2 standard SIP softphones;
• Ryu controller with OpenFlow v1.3;
• SIP proxy Kamailio v5.4.
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4. Results
4.1. Core Process

It may be claimed that the QoS configuration was integrated into the SIP dialog, which
is captured and shown in Figure 2 as a flowchart generated in Wireshark. Upon successful
establishment of a call, Kamailio sends two HTTP requests POST, one for each user agent,
to the SDN controller that prioritizes its RTP streams. When the call is terminated, upon re-
ceiving a request BYE, the prioritization is revoked in a similar manner. The SDN controller
Ryu responds to these requests with HTTP responses of the respective code (200 OK in this
case) that may contain metadata regarding respective configuration items.

UA2UA1 SIP proxy Kamailio Kamailio <-> Ryu
TCP/UDP

ports

Figure 2. Session initation protocol (SIP) flowchart in WireShark.

The following are examples of HTTP configuration messages POST and DELETE and
the respective HTTP responses 200 OK. Since there are only two switches in this case, the
most simple prioritization technique was chosen. Thus, there is only one configuration item
containing an IP address and a port extracted from the SIP dialog as described. The value
in a parameter queue assigns traffic to the statically preconfigured priority queue on each of
the switches.

POST /qos/rules/all HTTP/1.1
Host: localhost:8080
User-Agent: kamailio (5.5.0-dev4 (x86_64/linux))
Accept: */*
Content-Length: 103
Content-Type: application/x-www-form-urlencoded
{"match": {"nw_dst": "192.168.50.159", "nw_proto": "UDP",

"tp_dst": "48004"}, "actions":{"queue": "1"}}

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 228
Date: Wed, 21 Apr 2021 16:46:57 GMT
[{"switch_id": "0000000000000002", "command_result":

[{"result": "success", "details": "QoS added. : qos_id=5"}]},
{"switch_id": "0000000000000001", "command_result":

[{"result": "success", "details": "QoS added. : qos_id=5"}]}]

To release the rules that become obsolete when a call is terminated, HTTP message
DELETE is sent to the controller. The value in a parameter qos_id saved from the previous
answer is an identifier that allows us to access specific configuration items and in this case
also associates respective configuration items with an SIP call.
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DELETE /qos/rules/all HTTP/1.1
Host: localhost:8080
Accept: */*
testHeader: header
Content-Length: 15
Content-Type: application/x-www-form-urlencoded
{"qos_id": "5"}

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 226
Date: Wed, 21 Apr 2021 16:47:31 GMT
[{"switch_id": "0000000000000002", "command_result":

[{"result": "success", "details": " deleted. : QoS ID=5"}]},
{"switch_id": "0000000000000001", "command_result":

[{"result": "success", "details": " deleted. : QoS ID=5"}]}]

4.2. Experiment Validation

The topology in Figure 3 shows the transition SDN network with virtual hosts H1 and
H2. Additional load traffic was inserted between these hosts with a network tool iPerf,
sharing the same network resources with a testing call between user agents UA1 and UA2.
Assuming that the load traffic’s bandwidth consumption is high enough, this should create
considerable congestion on the shared link between switches, degrading the quality of the
testing call unless some QoS technique differentiating and prioritizing VoIP traffic over the
other non-priority traffic is used.

Since the SDN switches are emulated on a Linux station, any traffic passing through
any of the interfaces can be captured with Tcpdump and, if needed, precisely calculate
other parameters, such as latency or jitter, accumulated at a particular interface.

UA1 UA2S1 S2

H1 H2

Load stream H2-H1

RTP stream UA2-UA1

Monitored
Interface 

Figure 3. Congestion simulation and traffic capture for QoS analysis.

The initiated call was forced to share the network resources with the other traffic,
and since the sum of the ingress traffic was greater than the outbound interface’s capacity,
the resources were distributed according to the configured queue policies. In Figure 4,
where the best-effort approach is used, both streams are scaled down equally, suspending
the excess traffic into one fair queue.

Now, the main point comes with a crucial twist. Figure 5 shows the same scenario
with an RTP stream and load traffic; only the configuration of the SIP server Kamailio was
replaced by the proposed one. The result is that the RTP stream transmission is clearly not
affected by other non-priority traffic during congestion. In the previous case, the default
configuration was used.

This represents the essence of QoS policies in terms of traffic prioritization. One traffic
is locally prioritized over the other, limiting its access to the medium less at the expense
of limiting the other traffic more. QoS parameters, such as latency, jitter, and packet loss,
are then distributed proportional to their importance that is represented by traffic classes.
In real networks, it is typically some combination of the presented scenario multiplied
across the network.
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Figure 4. Bandwidth distribution with Kamailio in default configuration.
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Figure 5. Bandwidth distribution with SIP proxy in the proposed configuration.

To clearly demonstrate the impact on QoS parameters, delay and jitter may be calcu-
lated. Although it is usually not a trivial matter, it should be assumed that the delay of
the first packet is negligible. The expected time of arrival of every packet in the stream
may be derived according to the packet rate. For the codec G.711, which is used here, it
is 50 packets per second [pps]. The full equation used for the values exported from the
captured packets is as follows:

tk =
k

∑
n=k0

∆n −
1000

r
× (k − k0)[ms]

where tk = packet delay, k = sequential number of the packet, k0 = sequential number of the
first packet in the RTP stream, ∆ = difference in arrival times of two consecutive packets in
the RTP stream, and r = packet rate.

Similar to the bandwidth distribution, we have two graphs that compare the delay
and jitter of the captured RTP stream before (Figure 6) and after (Figure 7) applying the
described configuration of the SIP server. When load traffic is launched, the measured
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interface is congested, and this congestion manifests itself by putting excess traffic in a
buffer. The longer and more robust the congestion, the farther in the buffer the packets
are placed and the greater the delay. This constant growth of delay during, in this case,
a stable congestion is a deviation that is then manifested in the jitter curve. The jitter and
the increase in delay remain stable during congestion.

When the voice traffic is prioritized and its bandwidth is not limited even when
congestion occurs, only non-priority traffic is saved into the buffer. Therefore, unlike the
visible increase in Figure 6, delay and jitter are essentially negligible in Figure 7, staying
relatively stable for the entire duration of the measurement.
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Figure 6. RTP delay jitter on the congested interface with the best-effort approach.
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Figure 7. RTP delay and jitter on the congested interface with QoS policies applied.

5. Comparison

While the impact of the selected QoS tools, which validates their operability, is clearly
visible, there is no precedent for deterministically comparing the effectiveness of the classi-
fication methods used. If multiple classification methods could be replicated and run in
the same environment, it would be possible to perform stress testing and compare the re-
sults. The key differences, though, lie in their ability to successfully operate under different
conditions, and, as such, they may be directly derived from some of the methods’ principles.

As outlined in the Introduction and Related Work, classification methods could be
distinguished based on the source of their differentiating information. In relation to recent
studies, several approaches that differ substantially in their principles have been chosen,
followed by Table 1, comparing how their differences reflect on potential behavior.

To briefly summarize each of the methods by their classification acquisition process:

• Transport inspection—the packets are inspected for an indicator, such as a port or a
transport protocol;

• SIP on an SIP server—as we propose, the classification information is extracted directly
from an SIP session. The SIP server is configured to forward classification information
to an SDN controller separately;
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• SIP on an SDN controller—at one or more points of the network, SIP messages are
redirected to an SDN controller that performs its own analysis on them;

• Machine learning—based on statistical analysis of the network traffic. Generally, it
is very versatile, but it entails high computational difficulty. Various algorithms are
available, and their performance might differ. Usually, their execution ranges in units
of seconds.

Table 1. Comparison of classification methods.

Classification Source Redundancy Works with Encryption 1 Accuracy Execution Time

Transport inspection None No Limited Fast [ms]
SIP on an SIP server Low Yes Strong Fast [ms]

SIP on an SDN controller [17] Moderate No Strong with limitations Fast [ms]
Machine learning [7] None Yes Moderate Slow [s]

1 Regards the data unit that is inspected.

6. Conclusions

This study is not focused on improving the performance of QoS policy tools. Instead,
it brings a new approach that can be used to identify desirable VoIP traffic before applying
well-known QoS techniques, independent of the form of the RTP headers. The configura-
tion is performed dynamically and in a centralized manner. In addition to the advantages
provided by SDN, it was confirmed that it is possible to take advantage of the SIP in-
frastructure as an alternative to standard traffic classification methods, which come with
certain limitations.

Furthermore, taking into account some of the recent studies revolving around the
SDN and VoIP concepts, there is a potential for further development. Using the same
concept, an SDN network can utilize various session parameters that usually remain
unknown to it and use them to adjust QoS policies or perform other network operations on
a similar basis. Some of the examples using SDN also include routing path selection and
bandwidth allocation.

In future research, we could experiment with the scalability and deployment of the
proposed concept in large-scale networks. Moreover, it seems convenient to experiment
with the combination of this and the other concepts mentioned in the Related Work. We
plan to explore newer SDN technologies, such as P4 and ONOS controller, which promise
to cover the shortcomings that have been holding OpenFlow back. Furthermore, there is a
demand for SDN-controlled QoS mechanisms in 5G mobile networks, the most notable of
which is network slicing, as quite a few recent studies imply. We would like to incorporate
the knowledge acquired in this study into one of these directions after sufficient theoretical
research is carried out.
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Abbreviations
The following abbreviations are used in this manuscript:

API Application Programmable Interface
DiffServ Differentiated Services
HTTP Hypertext Transfer Protocol
IntServ Integrated Services
IP Internet Protocol
MPLS Multiprotocol Label Switching
ONOS Open Network Operating System
OvS Open vSwitch
PHB Per-Hop Behavior
QoS Quality of Service
RSVP Resource Reservation Protocol
RTP Real-time Transport Protocol
SDN Software-Defined Networks
SDP Session Description Protocol
SIP Session Initation Protocol
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