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Abstract: During the last four centuries, there have been extensive research activities looking for green
and clean sources of energy instead of traditional (fossil) energy in order to reduce the accumulation
of gases and environmental pollution. Natural dye-sensitized solar cells (DSSCs) are one of the
most promising types of photovoltaic cells for generating clean energy at a low cost. In this study,
DSSCs were collected and experimentally tested using four different dyes extracted from Mentha
leaves, Helianthus annuus leaves, Fragaria, and a mixture of the above extracts in equal proportions
as natural stimuli for TiO2 films. The result show that solar energy was successfully turned into
electricity. Additionally, DSSCs based on mixtures of dyes showed better results than those based on
single dyes. Efficiency (η) was 0.714%, and the fill factor (FF) was 83.3% for the cell area.

Keywords: natural dyes; dye-sensitized solar cells; DSSCs

1. Introduction

Nowadays, the used energy in the industry sector is transitioning towards a more
environmentally-friendly future. Fossil fuels are an environmental menace that will be de-
pleted sooner. To triumph over this situation, alternatives to these fossil fuel reserves must
be found [1]. Photovoltaic cells are one of the promising technologies for harvesting solar
energy [2,3]. Unnatural solar cells are widely used because they have good efficiency, but
they are high in cost [1,4]. Therefore, the increasing need for sustainable energy prompted
researchers to focus their efforts on the development of photovoltaic technologies to meet
the need at a lower cost [5–7]. Dye-based solar cells are used as a viable alternative to con-
ventional (inorganic) solar cells as they are an environmentally and economically beneficial
technology, as well as being easy to manufacture and providing a method for tuning optical
properties through molecular design; they were first invented by O’Regan and Gratzel in
1991 [8–10]. DSSCs are photovoltaic cells based on semiconductors and light sensors that
convert sunlight (photons) or artificial radiation into electrical energy [11]. DSSCs consists
of a photodiode, a counter electrode (conductor glass covered with graphite, pt, or carbon),
and electrolytes (including redox pairs as iodide or tri-iodide) [12]. At the moment, the
maximum efficiency (η) observed for these cells (DSSCs) is 13% [13–16]. The operating
concept of DSSCs is based on the natural photosynthesis of plants, and pigments play a
vital role in widening the cell spectrum’s sensitivity. After photoexcitation of the sensitizer
dye, the cascade transmission of excited electrons results in charge separation and rapid
regeneration of oxidizing dyes [17–19].
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A phototype is an inorganic substance that is sensitized by a donor substance called a
sensitizer (dye) [20]. Titanium dioxide (TiO2) is a broadband-gap semiconductor widely
used in DSSCs due to the physical properties that make it suitable for use in DSSCs.
They meet one of the criteria for effective electron injection by having a conduction band
edge that is just below the excited state energy level of many dyes. When the DSSC is
highlighted, photons are absorbed by the dye, electrons are transferred and excited, and
the dye is oxidized. The excited electrons are sent into the range where TiO2 can conduct
electricity, and then they spread out through the porous film of the TiO2 conductive glass
fluorine-doped tin oxide (FTO) [21].

To obtain cells that are less costly and environmentally friendly, studies in the literature
have suggested using DSSCs dyed with natural dyes or synthetic dyes [22,23]. On the
other hand, synthetic dyes cause serious environmental difficulties because they are toxic,
carcinogenic, refractory, and difficult to dissolve using water treatment technology [24].
To fight the health risks and environmental problems caused by synthetic dyes around
the world, preventive steps must be taken to cut down on how much of these dyes are
used in the environment [25]. Different research institutions and government groups have
come up with different ideas for how to solve the problems of making water treatment
technologies. These ideas include enhanced oxidation processes, reducing the amount
of dye used, and using natural dyes instead [26,27]. Replacement with natural dyes has
been suggested as a possible green solution for dealing with wastewater problems and
reducing the environmental impact of these industrial operations. Natural dyes made from
renewable bioresources are safe for the environment, biodegradable, and cheaper than
synthetic dyes. They can be used as a good replacement for synthetic dyes [28,29]. Natural
dyes derived from plants have been employed in recent years to improve the performance
of DSSCs and photo-stimulation therapies [30,31]. To be classified as a sensitizer, a natural
dye must meet the following criteria: possessing a broad and robust capacity to absorb light
in the visible and near-infrared ranges; ensuring the stability and effective charge injection
of the system by firmly adhering to the semiconductor surface, and containing optimal
lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital
(HOMO) energy levels for effective charge injection into the semiconductor conduction
band (CB) [31,32]. Sensitizer development has been a major focus of recent years, since it
plays an important role in DSSCs [26,27]. Chlorophylls seem to be in charge of collecting and
delivering light energy to photosynthesis reaction centers, according to the research [33].

This paper presents an experimental investigation on the performance of four natural
dyes extracted from mint, Helianthus annuus, Fragaria, and a mixture of the three dyes in
equal proportions. The dye extracted from Helianthus annuus has been shown to contain
Helianthus annuus auxin, which is the main reason for the sensitivity of the Helianthus
annuus flower and its rotation with the sun, whereas mint leaves contain chlorophyll, which
is one of the most important elements that help plants in absorbing sunlight. Fragaria
extract was chosen because it contained anthocyanins, and DSSCs were made from these
dyes. We found that these dyes are good for the environment and are a good alternative to
the typical dyes. The inhibition of TiO2 particle crystallization was investigated by energy
dispersion X-ray analysis of the efficacy of natural photosensitizers, and the DSSCs were
manufactured by adding the extracted dyes as the photosensitizers. Maximum power point
(Pmax), fill factor (FF), energy conversion efficiency (η), and short circuit current (ISC) are
the primary characteristics of a solar cell.

2. Materials and Methods
2.1. Materials

The materials used in this research included Mentha leaves, Helianthus annuus,
Fragaria, and acetone to extract the natural colors from plants. A liquid platinum catalyst
and sealing tape were used in this process. An electrolyte (iodide and triiodide) (I−/I+3),
FTO (fluorine-doped tin oxide) glass as a transparent conducting oxide was used; it has a
surface resistance of 10–20 Ω and also needs nitric acid (HNO3) and TiO2 powder.
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2.2. Preparation of Natural Dye Sensitizers

The dyes extracted from the leaves of mint and the leaves of the annual plant He-
lianthus were prepared in the same way. The leaves of both plants were first washed with
distilled water, and then the leaves were dried at room temperature in the dark. Then
the leaves were crushed separately using an electric grinder, and 1 g of mint leaves was
dissolved in 60 mL of acetone, and also 1 g of Helianthus annuus was dissolved in 60 mL
of acetone in an airtight package and left for 24 h, after which it was filtered. Using filter
paper to get rid of large portions, the extracts were kept in a container away from light
until use. These steps are illustrated in Figure 1.
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Figure 1. Steps for extracting dye from (a) Mentha leaves; (b) Helianthus annuus.

As an alternative, the Fragaria fruit extract was made by crushing the fruit in a pestle
and extracting the fruit’s juices from 1 mg of fruit extract in 6 mL of acetone. After 24 h,
they were filtered using filter paper to get rid of large pieces and kept in a tightly closed
container in the dark until used. The fourth dye was prepared by mixing equal amounts
of all of the aforementioned dyes, and the same method of preserving the other dyes
was followed.

2.3. The TiO2 Paste and Photoelectrode Preparation

The amount of 2 g of TiO2 powder was dissolved in 6 mL of dilute nitric acid (HNO3)
(PH = 3) to make a TiO2 paste. The components were mixed with a mortar and pestle for
30 min, followed by magnetic stirring for another 30 min, to create a homogeneous mixture.
Ethylene glucose and glucose X-100 were added, which enhance the paste’s adhesion to
FTO and the doughs’ adhesion to each other. Magnetic stirring was then carried out for an
hour and a half to fasten the dissolution of the TiO2 paste. Figure 2 shows the texture of the
TiO2 paste.
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2.4. Fabrication of DSSCs

The FTO glass was thoroughly cleaned, and then the FTO piece was wrapped with
tape on all four sides so that the thickness of the TiO2 layer was controlled and the active
area of the substrate was determined, which was equivalent to 1 cm2. Drops of TiO2 paste
were applied and spread on the FTO substrate. Then, the FTO-coated TiO2 was annealed
at 500 ◦C for 80 min. After that, it was left to cool at room temperature. Then, four FTO
substrates were soaked in each natural dye for 24 h. The excess dye was then removed
by rinsing the substrate with ethanol. Using another FTO glass, the counter electrode was
prepared with a Pt distribution and then heated at 450 ◦C, and these steps are illustrated
in Figures 3–5.
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Figure 5. The assembly procedure of the FTO/TiO2-dye/electrolyte/Pt DSSCs from several view-
points: (a) side view; (b) front view; (c) cross-section view.

2.5. Measurement of the DSSC’s Photoelectric Conversion Rate

Analysis of the absorption spectra of natural dye solution and the combined solution
of TiO2 and natural dye was carried out using a UV-VIS spectrophotometer (Jasco, V650).
The DSSCs’ photoelectric conversion efficiency was also examined in a lab environment
using a source of artificial sunlight (AM1.5). Starting with the current–voltage (I–V) curve,
the fill factor (FF) was specified at the time of the foundation as follows:

FF =
Pmax

Isc × VOC
(1)
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The maximum current and voltage values are denoted as Imax and Vmax, respectively,
while the short circuit current and open voltage are denoted as Isc and VOC, respectively.
Here is how to calculate the total energy conversion efficiency:

η =
Isc × VOC × FF

Pin
(2)

where Pin specifies the energy of the incident photon.
The parameters of DSSCs were measured using a device (Keithley 2400), where a

digital ammeter and voltage meter are connected at both ends of the DSSC, as shown
in Figure 6.
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3. Results and Discussion
3.1. X-ray Diffraction Analysis

X-ray investigations were carried out on the films prepared on FTO glass, since the
nature of TiO2 plays a very important role in dye adsorption, and controls the efficiency
and photocatalytic processes due to the details of different binding patterns. The results of
the X-ray show that all of the films are in the anatase-phase through peaks (20.144, 25.005,
37.795, 47.776, 54.212, 53.658, and 62.370) with the respect to TiO2. This phase is considered
an active phase due to its surface chemistry and its high conduction band. This phase also
shows better performance for DSSCs than the Rutile phase [34–37]. From the X-rays, a
noticeable increase in the height of the peaks was noted, as shown in Figures 7 and 8. These
results are consistent with the tables of the American Society of Mechanical Engineers
(A.S.T.M). It is also observed from Figures 7 and 8 that there were no phases of impurities
or other oxides in the crystal structure. The crystal size, which is the primary determinant
in influencing the electron transport properties of materials, can be determined through the
following equation [38]:

d =
0.9λ

β cos(θ)
(3)
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In this equation, θ is the diffraction angle, β is the full width at half maximum for each
peak, and λ is the employed X-ray wavelength.

3.2. Field Emission Scanning Electron Microscopy (FESEM)

To confirm the creation of TiO2 nanostructured films, FESEM measurements are
often performed [39]. As TiO2 films were heated to less than 450 ◦C, they were found
to produce an imperceptible current even in the A range, making them ideal for solar
cells [40]. According to the FESEM images in Figure 9, the TiO2 grains were formed as
spherical particles covering the FTO substrate with an average size of 27 ± 3 nm. Good
agglomeration is responsible for this change, and it increases the ability of the FTO glass
cover to stick together, which increases the quality of the conversion of light photons into
electrons and the improved flow of electricity through the particle grid.
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3.3. Absorbance Behavior of the Prepared TiO2 Film

Figure 10 shows the absorption behavior of the prepared TiO2. It shows that the
annealed TiO2 film at 500 ◦C has an absorption peak of 318 nm, while the maximum
absorption wavelength of 304 nm occurs with a power band gap of 4.079 eV. The energy
band gap (Eg) of the dyes absorbed by the TiO2 surface was calculated as follows [41]:

Eg =
1240

λ
(4)
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The results of this research are in good agreement with other investigations on the
optical energy band gap [42,43].

Figure 11 shows that the TiO2 film that was poured on the FTO glass allows the trans-
mission of visible light and absorbs ultraviolet rays. The average visible light transmission
of TiO2 after casting on the FTO substrate reduced to about 74.34%. However, coated FTO
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allows maximum transmission of visible light to the dye (sensitive material) for optimal
absorption and conversion to electricity in DSSCs, while blocking harmful UV rays.
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Figure 11. Transmitter spectra of FTO and TiO2 films cast on FTO.

4. UV-Vis Analysis

The optical measurements were made using UV-VIS spectroscopy for the prepared
dyes (Mentha leaves, Helianthus annuus leaves, Fragaria, and a dye consisting of a mixture
of each of the extracted pigments in equal proportions). The absorption spectra showed
that each type of dye had its absorption peak in the visible range.

In the Mentha leaves case, the absorption spectrum of mint leaves showed a peak
absorption rate in the visible region at wavelengths of 450–500 and 580–700 nm, showing
three peaks at 655, 430, and 485 nm, as shown in Figure 12.
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In the Helianthus annuus case, the absorption spectrum of Helianthus annuus showed
a maximum absorption plausible region from the 350–450 nm to the 500–600 nm regions,
where its absorption peaks appeared at 415 and 515 nm, as shown in Figure 12.

In the Fragaria case, the absorbance spectrum for Fragaria showed a maximum absorp-
tion peak in the visible regions at 512 and 650 nm wavelengths. It had a wide absorption
range in the region of 450–690 nm, as shown in Figure 12.

In the dye mixture case, the optical absorption spectrum of the dye mixture showed
absorption in the visible region at wavelengths of 380–445, 575–700 and 510–450 nm, where
its absorption peaks appeared at 433, 484, and 652 nm, as shown in Figure 12.

It has been observed that the three pigments can absorb the light in the visible area
when melting, which makes them suitable as catalysts in DSSCs. Thus, it can be concluded
that the nature of the solvent used to extract the dyes can affect the concentration of the
dye due to the presence of different chemical compounds in plants. Accordingly, they have
different solubility in different solvents. Additionally, it can be concluded that the optimal
combination of dyes showed better cumulative absorption properties, as its absorption
spectrum was broader and higher. Taking light in the visible range makes it more likely
that higher levels of solar energy can be turned into an electrochemical form.

Photovoltaics Performance of DSSCs

Under white light irradiation (100 mW/cm2) from a high-pressure mercury arc lamp,
photovoltaic studies of DSSCs manufactured using natural dyes as catalysts were performed
by measuring the J–V curve of each cell. The short circuit current (Jsc), fill factor (FF),
open circuit voltage (Voc), and power conversion efficiency (ï) were used to evaluate the
performance of natural dyes as catalysts in DSSCs. Figure 13 shows J–V curves of DSSCs
utilizing sensitizers taken from Mentha leaves, Helianthus annuus, Fragaria, and a mixture
of these dyes. The outcomes reveal that the sensitizing dye has a significant impact on the
performance of the DSSC, as dyes absorb sunlight and convert it into electrical energy.
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The short-circuit current had the highest value in the DSSC based on the mixture of
dyes, while it showed the highest open circuit voltage with the DSSC based on Mentha
leaves. The power output power of the DSSC was computed using IV data as P = IV.
Figure 14 shows the power estimated as a function of V for DSSC sensitized by a dye
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combination as an example. The photoelectron chemical properties of the DSSCs sensitized
with natural dyes are listed in Table 1. As displayed in Table 1, the fill factor of the
fabricated DSSCs ranged between 46.44% and 73.55%. The Voc changed from 0.38 to 0.59 V
and the Jsc varied from 0.51 to 1.59 mA/cm2. The DSSC sensitization based on the mixture
of dyes yielded the best results, with a cell efficiency of 0.69%. This dye showed the
highest and most absorbance peaks in the visible region, due to carbonyl and hydroxyl
groups in its chemistry, which allow it to attach to the TiO2’s surface, enhancing the energy
conversion efficiency.
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Table 1. Performance of DSSCs.

Dye Voc (v) Jsc (mA) ï (%) F (%)

Fragaria 0.38 0.51 0.09 46.44
Mentha leaves 0.41 0.64 0.15 57.16

Helianthus
annuus leaves 0.48 1.19 0.29 50.77

Mix 0.59 1.59 0.69 73.55

5. Conclusions

In this study, four different natural dyes extracted from mint, helianthus annuus,
Fragaria, and a mixture of the three dyes were investigated, and their performances were
calculated. The dye sensitizer is a key factor in DSSCs, as it acts as an electronic pump to
transfer light energy from the sun to an electrical power generation device. These dyes
were selected, as Fragaria extract and mint leaves contain anthocyanin and chlorophyll
pigments, and Helianthus annuus leaves contain auxin. The adopted methodology in
this study has extracted the dyes successfully, and then the absorption conditions were
examined and the photocurrent activity was tested. The outcomes have shown that a
mixture of dyes (anthocyanins, auxin, and chlorophyll) has a better efficiency among
the other dyes, reaching approximately 0.69%. This is due to the carbonyl and hydroxyl
groups in its chemistry, which allow it to attach to the TiO2’s surface, enhancing energy
conversion efficiency. By contrast, the efficiency magnitudes for Mentha leaves, Fragaria,
and Helianthus annuus leaves were 0.15%, 0.09%, and 0.29%, respectively. The results
obtained lack the detailed research needed to increase the efficiency and stability of DSSCs
based on natural dyes. Accordingly, the study concludes that natural dyes have good
potential to form photosensitizers in DSSCs, and they are cheap, safe, environmentally



Designs 2022, 6, 100 12 of 13

friendly, and easy to extract. Therefore, it can be concluded that DSSCs that are based on
natural dyes will shortly become one of the photovoltaic sources that overcome traditional
electrical energy sources.
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