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Abstract: The paper proposes a new methodology for revamping design and optimization of a
process piping system. Starting from ASME B31.3 Process Piping prescriptions for stress analysis,
a nonlinear model is built to express the relationship between stress distribution generated by
expansion and sustained loads (pressure, weight) and the geometry and routing of the pipeline,
focusing on geometric parameters of expansion loops. The number of design variables affecting
stress distribution over the pipe, together with the constraints to be respected, would make it hard to
formulate an optimization procedure based on deterministic methods. This problem is overcome
by applying a Feed Forward Neural Network, backpropagation trained, which makes it possible to
interpolate a non-linear and multidimensional relation over a domain enclosed within the boundaries
of a training set. Prediction of code stresses is obtained through the fitting of an artificial neural
network for each examined loadcases. Network parameters are tuned offline, starting from a set of
data obtained by finite element numerical simulation. As a result, an optimal geometry for expansion
loops is found, allowing to revamp pipe routing by halving loops number and keeping code stress
within the allowable limits.

Keywords: piping design; expansion loop; stress analysis; ASME B31.3; neural network

1. Introduction

Technological knowledge has been advancing since the existing plants were designed.
In addition, economic, environmental, regulatory conditions are dynamic and change over
time. Consequently, a wide variety of reasons may emerge to improve, upgrade, adapt
an existing plant, or a part of it. When new needs arise, such as to reduce the impact
of the process on the environment, to improve the safety, reliability, and flexibility of
the process, retrofitting of some equipment is required [1,2]. When instead more radical
changes have to be made, such as to use feed of different quality or alternative feed, to
meet new specifications of product or produce new products, a real reconversion of the
systems becomes necessary, and the revamping of a part or of the whole plant must be
planned [2,3].

It is precisely that which one occurs more and more frequently today for petrochemical
plants. The increase in fuel price and environmental protection pressure, and the subse-
quent decrease in oil refined products demand in the long-term oil and gas industry outlook,
promote large investment for petrochemical companies to switch their production toward
more profitable and sustainable products. Therefore, the plants need to be reconverted for
the production of alternative energy sources. This requires restoration of the industrial
sites, and the rearrangement of plants through a series of revamping interventions, with
the aim of avoiding excessive disposal and shutdown costs.

Piping systems are particularly sensitive to this problem, as they form the backbone of
any type of process system, and are composed of a large number of elements. Furthermore,
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the failure of just one of their components can cause unwanted plant shutdowns, or even
worse, severe problems to public health and safety.

In revamping interventions, the introduction of optimization methodologies is es-
sential when it is required that plant lines to be reconceived, and suitably redesigned, in
addition to meet new process requirements, should:

• Avoid interference with other pipes, structures, and in general with other existing
equipment;

• Facilitate maintenance operations;
• Respect both the current safety and the environmental law;
• Cause stress conditions within the code requirements.

In fact, failure of piping systems can have insidious adverse effect on their safety and
reliability. Piping failure frequency in a particular system is an important input parameter
to probabilistic safety assessment, and in operating plant it is of great interest to evaluate
failure rates and investigate their departure from generic reference values [4]. Estimates
of pipeline failure frequencies are typically derived from reports on incident statistics.
The most recent data relating to the European context made it possible to estimate a
failure frequency over the entire period 1970–2019 equal to 0.29 per 103 km·year [5]. They
also highlighted how the causes of pipeline accidents are diversified, and determined by
multiple factors (natural causes and geotechnical phenomena, external interference and
third party actions, material/construction causes, corrosion phenomena, unknown causes).

Between them, construction defects and material failures typically constitute a sig-
nificant share in failure cause distribution, being the wall thickness a key feature for its
potential effects on different failure mechanisms [6]. In general, piping reliability is depen-
dent on many construction factors, being the main reliability-related inclusive of, but not
limited to, diameter and wall thickness, mechanical and metallurgical behavior of materials,
configuration of piping, methods of fabrications and welding. Wall thickness, material,
and operating pressure, in addition to the location, are considered key factors for failure
classification in gas pipelines [7]. This highlights the importance in pipeline design of
balancing all these factors in the best possible way, acting on the design variables in order
to guarantee constructive efficiency and system safety.

ASME B31.3 Process Piping code [8] have been introduced expressly to state the re-
quirements for effective stress analysis in piping design for process industry, and guarantee
a high level of safety to the construction solutions adopted. Each pipe branch is considered
as a hollow tubular element for fluid transfer, subjected to internal and external pressure
thermal conditions, and other loading conditions, which create displacement and stress at
the fittings, bends, laps, and branch connections.

One of the major aspects in stress analysis of piping system is the expansion of pipes,
generally due to high temperature of fluid being transported from one point to another, and
to the difference of the surrounding temperature. The corresponding addition of length
creates high loads and moments on the fixed points (i.e., the points with zero displacement),
such as nozzles and anchors. Furthermore, elbows of the pipe are subjected to the maximum
expansion displacement due to space availability.

In oil and gas piping lines this aspect is enhanced by the high temperatures of the
operating fluids, and combined with the high pressures, it entails severe condition in
stress distribution, as demonstrated by study on thermo-mechanical coupling effect at high
temperature [9].

Hangers and expansion joints, which use springs to reduce the loads at the elbows
of the pipes, are frequently used: the formers absorb expansion along a vertical line only;
the latter can compensate for all the axial expansion, but requires special fittings and
supports. Furthermore, such solutions are restricted by high price. So, the most effective
and sustainable approach to mitigate the high stresses due to the constraints of piping
system to the expansion consists in changing the routing of the piping system by using
expansion loops. However, they require extra space, supports, bends, and additional
structure, so their geometry and number, and the supports, need to be optimized. With
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this purpose, a few previous works have proposed optimization analysis concerning the
expansion loop dimensions and the number of supports, by using commercial software for
pipe stress analysis [10,11].

The aim of this paper is to provide a method to optimize the main geometric pa-
rameters of expansion loops in high-pressure pipeline design, to be used in revamping
optimization of piping systems. A nonlinear model is proposed to express the relationship
between stress distribution generated by expansions and sustained loads (pressure, weight)
and the expansion loops geometry and routing of the pipeline. The high number of design
variables affecting stress distribution over the pipe, according to ASME B31.3 Process
Piping code, together with the constraints to be respected, would make it hard to formulate
an optimization procedure based on deterministic methods. This problem is overcome by
applying a feed forward neural network, backpropagation trained, which makes it possible
to interpolate a non-linear and multidimensional relation between design parameters and
stress conditions, over a domain enclosed within the boundaries of a training set. Numeri-
cal simulation by the specialized finite element-based software for piping stress analysis
Caesar II (Hexagon AB, Stockholm, Sweden) has been used to assess the stress behavior of
the piping system as the variables of the optimization problem vary, and to obtain the data
for network parameters tuning.

2. Models and Methods
2.1. Stress Analysis Calculation According to ASME B31.3 Code

High-pressure steam pipelines are among the most demanding design challenges. The
internal pressure and the boundary constraints generate longitudinal, circumferential, and
radial stresses. If the corresponding equivalent stress exceeds a critical value, the failure of
the piping could typically occur at the brunch connections. Expansion loops give the piping
system the right flexibility to accommodate the strains and stresses without exceeding the
allowable stress of the material.

Different loadcase conditions can be considered in stress analysis for piping design.
In all cases, according to the ASME B31.3 Process Piping code [8], the corresponding code
stress S(LC) for loadcase LC must not exceed the allowable stress SA, specified in tables
based on used material and the operating temperature.

The stress ratio R(LC), which is defined as the percentage ratio of the code stress S(LC)
to the allowable stress of the material SA, is used to determine the piping locations with
critical stress condition, and the acceptable range of stress within the piping system:

R(LC) =
S(LC)

SA
× 100 (1)

Between the primary loadcases, sustained case and expansion case will be focused here:

• Sustained case takes into account the loads due to pressure, pipe and insulation
weight, and fluid density. Sustained stresses consist in the stresses corresponding to
the longitudinal loads, bending moments, and internal pressure.

• Expansion case focuses the expansion of the pipe under the temperature effect and
the reactions at the fixed points (where zero displacements occur). With this regard,
failure typically occurs due to high stresses. The expansion loops are used precisely to
accommodate the expansion of the pipe in the axial direction without exceeding other
design constraints.

The code stress S(LC) is required to remain always lower than the allowable stress SA
under any circumstances for operating conditions. In flexibility stress analysis, the code
stress S(LC) is the displacement stress range SE, which is defined taking into account the
contributions of axial, bending, and torsional displacement stress ranges:

SE =

√
(Sb + |Sa|)2 + 4S2

t (2)
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The bending stress range due to displacement strains Sb is expressed by

Sb =

√
(iiMi)

2 + (ioMo)
2

Z
(3)

where Mi and Mo are the in-plane and out-plane bending moments, respectively, at the
branch connections (elbows, bends, tees); ii and io are the in-plane and out-plane stress
intensification factors, respectively (they depend on shape and geometric parameters of
bend or tee to which they refer); Z is the section modulus of the pipe.

The axial stress range due to displacement strains Sa is expressed as a function of
the axial force Fa, the cross-sectional area of pipe Ap, and the axial stress intensification
factor ia:

Sa =
iaFa

Ap
(4)

The torsional stress range due to displacement strains St in Equation (2) is expressed
as a function of the torsional moment Mt, and the torsional stress intensification factor it:

St =
itMt

2Z
(5)

ASME B31.3 states that the code stress SE should not exceed the value of the allowable
displacement stress range SA. It is defined according to the following conditions:

SA= f(1.25Sc+0.25Sh) for Sh < SL (6)

SA= f[1.25(Sc+Sh)− SL] for Sh > SL (7)

where Sc and Sh are the basic allowable stress at minimum metal temperature (cold condi-
tion) and maximum metal temperature (hot condition) expected during the displacement
cycle under analysis, respectively, and f is the stress range reduction factor, which depends
on equivalent number of full displacement cycles during the expected service life of the
piping system.

The term SL is the stress due to sustained loads (pressure and weight), defined by an
equation in the same form of (2), where in this case Sb, Sa, and St are the bending, axial,
and torsional stresses due to sustained loads, respectively.

In sustained case, which does not concern with expansion effects, the allowable stress
SA is expressed by:

SA =
Sh

Ec W
(8)

where Sh is the basic allowable stress at maximum metal temperature (hot condition), Ec
is the casting quality factor (for cast piping materials), and W is the weld joint strength
reduction factor.

As the loadcase condition varies, the generalized expression of the stress ratio in
Equation (1) will be developed by substituting the corresponding expressions of the code
stress S(LC) and the allowable stress SA.

Finally, the condition of pipe minimum thickness for pressure design must always
be respected. According to the ASME B31.3 code, when tp < D/6, being tp the pressure
design thickness and D the outside diameter of pipe, the minimum required thickness tm is
expressed by:

tm = tp+c (9)

where c is the sum of the mechanical allowances (thread or groove depth), plus corrosion
and erosion allowances. The pressure design thickness tp is expressed by:

tp =
P D

2(S E W + P Y)
(10)
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where P is the internal design pressure, S is the basic allowable stress for pipe material, E is
the quality factor, W is the weld joint strength reduction factor, and Y is a dimensionless
factor which varies with temperature and material. In this type of expression, the term E
can be the casting quality factor Ec or the longitudinal weld joint factor Ej; if a component is
made of castings joined by longitudinal welds, both casting and weld joint quality factors
are applied, and their product becomes the equivalent quality factor.

2.2. Problem Statement

Given a piping system running along a certain path which connects two or more fixed
points, let (l, w, t) be leg length, width, and wall thickness of the pipe in an expansion loop,
as shown in Figure 1a. In general terms, in expansion loops the pipes can be routed in both
the directions perpendicular to the main direction of the pipeline, obtaining a six-elbows
loop developing along all the three axes x, y, z (such as in Figure 1a); or only in one direction
perpendicular to the pipe, obtaining a four-elbows loop developing on the plane xz. The
former is the most commonly used, the latter instead is used when less flexibility is needed
or some process constraints prevail. However, when the vertical leg of the six-elbows loop
is limited, as in the case analyzed, its effect on stresses distribution is limited and can be
neglected, and no further geometric feature is needed to be added in the vector of variables
to be optimized. With these premises, the expansion loops have been modelled by the
six-elbows layout in Figure 1a, and the corresponding three-variables vector (l, w, t).
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Figure 1. Pipeline system: (a) expansion loop; (b) part of line analyzed.

Trying to find an optimal set for (l, w, t) it is necessary to model the relationship
between stress ratio and expansion loop geometry:

R(LC) = R(LC)(l, w, t) (11)

The high number of design variables affecting stress distribution over the pipe, intro-
duced in the model for stress analysis of Section 2.1, together with the constraints to be
respected, would not allow to define the relationship (11). This problem can be overcome
by using a suitable artificial neural network (ANN) that makes it possible to interpolate a
non-linear relation over a domain enclosed within the boundaries of a training set.

Let be routing, constraints on expansion loop geometry, and loadcase conditions the
model parameters; the response variables are the stress ratios expressed by Equation (1),
for each of the examined loadcase conditions:

• Rexp (Tdes) and Rexp (Top), stress ratios for expansion loading conditions at design
temperature and operating temperature, respectively;

• Rsust, stress ratio for sustained loading condition.
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On the one hand optimization process can be focused on the vector of variables (l, w,
t) corresponding to minimum Rexp (Tdes), since it results to be a condition more critical
compared to Rexp (Top). On the other hand, improving the resistance of the pipeline, the
number of loops necessary to absorb the expansion is reduced with a consequent decrease
of sustained loads over the pipe.

Therefore, the optimization model presented in this work uses as objective function
the following:

∅= min
[
Rexp(Tdes)

]
(12)

The examined pipeline is a high-pressure steam line, which is a part of a system
serving a Combined Cycle Gas Turbine (CCGT) for power generation, and is schematized
in Figure 1b. In Table 1 main data for existing pipeline (Pressure Equipment Directive PED
category, rating, design conditions, operating conditions, material and size, expansion loop
current geometric parameters) are reported.

Table 1. Line data.

PED category III Material CS A106 Gr.B
Rating 600# Size 16′′

Design pressure 4.5 MPa Led length lo 6130 mm
Design temperature 420 ◦C Leg width wo 8500 mm

Hydrostatic test pressure 6.75 MPa Wall thickness to 17.48 mm
Operating temperature 360 ◦C Corrosion allowance 1.27 mm

Insulation thickness 160 mm

In the choice of the discrete points to investigate, “feasibility” and “proximity to as-is”
constraints were considered, to be intended as follows:

• Feasibility: feasible discrete points were chosen, as the dimension used can be found in
standard components available on the market (this type of constraint has been applied
particularly to thickness t).

• Proximity to actual design: artificial intelligence starts from the configuration already
on place to find an optimal solution.

The discrete domain that satisfies the previous constraints is obtained by assigning
five levels to each variable in the neighborhood of a given configuration (l, w, t). Therefore,
the following sets of values for each term of the variables’ vector are defined:

• l ∈ (5930, 6130, 6330, 6530, 6730) [mm]
• w ∈ (8500, 8600, 8700, 8800, 8900) [mm]
• t ∈ (15.88, 16.66, 17.48, 19.02, 20.62) [mm]

Generally, the approach for a revamped design will be different from a new design, as
it will have many existing constraints, set by the current design. Chiba et al. [12] proposed
genetic algorithms for re-designing the support system of a pipeline starting from current
configuration while Fong et al. [13] used Design of Experiments techniques to search for an
optimal configuration starting from a sample obtained by means of a FEA. Following this,
a 53 factorial design consisting of 125 loops geometries in the neighborhood of the current
configuration (lo, wo, to) has been generated and synthesized in Table 2.
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Table 2. Factorial design and FEA outputs.

ID ID FEA l [mm] w [mm] t [mm] Rexp (Tdes) Rsust

1 52 5930 8500 17.48 44.9% 66.8%
2 13 6330 8700 15.88 42.3% 65.8%
3 43 6330 8800 16.66 41.4% 63.6%
4 20 6730 8800 15.88 41.6% 65.9%
5 90 6730 8700 19.05 40.5% 58.0%
6 3 6330 8500 15.88 41.6% 60.8%
7 17 5930 8800 15.88 43.9% 71.3%
8 11 6130 8700 15.88 42.4% 65.8%
9 88 6330 8700 19.05 41.5% 61.5%

10 100 6730 8900 19.05 39.4% 58.0%
. . . . . . . . . . . . . . . . . . . . .
29 125 6730 8900 20.62 38.7% 55.1%
. . . . . . . . . . . . . . . . . . . . .
125 75 6730 8900 17.48 40.2% 61.5%

Effects of the generated geometric parameters have been simulated using FEA software
Caesar II for pipe stress analysis [14,15]. With the aim of establishing the number of levels
to be assigned to each variable, it has been made a core-business choice between opposing
needs. A high number of tests improves the statistical significance of the training set. At
the same time, too many tests make the calculation too heavy because each one of them
needs to draw the pipeline including components, supports, insulation, constraints, and
any other parameter necessary for the FEA software to work properly. Outputs values
computed for Rexp (Tdes) and Rsust are also reported in Table 2.

By adopting a trial and error approach, a designer could choose the solution ID 29
which corresponds to Rexp = 38.7%. Per contra, this could be a local minimum over the
discrete domain composed by factorial design elements. The FEA cannot solve the problem
because the response is only limited to the simulated configurations. Traditional meth-
ods for modeling and optimizing complex systems require huge amounts of computing
resources, while artificial intelligence represents a smart alternative to solve those problems
more efficiently. There are many interesting applications of ANN within civil and mechan-
ical engineering. For instance, in the field of interest, Veerappan and Shanmugam [16]
adopted an ANN to determinate the correlation between allowable pressure ratio and
range of ovaling/thinning/thickening, and bend ratio of the pipe. In the present work the
use of a Feed Forward Neural Network, backpropagation trained, which makes it possible
to interpolate a non-linear and multidimensional relation over a domain enclosed within
the boundaries of a training set, is proposed to find a vector (lopt, wopt, topt) which optimize
the objective function (12), without eliciting the explicit law (11).

2.3. Neural Network Optimization Model

Artificial neural network (ANN) models, inspired by structure of the central ner-
vous system, are widely used in problems of learning and pattern recognition. Here a
feed forward artificial neural network (FFANN) model with backpropagation has been
adopted to address the optimization problem [17,18], with a Multilayer Perceptron (MLP)
structure [19], whose reference scheme is shown in the Figure 2.
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In general, the network is composed of a wide number of largely interconnected pro-
cessing units called neurons. They are linked through a bonding network of unidirectional
communication channels. The strength of these bonds is represented by a numerical value
named weight w. For each single input neuron, a transfer function ft is defined, which
transfers the scalar input p into output a through the relationship:

a = ft(n)= ft(w·p + b) (13)

where n is the net input, obtained by adding bias b to the product between the weight w
and the scalar input p. Each layer of the neural network is then defined by:

• The input and output vectors p = (p1, p2, . . . , pi, . . . , pR) and a = (a1, a2, . . . , aj, . . . ,
aS), respectively;

• The weights matrix W = [wij], where I = 1, 2, . . . , R, and j = 1, 2, . . . , S;
• The biases vector b = (b1, b2, . . . , bj, . . . , bS).

The output of each neuron of the network is a scalar aj (j = 1, 2, . . . , S), which can
be generated by means of any differentiable transfer function ft. Sigmoidal functions are
widely used in fitting problems through ANN applications. Generally, a feed forward ANN
contains, in addition to the input layer, at least two other layers:

• A hidden layer, with either Tansig or Logsig transfer function;
• An output layer with linear transfer function.

A feed forward ANN with backpropagation of error can potentially learn any type
of input–output relationship. In order for the training to give accurate results, the more
complex is the system to be interpolated, the more numerous and reliable training, test,
and validation data should be, in order to train and test the network.

Network learning, at the end of training phase, remains stored in weight’s matrix
W. Each neuron has a threshold of activation, related to the sum of inputs received by
the network through weighed connections. Here the model is trained in such a way that
a given input has to predict an output obtained by means of the stress analysis results
obtained by the FEA software.

The first step in solving a fitting problem through ANN model is randomization of
input data to be computed by the network. Preprocessing phase is followed by design of
network’s structure. Since there is no rule of thumb to the choice of network’s architecture,
it was decided to proceed with the development of different configurations, to the end of
ranking their performance through the least mean square error (MSE). Five feed forward
ANN, with 1 or 2 hidden layers, were implemented by MATLAB R2020a (The MathWorks
Inc., Natick, MA, USA). Automatic adaptation of hyperparameters was adopted, by using



Designs 2022, 6, 103 9 of 17

the standard MATLAB routine. The characteristics of the five neural networks are described
in Table 3.

Table 3. Neural networks characteristics and performance results.

ID N◦ Hidden Layers Hidden Layer
Transf Function

Output Layer
Transf Function

N◦ Neurons
Hidden Layers MSE on Training Set

NN1 2 Logsig Pure linear 20 1.47·10−5

NN2 1 Tansig - 15 4.74·10−1

NN3 2 Logsig Pure linear 25 4.68·10−1

NN4 2 Logsig Pure linear 30 4.14·10−1

NN5 1 Logsig - 35 4.67·10−1

The main architecture’s parameters are the type of hidden layer’s transfer function,
and the number of neurons contained in the hidden layer. The latter must be equipped
with great accuracy to obtain an efficient fitting process: there exist an optimum number
of neurons, obtained by a choice of core business between opposing needs. On the one
hand the increase in the number of neurons leads to excellent learning of the training set,
on the other hand entails an increasing risk of over-fitting: this term is used to represent
a situation in which a network has learned to perfection the training set but it generates
mediocre predictions when changes occur to known inputs. A smaller number of neurons
lead to a decrease in performance within the training set, but often increase generalization
capacity of the network, defined as the accuracy of response to input data that the model
has never “seen” before. On the other hand, a too low number of neurons can give rise to
mediocre fitting and a long training, which does not reach a performance level sufficient to
meet the stop criteria.

At each iteration, the parameters are tuned according to a training algorithm, until
stopping criterion is satisfied. Algorithms for training/optimization generally used can be
grouped into two main types, based on methods of descent gradient, and method of Gauss–
Newton. Algorithm chosen for network training is Levenberg–Marquardt, which leverages
the strengths of both those categories achieving good results for non-linear function’s fitting
applications. Learning function used is gradient descendent type, with momentum weight
and biases, which allows calculating variations of in weight matrix dW as a function of
input matrix, and the difference between network’s responses and target simulated values.
Cost function used to evaluate network’s performance is the mean square error (MSE)
between forecasted response generated by the network and sample data simulated by
FEA software.

After splitting sample data into three sets randomly extracted from initial sample
of simulated data (Training set = 70% of samples; Validation set = 20% of samples; Test
set = 10% of samples), Levenberg–Marquardt’s algorithm parameters have been set in such
a way to ensure good stop criteria, in order to prevent the risk of overfitting.

Network’s training terminates when one of the stop criteria is satisfied:

• Maximum number of cycles (epochs) reached;
• Minimum gradient reached (in an iteration of a gradient descent algorithm, it is the

minimum cost function’s decrease resulting by a shift of the weight vector dW; if
there is no movement capable of producing a gradient higher than the minimum, the
stopping criterion is satisfied and the algorithm stops);

• Maximum number of increments in validation phase is reached.

After 115 iterations of the Levenberg–Marquardt’s algorithm the training stopped and
the weight matrix W was determined. Figure 3 shows the performance evaluation of train-
ing process and the performance function’s trend during the stages of training, validation
and test. The values of weights wij stored inside matrix W, are those in correspondence
of which validation error reaches a minimum, which is 2.76·10−5 at epoch 70. The trends
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of gradient, parameter µ (that is the NN hyperparameter used to avoid local minima in
weights optimization), and validation fail are shown in Figure 4.
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Figure 4. ANN training state.

In Figure 5 the experimental observations are collocated on two axis plots. Target
values are reported on abscissa, while values obtained from network’s prediction in corre-
spondence of the same input value are reported on ordinate. In this way overfitting appears
visually obvious when the points are distributed in correspondence with the bisector. The
plots provide valuable information, such as performance of the fitting process respectively
in the early stages of training, validation, testing, and total (overall), and the values of
regressors and correlation ratio R.
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3. Application and Discussion of Results

Going through the training process for the five networks configuration listed on
Table 3, the results are reported in the last column, by comparison with the simulated FEA
data, using MSE as performance function.

Network NN1, characterized by a MSE value that is four orders of magnitude lower
than other architectures, certainly guarantees an excellent performance within the training
set. Per contra, this could warned as a possible danger of overfitting, so the behavior of
the network NN1 must be evaluated outside the training set. To that end, two tests are
randomly selected in the training set, and a neighborhood is built around each one of them.
First, a variation of each geometric loop’s parameter is generated in a range of (l, w, t)
enclosed within the boundaries of the 53 factorial domain, where the trained networks
are supposed to demonstrate good prediction capacity. Geometries number o1, . . . , o8
represented in Table 4 are obtained starting from simulations N◦ 99 and N◦ 10, randomly
selected from the sample of the 125 geometries simulated by the means of FEA software.
Geometries number o9, . . . , o12 are built by varying loop’s parameters outside of factorial
domain, with the aim of testing network’s performance outside the domain. Bold cells
highlight the values of (l, w, t) that the neural network “does not know”.

The simulated responses obtained by the FEA for geometries o1–o12 have been com-
pared to the ANN model predictions with the aim of evaluating generalization performance
of the networks, as shown in Table 5.
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Table 4. Tests for generalization capacity of the neural network.

ID Variation Type Rexp NN1 Rexp NN2 Rexp NN3

Factorial test N◦ 99 6530 8900 19.05
o1 15.88 < t < 20.62 6530 8900 18.26
o2 8500 < w < 8900 6530 8850 19.05
o3 5930 < l < 6730 6630 8900 19.05
o4 Overall 6630 8850 18.26

Factorial test N◦ 10 6130 8500 15.88
o5 15.88 < t < 20.62 6130 8500 16.00
o6 8500 < w < 8900 6130 8550 15.88
o7 5930 < l < 6730 6230 8500 15.88
o8 Overall 6230 8550 16.00

o9 t < 15.88 6530 8900 10.00
o10 w < 8500 6530 5000 19.05
o11 l > 6730 8000 8900 19.05
o12 Overall 8000 5000 10.00

Table 5. Neural network generalization performance compared to FEA results.

ID Rexp FEA Rexp NN1 Rexp NN2 Rexp NN3 Rexp NN4 Rexp NN5

o1 0.28 0.52 0.36 0.30 0.24 0.16
o2 0.29 0.21 0.27 0.22 0.17 0.11
o3 0.28 0.16 0.23 0.18 0.25 0.26
o4 0.28 0.61 0.47 0.42 0.32 0.58
o5 0.30 0.73 0.73 0.75 0.71 0.65
o6 0.30 0.83 0.82 0.90 0.75 0.50
o7 0.30 0.53 0.58 0.67 0.66 0.58
o8 0.30 0.61 0.67 0.79 0.65 0.58
o9 0.39 0.75 0.74 0.76 0.73 0.48
o10 0.30 0.66 0.24 0.57 0.42 0.06
o11 0.51 0.77 0.19 0.95 0.27 0.08
o12 0.27 0.49 0.85 0.83 0.90 0.00

The outputs of the ranking process are shown in Table 6. The networks NN1, . . . ,
NN5 have been tuned offline to predict the expansion stress ratio Rexp in response to the
change of the loops geometries. The variances between the foreseen values of Rexp and the
FEA data, expressed by MSE, are reported. They have been respectively calculated:

• Within the training set;
• Overall (inside and outside the domain);
• Comparing them with unknown values within the range defined by the factorial

design 53;
• Comparing them with the values outside the range defined by the factorial design 53.

Table 6. Neural network ranking results.

ID MSE on
Training Set

MSE Overall
o1–o12

MSE within
Factorial Domain

o1–o8

MSE Outside of
Factorial Domain

o9–o12

NN1 1.47·10−5 0.10 0.10 0.09
NN2 4.74·10−1 0.22 0.09 0.55
NN3 4.68·10−1 0.15 0.12 0.22
NN4 4.14·10−1 0.10 0.08 0.14
NN5 4.67·10−1 0.08 0.06 0.16

It is relevant to notice that NN1 shows the best fitting of training set, while performing
well also out of the space of solutions. However, network’s configuration endowed with
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greater ability of generalization (i.e., more capabilities to fit experimental data) is NN5,
which presents:

• The best performance interpolating factorial points characterized by MSE = 0.06;
• The minimum value of MSE inside and outside the factorial domain (0.08);
• Good knowledge of the training set, with MSE = 0.467;
• High prediction capacity in response to new inputs, expressed by the low value of MSE

outside of the factorial domain (0.16), second only to the corresponding performance
of NN4.

For all these reasons, NN5 can be considered as the best configuration, and adopted
to continue the experiment. In order to find the optimal expansion loop geometry, the
reticulum of triads (l, w, t) has been tightened increasing the number of intermediate
points with a constant pitch, within the borders of the 53 factorial design. By fragmenting
into forty values each segment, initially divided into five values, a full factorial plane
403 containing 64,000 nodes is obtained. This new reticule approximates with sufficient
precision a continuum of space (l, w, t) bounded by the edges:

• 5930 ≤ l ≤ 6730
• 8500 ≤ w ≤ 8900
• 15.88 ≤ t ≤ 20.62

After having generated the plan 403, the Rexp predicted values employing the NN5
network are reported in Table 7.

Table 7. Optimization of loop’s geometry.

ID l [mm] w [mm] t [mm] Predicted Rexp

1 5990 8850 16.00 0.57
2 6270 8730 16.12 0.43
3 6370 8840 16.36 0.42
4 6510 8650 16.12 0.81
5 6490 8680 17.08 0.41
6 6050 8500 16.60 0.84
7 6410 8830 16.60 0.34
8 6370 8860 16.96 0.31
9 6230 8690 16.24 0.51
10 6730 8900 15.88 0.11
. . . . . . . . . . . . . . .

64000 6650 8900 19.96 0.03

Over the admissible region researched, the best feasible solution to the problem
expressed by Equation (12) is given by the vector of variables N◦ 39051, reported in
Table 8 with the comparison between NN predicted and FEA simulated stress ratios. It is
characterized by a minimum stress ratio Rexp simulated by the network lower than 10%,
and a Rsust value just above 50%, which does not compromise pipeline’s resistance to its
own weight.

Table 8. Loops optimal geometry and performances (NN predicted and FEA simulated).

ID lopt [mm] wopt [mm] topt [mm] Rexp (Tdes)
NN

Rsust
NN

Rexp (Tdes)
FEA

Rsust
FEA

39051 6730 8520 20.68 <10% 52.2% 28.2% 55.0%

Although the neural network has not provided the exact value simulated by the FEA
software for the optimal geometry, it has undoubtedly found a direction of minimum gradi-
ent, allowing to find an efficient set of values for (l, w, t). In fact, it optimizes the expansion
stress distribution over the pipeline simulated by FEA much better than the minimum
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value obtained in 125 trials that make up the 53 factorial design (Rexp = 38.7%, from Table 2).
The reduction of the expansion stress ratio is equal to ∆Rexp = 38.7% − 28.2% = 10.5%.

After finding the geometry that minimizes Rexp (Tdes), pipe routing was revamped by
redesigning expansion loops with optimal values of the vector (l, w, t) = (lopt, wopt, topt). As
overall result, simulation by means of FE model of the routing obtained by this way shows
that the number of expansion loops can be halved (one loop belonging to the segment AB
plus five loops belonging to BC could be removed, as highlighted by arrows in Figure 1b),
keeping code stress within the allowable range by convenient margin (stress ratio 69.4%,
sufficiently below the maximum limits generally imposed in the case of oil and gas process
lines, up to 80%). This confirms the validity of the experimental results acknowledged.

The substantial simplification of the line obtained through optimization translates into
significant lifecycle cost savings, concerning fabrication, piping installation and erection,
maintenance, and final disposal.

Fabrication cost saving can be related to the quantity of material avoided to be used.
The drastic reduction of the number of expansion loops obtained as a final result of the
optimization, allows to replace the six loops eliminated by means of the corresponding
straight section of length equal to lopt. Neglecting the length of the six elbows for each
loop (i.e., making a conservative estimate), and introducing nlo as the number of expansion
loops in the existing condition (equal to 13), and nlopt as the number of loops in the new
configuration (equal to 7), the optimization of the entire line allows saving of overall linear
extension expressed by the basic efficiency metric:

SVLE = nlopt
[
2
(
wo −wopt

)
+
(
lo − lopt

)]
+
(
nlo − nlopt

)
2wo (14)

Using the values for w and l in the existing condition (Table 1), and after optimization
(Table 8), the saving SVLE = 98 m is obtained. Therefore, being LEo = 415 m the extension
of the existing line, and assuming the fabrication cost linearly proportional to the line
extension, an approximate cost saving of 23% can be estimated.

Assessing piping installation costs in proportion to the field welding is a well-known
practice. Distribution of welds between pre-fabrication and field is unpredictable at this
level of analysis. However, as a first approximation can be observed that the number
of welds to be executed decrease proportionally with the number of pieces in the line.
The removal of 6 loops out of 13, considering 6 elbows for each loop, leads to an overall
reduction in the number of elbows from 78 to 42 (46%), which involves a significant
reduction in the number of welds to be made (all the more so if we consider not only the
joint welds for the continuity of the line, but also those associated with supports, drains,
vents, etc.).

The simplification of the line also includes beneficial effects in terms of maintenance
and operation costs, which are strictly correlated with the number of components to
maintain, and their linear extension.

Finally, savings in disposal cost can be estimated through the same proportion for
fabrication costs. For a more accurate assessment in terms of both fabrication and disposal
costs, the avoided resources consumption in terms of piping fitting cannot be neglected, as
well as other savings not included in this estimate, due to reduction in piping foundations,
supports, hangers, and insulation.

Another significant metric, which can quantify the efficiency of the optimization, is
the weight saving, which can be estimated by:

SVW = LEo π D
(
to − topt

)
ρ+ SVLE π D topt ρ (15)

where ρ is the density of the material. Assuming the value ρ = 7800 Kg·m3 for carbon steel,
an overall savings in weight equal to 6870 Kg is calculated, which compared to the former
line weight of 72,200 kg, involves a reduction of 9.5%. In this case the reduction factor is
not incisive as in the case of the linear extension saving SVLE, since the weight reduction
due to the latter is compensated by the increase in the thickness of the piping due to the
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optimization (topt > to). Nevertheless, the weight reduction is still significant, particularly
for the direct effect on metrics that can be correlated linearly to the weight; this is the case
with environmental impact indicators associated to the quantity by weight of the material
used and processed for fabrication and disposal of equipment and structures (such as the
well-known carbon footprint).

4. Conclusions

The traditional design methodology, which is in large part based on the experience of
senior designers, is focused on compliance with code requirements, generally verified by
well-known numerical simulation-based tools; unfortunately, is not sufficient to assure an
effective design to optimize the geometric parameters and reduce the number of expansion
loops in high-pressure pipeline. Besides having awareness about the importance of an
approach that relies on solid theoretical foundations, the number of aspects to take into
account makes it practically impossible to obtain a closed-form analytical relation between
expansion loops geometry and stress distribution.

The problem, which has been overcome through the development of a feed-forward
neural network and the adoption of the Levenberg–Marquardt algorithm for network
training, turned out to converge quickly at the solution. The optimal geometry for expan-
sion loops may be defined, allowing to revamp pipe routing by halving loops number
and keeping code stress within the allowable limits. As particularly significant aspects of
the efficiency of the line obtained through optimization, the metrics for saving factors of
linear extension and weight of the system have been formulated to obtain estimates that,
although approximate, may allow for the preliminary evaluations on lifecycle costs and
environmental impact of line fabrication.

Being stated in generalized terms, this optimization model can be applied to any
pipeline subjected to various loadcase conditions. Compared to a traditional approach to
design, which has no heuristic effectiveness, as it cannot manage the complexity of the
optimization problem, the proposed approach has precisely the purpose of overcoming
these limitations, providing the designer with a support that exploits the capabilities of a
widely used soft computing tool such as neural network.

As a last general consideration, the proposed approach to the enhancement and
optimization of the resources used to build and operate one of the fundamental components
of process and fluid transport systems, and the results that can be obtained in terms of
solutions efficiency, are fully aligned with many of the diversified Sustainable Development
Goals (SDGs) outlined by the United Nations 2030 Agenda; the latter having become
the reference framework in which the strategies for the ecological transition of industrial
activities and infrastructures also find their place.
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Nomenclature

Stress analysis (Section 2.1)
Ap Cross-sectional area of pipe
c Sum of the mechanical, corrosion, and erosion allowances
D Outside diameter of pipe
E Quality factor
Ec, Ej Casting quality factor and longitudinal weld joint factor
Fa Axial force
f Stress range reduction factor
ia Axial stress intensification factor
it Torsional stress intensification factor
ii, io In-plane and out-plane stress intensification factors
Mi, Mo In-plane and out-plane bending moments at the connections
Mt Torsion moment
P Internal design pressure
R(LC) Stress ratio for loadcase LC
Rexp Stress ratio for expansion stress loadcase
Rsust Stress ratio for sustained stress loadcase
S(LC) Code stress for loadcase LC
S Basic allowable stress for pipe material
Sa Axial stress term
SA Allowable stress
Sb Bending stress term
Sc, Sh Basic allowable stress at minimum and maximum temperature
SE Displacement stress range
SL Stress due to sustained loads
St Torsional stress term
Tdes Design temperature
Top Operating temperature
tm Minimum required thickness
tp Pressure design thickness
W Weld joint strength reduction factor
Y Dimensionless factor for tp calculation
Z Section modulus of the pipe
Expansion loop’s geometry (Section 2.2)
l Leg length of expansion loop
t Wall thickness of the pipe
w Width of expansion loop
(lo, wo, to) Existing expansion loop’s geometry
(lopt, wopt, topt) Optimal expansion loop’s geometry
Optimization model (Section 2.3)
a Scalar output
b Bias
dW Variation in weight matrix
MSE Mean square error
o1–o12 Loop’s geometry numbers
p Scalar input
ft Transfer function
R Correlation ration
w Weight (strength of network bond)
W Weight matrix
Φ Objective function
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Efficiency metrics (Section 3)
LEo Linear extension of existing line
nlo Existing number of expansion loops
nlopt Optimal number of expansion loops
SVLE Linear extension saving
SVW Weight saving
ρ Density of material
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