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Abstract: Automatic heart disease prediction is a major global health concern. Effective cardiac
treatment requires an accurate heart disease prognosis. Therefore, this paper proposes a new heart
disease classification model based on the support vector machine (SVM) algorithm for improved
heart disease detection. To increase prediction accuracy, the χ2 statistical optimum feature selection
technique was used. The suggested model’s performance was then validated by comparing it to
traditional models using several performance measures. The proposed model increased accuracy
from 85.29% to 89.7%. Additionally, the componential load was reduced by half. This result indicates
that our system outperformed other state-of-the-art methods in predicting heart disease.
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1. Introduction

At present, the load on a person has increased significantly due to increased work.
Because of this dire circumstance that cannot be avoided, there is a high probability that the
person will suffer from heart disease [1–3]. According to the 2018 World Heart Federation
study, heart disease causes millions of deaths annually. A decrease in the amount of blood
flowing to the brain, heart, lungs, and other important organs is the cause of heart disorders
(HDs). Congestive heart failure is the most common type of cardiovascular disease and
the least serious. In human anatomy, blood veins are responsible for transporting blood
to the heart. Other factors that contribute to heart disease include defective heart valves,
which can result in heart failure. A typical symptom of cardiac disease is muscle soreness
in the upper abdominal area, which might be accompanied by anesthesia. Decreasing
blood pressure, minimizing cholesterol, and engaging in regular physical activity are all
suggested to lower the risk of heart disease. Heart disease is most related to angina pectoris,
dilated cardiomyopathy, stroke, and congestive heart failure, among other things. As a
result, it is necessary to monitor cardiovascular disease (CVD) biomarkers and consult with
healthcare physicians [4–6].

Since ancient times, humans have significantly improved in terms of machines and
health care. In modern times, after the entry of machines and artificial intelligent (AI) in
medicine and health care, there has been significant developments and improvements in
medicine and health care [7–10]. When it comes to heart disease, determining a person’s
risk of heart failure is a major concern [11,12]. The application of multiple longitudinal
study auto-regression analyses results in the construction of the prediction method [13].
Because of changes in technology, healthcare facilities now must store a huge amount of
data in their databases, which makes it very hard to figure out what the data means.

The study of how computers acquire knowledge via observation and experience is
known as machine learning. Machine-learning (ML) algorithms have the potential to tackle
a wide range of problems in the management of specific medical centers and the analysis
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of data [14]. Analyzing and interpreting large datasets is made easier using these tools
and methods. Heart disease is characterized by several factors, including age, cholesterol,
weight, height, sex, blood pressure, resting ECG (electrocardiogram), chest pain, smoking,
obesity, and eating habits [15,16]. Another challenge in this field is the large number
of features used in heart disease prediction, which makes the task somewhat difficult.
Additionally, the number of features makes it difficult to classify in machine learning and,
in turn, affects performance and thus reduces the accuracy value of ML systems. Therefore,
the following offers a significant contribution to this developed heart disease diagnosis:

1. To develop a new heart disease (HD) classification model based on the ML (SVM)
algorithm to improve the detection of heart disease;

2. To implement an optimal feature selection model using the χ2 statistical method for
the extraction of the most informative attributes to improve prediction accuracy;

3. To validate the proposed heart disease diagnosis model’s accuracy by comparing it
with traditional models through the analysis of several performance metrics.

2. Methodology

The following are the two primary steps that have been carried out to meet the
objectives of this work:

2.1. Support Vector Machine (SVM) Model

Figure 1 depicts the model’s operation in detail. In the proposed support vector
machine (SVM)-based heart disease prediction system, the most significant stages were
data pre-processing, feature selection, and classifying. The feature normalization method
was included in the pre-processing block. Training and testing sets were then created
from the data. A feature scoring and selection algorithm was employed to ensure that the
training subset was free of any biases. The χ2 statistical model selected the same feature
set for training and testing data. Next, training data with fewer features was fed into the
SVM model for training purposes. Finally, using testing data, the trained SVM model was
evaluated. The proposed model utilized 14 features from the University of California Irvine
(UCI) Heart Disease Repository’s Statlog and Cleveland datasets [17–20]. These features
were examined using approaches that successfully predict heart disease. It was possible
to develop and evaluate the system for heart disease prediction by using Python and the
sci-kit learn library [21].
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Vladimir N. V. and Alexey Ya were the first to propose the SVM method in their study
of statistical learning theory [4]. The support vector machine (SVM) algorithm, a supervised
learning ML method, can be used for both classification and regression purposes. Prediction
of cardiovascular disease using the SVM method is more accurate and less error prone [22].

The SVM model learns how to separate various categories by a significant distance. It
finds the optimum hyperplane for dividing sensitive data with the most significant margin.
This margin is displayed as the distance between the hyperplane and the closest data
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points on each side of it in Figure 2. The hyperplane computations based on the fact that
many points of one group fall on one side of the plane [23]. The SVM model uses a trick
kernel to transform data and then find the optimal surface that divides between different
classes [21]. This paper used a radial basis function (RBF) kernel, denoted in Equation (1).
SVM classification relies heavily on the RBF, commonly known as the Gaussian kernel, to
map input data into a feature space. For each feature, the kernel function calculates the
inner product of the data points.

k(x, y) = e−gamma ‖x−y‖2
(1)

Designs 2022, 6, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. The proposed model’s overall working process. 

The SVM model learns how to separate various categories by a significant distance. 
It finds the optimum hyperplane for dividing sensitive data with the most significant mar-
gin. This margin is displayed as the distance between the hyperplane and the closest data 
points on each side of it in Figure 2. The hyperplane computations based on the fact that 
many points of one group fall on one side of the plane [23]. The SVM model uses a trick 
kernel to transform data and then find the optimal surface that divides between different 
classes [21]. This paper used a radial basis function (RBF) kernel, denoted in Equation (1). 
SVM classification relies heavily on the RBF, commonly known as the Gaussian kernel, to 
map input data into a feature space. For each feature, the kernel function calculates the 
inner product of the data points. 𝑘 𝑥, 𝑦 = 𝑒  ‖ ‖   (1) 

 
Figure 2. The margin between hyperplane and data. 

Here, 𝑥 and 𝑦 are the two data points. The core functions determine the kernel pa-
rameters. For example, this experiment’s RBF kernel had a parameter gamma, which had 
to be tweaked to find the optimal hyperplane. It specified how much of an impact a single 
training sample can have. Higher gamma values indicate a close influence [22,23].  

Another factor that needed to be tuned was penalty factor C (Cost). The model’s ac-
curacy decreased as C decreased, while its generalizability increased. A more significant 
number for C improved model accuracy but reduced its generalizability. In our SVM 
(RBF) model, we set gamma equal to 1, divided by the number of features seen during 
model fitting, and C = 1.0 to maximize efficiency. 

2.1.1. Heart Disease Dataset Features 
In this study, we utilized two publicly available heart disease datasets, the Cleveland 

and Statlog (Heart) datasets, which were obtained from the University of California at the 
Irvine (UCI) machine-learning repository [19,20]. The datasets were chosen because they 

Figure 2. The margin between hyperplane and data.

Here, x and y are the two data points. The core functions determine the kernel
parameters. For example, this experiment’s RBF kernel had a parameter gamma, which
had to be tweaked to find the optimal hyperplane. It specified how much of an impact a
single training sample can have. Higher gamma values indicate a close influence [22,23].

Another factor that needed to be tuned was penalty factor C (Cost). The model’s
accuracy decreased as C decreased, while its generalizability increased. A more significant
number for C improved model accuracy but reduced its generalizability. In our SVM (RBF)
model, we set gamma equal to 1, divided by the number of features seen during model
fitting, and C = 1.0 to maximize efficiency.

2.1.1. Heart Disease Dataset Features

In this study, we utilized two publicly available heart disease datasets, the Cleveland
and Statlog (Heart) datasets, which were obtained from the University of California at the
Irvine (UCI) machine-learning repository [19,20]. The datasets were chosen because they
are the most widely used datasets by various researchers on heart disease prediction to
find their model’s effectiveness [24].

All 303 cases in the Cleveland dataset have 76 attributes. These include patients’
identification numbers, ages, social security numbers, as well as a variety of health data,
including details on the location and type of chest pain they were experiencing, measure-
ments of their blood pressure and cholesterol levels, along with their fasting blood sugar
and electrocardiogram readings [25]. Although the Cleveland heart disease database has
76 different features, most researchers only used 14 of them in their experiments [24]. With
270 instances, the Statlog (heart) dataset has 14 characteristics.

Table 1 shows a description of the attributes of both datasets, which have the same
type and number of features as one another. In the prediction of heart disease, thirteen
attributes are used, with the last attribute serving as the output that decides whether a
person has heart disease.
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Table 1. Attribute descriptions of Cleveland datasets [19].

Name Type Description

Age Numeric Age in years

Sex Categorial 0 = Female or 1 = male

Cp Categorial Type of Chest pain (1 = typical angina, 2 = atypical angina, 3 = non anginal pain,
4 = asymptomatic)

Trestbps Numeric Resting blood pressure (mm hg)

Chol Numeric Serum cholesterol (mg/dL)

Fbs Categorial Fasting blood sugar > 120 mg/dL (0 = false, 1 = true)

Restecg Categorial Resting electrocardiography results (0 = normal, 1 = ST-T wave abnormality, 2 = probable or
definite left ventricular hypertrophy)

Thalach Numeric Maximum heart rate achieved during thalium stress test

Exang Categorial Exercise-induced angina (1 = yes, 0 = no)

Oldpeak Numeric St depression induced by exercise relative to rest

Slope Categorial Slope of peak exercise ST segment (1 = upsloping, 2 = flat, 3 = downsloping)

Ca Categorial Number of significant vessels colored by fluoroscopy

Thal Categorial Thalium stress test result (3 = normal, 6 = fixed, 7 = reversible defect)

Num Categorial Heart disease status (0 = < 50% diameter narrowing, 1 = > 50% diameter narrowing)

The data distribution is critical when attempting to predict [26]. Figure 3 depicts the
expected attribute class distributions for the two used datasets. There are 138 people in
the Cleveland dataset who have no cardiac disease, and 165 patients in the dataset who do.
A total of 120 people do not have heart disease in the Statlog dataset, whereas a total of
150 people do. Consequently, we have a dataset that is almost evenly distributed in terms
of target output, which helps to prevent the overfitting issue.
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In Figure 4, a heatmap is used to display the correlation analysis of all attributes
and the target. For each attribute, the heatmap’s color indicates the degree to which that
attribute is correlated with all the others and with the output target class. In general,
the stronger the correlation, the warmer the color. For the Cleveland dataset, the target
attribute was most closely associated with the Cleveland dataset’s features of exercise-
induced depression, the kind of chest pain, exercise-induced angina, and the maximum
heart rate reached. Meanwhile, for the Statlog dataset, the highest correlated features with
the target were thalium, no. of major vessels, ST depression, exercise-induced angina,
maximum heart rate, and chest pain.
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2.1.2. Data Pre-Processing

There were no missing values in any of the derived datasets. Additionally, there
was a roughly equal proportion of individuals with and without cardiac illness in the
target variable, as indicated in Figure 3. This means that no target weighting would be
needed in any way. However, a feature scaling approach was applied to ensure a normal
distribution of the data. Features were scaled based on the standard scaler approach, which
standardizes a feature by removing the mean and then scaling to a unit variance. The term
“unit variance” refers to the process of dividing all the values by the standard deviation. As
shown in Equation (2), to obtain the new data point (x), the mean (µ) value was subtracted
from the old data point in a particular column, and the result was divided by the standard
deviation (σ) [22].

Standard outcome =
x − µ

σ
(2)

Two common issues in any prediction system are the underfitting and overfitting of
the training data. Underfitting happens when the generated model does not learn enough
from the training data, resulting in poor training and testing data performance. Overfitting
occurs when a model learns too much from the training data and achieves unsatisfactory
results from even minor details [27,28]. Irrelevant features in the training data often result
in model overfitting. Even if the SVM model performs well on training data, it may not
generalize well. We propose eliminating irrelevant features by using χ2 statistical model to
overcome this issue.

2.2. Enhanced SVM Model with Feature Selection

Having too many features causes overfitting. Thus, it is important to select the right
features for both training and testing data to improve model performance [29]. Features
that are relevant to the ML model are selected, while those that are irrelevant or noisy are
discarded [28]. This paper used the chi-squared (χ2) statistical model [30,31] to select the
essential features before applying the SVM model.

A chi-squared (χ2) test is a correlation-based feature selection method that determines
the correlation between the features and the predicted class. Each non-negative feature
(Xi) computes chi-square statistics to determine which features depend on the predicted
attribute. The higher the chi-square score, the more dependent the feature is on the



Designs 2022, 6, 87 6 of 12

predicted class [24]. First, the commonly used 13 features are ranked according to their χ2

test score. The χ2 test rank features for a binary classification problem are as follows: Let us
assume there are (t) instances and two classes, positive and negative. To determine the χ2

test score, we construct Table 2.

Table 2. Calculation table for the χ2 test score [27].

Positive Class Negative Class Total

Feature Xi occurs α b α + b = m

Feature Xi does not occur λ y λ + y = t −m

Total α + λ = p b + y = t − p t

Where (m) represents the sum of instances that include the feature (Xi), (t − m)
represents the sum of instances that do not include the feature (Xi), (p) represents the sum
of positive instances, and (t − p) represents the sum of all instances that are not positive.

The χ2 test examines the difference between the expected count (E), and the observed
count (O). The observed count (O) is the observed data (α, b, λ, and y), and the expected
count (E) is calculated from the row total, column total, and overall total. If two features
are independent, the observed count and the expected count are close. The α, b, λ, and y
represent the observed values, and Eα, Eb, Eλ, and Ey represent the expected values. Then,
assuming that the two occurrences are unrelated, the expected value (Eα) is calculated
using Equation (3). Similarly, Eb, Eλ, and Ey are calculated. Finally, based on the general χ2

test form shown in Equation (4), we calculate χ2 score as shown in Equation (5) [27].

Eα = (α+ b) × (α+ b)
t

(3)

χ2 =
1
d ∑n

k=1
(Ok − Ek)

2

Ek
(4)

χ2 =
(α− Eα)

2

Eα
+

(b− Eb)
2

Eb
+

(λ− Eλ)
2

Eλ
+

(
y− Ey

)2

Ey
(5)

After ranking the features using Equation (5), we looked for the best subset of features
(n) with the highest χ2 score. In the beginning, we used a subset of (n = 1), i.e., the
feature with the highest χ2 score. This subset was then applied to the SVM model, and
the performance results were recorded as we experimented with various hyperparameters.
We selected a subset of the two most highly scored attributes (n = 2) as a second approach.
Then, this selection was applied to the SVM model, and the results were saved. We iterated
this process until we obtained the optimum subset of ranked features (n = 6) that gave the
best performance.

The proposed feature selection algorithm, based on the χ2 statistical method, recog-
nized six notable features that can be selected for model training. As shown in Figure 5,
regarding the Cleveland dataset, the algorithm selected the following features: thalach,
oldpeak, ca, cp, exang, and chol. While in Figure 6, for the Statlog dataset, the algorithm
selected the following features: maximum heart rate, number of major vessels, thallium
stress result, exercise-induced ST depression, cholesterol, and exercise-induced angina.
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3. Results and Discussion

In this paper, the SVM model was enhanced with the χ2 statistical feature selection
method. The feature selection method was used to select the six most important features
for the prediction of heart disease. The χ2-based SVM heart disease prediction model was
developed and evaluated using Python and sci-kit learn library [21]. The two collected
datasets (i.e., the Cleveland and Statlog (Heart) datasets) were partitioned into train and test
sets. Training data was used to train the model, whereas testing data was used to evaluate
the performance of the model [32]. To train and evaluate our proposed model, both datasets
were split into a train and test set using a 75:25 split ratio. The following four primary
parameters were assessed: true negative (TN), which means that the algorithm prediction
output for persons with no heart disease is correct; true positive (TP), which means that the
algorithm prediction output for heart disease patients is correct; false positive (FP), which
means that the patients who have no heart disease are incorrectly classified as having heart
disease; and false negative (FN), which refers to patients who are actually suffering from a
cardiac disease but are incorrectly categorized as healthy [24]. The proposed χ2-based SVM
model was evaluated based on the following metrics:

• Accuracy (Acc): defined as the proportion of total positive instances of the model to
the total number of instances, as shown in Equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

• Specificity (Spe): the percentage of true negatives out of all healthy individuals,
calculated by Equation (7). It was used to determine the degree of the attribute to
appropriately classify the individuals without diseases.

Specificity =
TN

TN + FP
(7)
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• Sensitivity (Sen): used to determine the degree of the attribute in order to appropri-
ately classify the individuals who have diseases, as illustrated in Equation (8);

Sensitivity =
TP

TP + FN
(8)

• F1-score: defined as the harmonic mean of the specificity and sensitivity. It can be
computed as shown in Equation (9);

F1 Score =
2TP

2TP + FP + FN
(9)

The chi-squared-SVM algorithm was applied to the two collected datasets to see the
difference when applied to different datasets. Two approaches were experimented with.
In the first approach, the dataset with the total 14 features was normalized, then directly
used for prediction using the SVM classifier. In the second approach, the χ2-based feature
selection method was applied to the normalized dataset to choose the six features that are
the most significant for heart disease detection before applying the SVM classifier.

As can be shown in Table 3, by using the first approach (feeding the total 14 features of
the collected datasets), the SVM classifier achieved the following results for the Cleveland
dataset: accuracy of 84.21%; sensitivity of 67.45%; specificity of 84.13%; and an F1-score of
84.16%. Meanwhile, for the Statlog dataset, the following results were achieved: diagnostic
accuracy of 85.29%; sensitivity of 68.29%; specificity of 85.36%; and an F1-score of 85.29%.
The results of the SVM model for the Cleveland dataset are as follows, as shown in Table 4:
diagnostic accuracy of 89.47%; sensitivity of 89.40%; specificity of 89.40%; and an F1-score
of 89.40%. These results were achieved by applying the second approach, which used the
χ2 feature selection method.

Table 3. Performance of proposed model without feature selection.

Dataset Total Records Total Features Acc (%) Spe (%) Sen (%) F1 (%)

Cleveland 303 14 84.21 84.13 67.45 84.16
Statlog 270 14 85.29 85.36 68.29 85.29

Table 4. Performance of proposed model with feature selection.

Dataset Total Records Total Features Acc (%) Spe (%) Sen (%) F1 (%)

Cleveland 303 6 89.47 89.40 89.40 89.40
Statlog 270 6 89.70 89.70 89.74 89.70

The experimental results of applying these two approaches are shown in Figure 7.
From Figure 7, conclusion can be drawn that the χ2 feature selection method played a
critical role in enhancing the accuracy of the SVM model, while also improving the results of
sensitivity and specificity, which shows the model’s ability to correctly identify people with
and without the heart disease. The proposed χ2-based SVM model improves classification
accuracy by 6.25% for the Cleveland dataset and 5.17% for the Statlog dataset, which is
important for providing a correct diagnosis and decreasing the rate of false predictions.
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Furthermore, ROC (receiver operating characteristic) curve and AUC (area under
the curve) charts were utilized to assess the performance of the proposed χ2-based SVM
diagnostic model and its ability to identify heart disease occurrence. The ROC and AUC
chart is a 2D graph, between the sensitivity and specificity, which evaluates the validity of
a diagnostic model. The true positive rate (Y axis) and the true negative rate (X axis) are
plotted in the ROC chart. It indicates that the optimal ROC curve is in the plot’s upper left
corner. An ROC chart with a bigger AUC is better, which indicates that a diagnostic model
can correctly identify people with heart issues [27].

ROC curves are given in Figure 8a before and after the 14 features of the Cleveland
dataset were reduced to 6. The AUC of the SVM model was 0.90 after lowering the features
by the χ2 method, but it was 0.91 when using the full set of features. Figure 8b depicts the
same thing, but with the Statlog dataset. Before using the χ2 feature selection method, the
SVM model’s AUC was 0.94; after using it, the AUC dropped to 0.91. This suggests that
the influence of χ2 feature selection approach was minimal in terms of AUC.
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To evaluate the proposed χ2-based SVM model in detecting heart disease, another
metric that goes by the term “confusion matrix” was utilized. In a confusion matrix, the
values of the true positive (TP) and false negative (FN) parameters are laid out in a format
like that of a table. The confusion matrix summarizes the number of correct and incorrect
predictions. Figure 9b illustrates the confusion matrix that was produced as a result of
using the proposed χ2-based SVM model on the Cleveland dataset. It shows that the
proposed model can correctly detect 37 (predicted 1 and actual 1) heart diseased persons
and identify 31 healthy subjects out of 35 (predicted 0 and actual 0). In Figure 10b, the
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resulting confusion matrix of the Statlog dataset is presented. This demonstrates that
the methodology that was proposed can accurately identify 31 heart disease patients and
identify 30 out of 33 healthy subjects. Both Figures 9 and 10 show that the number of
incorrect predictions (actual 1 but predicted 0, and actual 0 but predicted 1) made by the
SVM model before and after applying the χ2 feature selection method was reduced from 12
to 8 for the Cleveland dataset, and from 10 to 7 for the Statlog dataset.
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Furthermore, concerning the accuracy and number of selected features, our proposed
model was compared to several existing state-of-the-art techniques, as shown in Table 5.
The performance of the suggested chi-squared-SVM methodology was shown to perform
better than other methods, with an accuracy of 89.47%.

Table 5. Proposed model comparative analysis with current state-of-the-art methods.

Study Feature Selection Method Dataset Classifier Total
Features Acc (%) Selected

Features Acc (%)

[33] Lasso 1 Cleveland Ensemble 13 - 8 75.1
[34] Information Gain Cleveland Ensemble 27 72.2 16 83.5
[26] Lasso Cleveland SVM 13 84.09 - 84.26
[35] Randomly Generated Feature Set Cleveland Ensemble 13 - 9 85.48
[24] Ruzzo-Tompa Cleveland ANN 2 13 - 7 86.20
[36] Lasso Cleveland SVM (RBF) 13 86 6 88
[37] PSO-SVM 3 Cleveland SVM 13 79.35 6 88.22
[28] PS-GWO Statlog and Cleveland DBN 4 13 - - 88.8
[38] PCA 5 Cleveland DL 6 13 - - 89

Proposed Chi-squared SVM 13 85.29 6 89.47

1 Lasso: least absolute shrinkage and selection operator; 2 ANN: artificial neural network; 3 PSO: swarm optimiza-
tions; 4 DBN: deep belief network; 5 PCA: principal component analysis; 6 DL: deep learning.
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4. Conclusions

In this work, an enhanced model was implemented to increase the heart disease
diagnosis and prediction accuracy, as well as to reduce computational load. The ML (SVM)
algorithm was used as a classification model for enhanced heart disease diagnoses. This
model was performed on two famous heart disease datasets. The results showed increasing
accuracy from 84.21% to 89.47 and from 85.29% to 89.7% in the Cleveland and Statlog
datasets, respectively. Furthermore, the features used in the system were decreased from
14 to 6 features, which means that the computational load was reduced from 100% to
approximately 42%. We anticipate that this work will contribute to the future development
and implementation of heart disease prediction and diagnosis systems.
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