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Abstract: Advances in additive manufacturing enable the fabrication of complex structures with
intricate geometric details, which bring opportunities for high-resolution structure design and
transform the potential of functional product development. However, the increasingly delicate
designs bring computational challenges for structural optimization paradigms, such as topology
optimization (TO), since the design dimensionality increases with the resolutions. Two-scale TO paves
an avenue for high-resolution structural design to alleviate this challenge. This paper investigates
the efficacy of introducing function-based microstructures into the two-scale TO. Both isotropic and
orthotropic microstructure are considered to develop this TO framework. Implicit functions are
exploited to model the two classes of cellular materials, including triply periodic minimal surfaces
(TPMS) and Fourier series-based functions (FSF). The elasticity tensor of microstructures is computed
with numerical homogenization. Then, a two-scale TO paradigm is formulated, and a gradient-
based algorithm is proposed to simultaneously optimize the micro-scale structures and macro-scale
material properties. Several engineering benchmark cases are tested with the proposed method, and
experimental results reveal that using proposed microstructures leads to, at most, a 36% decrease in
the compliance of optimal structures. The proposed framework provides achievable directionality
and broader design flexibility for high-resolution product development.

Keywords: two-scale topology optimization; orthotropic microstructures; numerical homogenization;
Fourier series-based functions

1. Introduction

Topology optimization (TO) is a well-established computational method for the struc-
ture design problem. Since TO can find the optimal material distributions within given
boundary conditions [1,2], it has been widely used in different applications for designing
complex and lightweight structures [3–5]. In recent decades, breakthroughs in additive
manufacturing (AM) technologies enable the fabrication of intricate and high-resolution
designs from TO [6]. For example, ref. [7] explored the smooth self-supporting topologies
in additive manufacturing using the level-set method. However, the fine-detailed structure
design will increase the number of discretized elements in TO, which is a computational
challenge. One possible solution to address this issue is to optimize the design domain
with multi-scale structures [8]. Multi-scale topology optimization consists of two design
problems—a macroscopic design and a microscopic design. In the macroscopic problem,
the objective is to distribute materials in the macroscale. To achieve desired material
properties, the microscopic problem tends to find the optimal architecture in a spatially
variant fashion [9]. The two problems in both scales can be carried out sequentially [10] or
simultaneously [11]. The micro-scale cellular materials are commonly used in the multi-
scale TO paradigm. The porous architecture makes the structure lightweight and more
resistant to crack propagation compared to traditional materials [12,13]. The truss, plate,
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and shell-based cellular materials are widely used among cellular materials. However,
these microstructures suffer from stress localization at the junctions of beams or plates,
leading to early failure and poor recoverability [14–16].

Smooth architectures such as those based on triply-periodic minimal surfaces
(TPMS) [17] address the prior issue by exploiting a locally area-minimized geometry [18].
These microstructures usually have a mean curvature approximately equal to zero ev-
erywhere on the surface [19]. TPMS-like microstructures are periodic in three different
directions. They have similar mechanical properties in (x, y, z) directions in a Cartesian
coordinate system, which can be considered isotropic microstructures. Ref. [20] calculated
the gyroid structure’s mechanical properties, of all TPMS structures, by analyzing a unit cell
lattice and applying the finite element method. However, TMPS-like structures also share
common limitations in the fabrication of architectures: the mechanical properties of these
structures are highly sensitive to symmetry-breaking imperfections, and defects [9,21].

There has also been increasing interest in orthotropic microstructure design [9,21], with
an intuition that orthotropic microstructures allow for manipulating the material orienta-
tion to generate structures with superior properties (e.g., stiffer in the direction of maximum
stress). Previous works [22,23] have shown that optimal orientations of orthotropic materi-
als tend to align with the principal stress or strain directions in the compliance minimization
problem. The use of orthotropic microstructures has two major benefits. First, it will expand
the range of available properties for metamaterials (e.g., Poisson’s ratio, Young’s modu-
lus). Second, it will concentrate the stiffness of the microstructure in the desired direction
(e.g., maximum principal stress) according to predefined boundary conditions. As well as
the advantages of orthotropic microstructures, designing spatially varying microstructures
manifesting expected properties is critical to the multi-scale TO. Many works [21,24,25]
have tried to optimize the material anisotropy by tuning the microstructural architecture.
Ref. [26] developed an orthotropic topology optimization method for lightweight com-
posite structures. Ref. [27] have introduced a topology optimization method that can
handle structures made by orthotropic materials. However, the structures designed in these
works were either from a simple strut-based design domain (rectangular or cubical cells
with beams at the edges) [24] which limits the microstructural and orthotropic tunability
or is from a physical process, such as phase-separation [21], which requires considerable
computational effort to generate the microstructure with expected properties.

This paper investigates the influence of function-based microstructures with isotropic
and orthotropic mechanical properties on a parameterized-based two-scale TO framework.
A function-based (FRep) method is introduced for microstructure modeling. FRep-based
modeling is simple to implement. Specifically, Fourier series-based function (FSF) [28–30]
and triply periodic minimal surface-based (TPMS), are exploited in this paper.

Homogenization is the key to approximating the effective mechanical properties of
microstructures [31–33]. Similar to previous works [34,35], numerical homogenization is
utilized to estimate the effective elasticity tensor of the microstructures. Lower computation
cost and faster convergence can be enabled by precomputing the material property gamut
in a two-scale framework optimization process [36–38]. The effective properties of the
FSF-based and TPMS-based cellular material are calculated using asymptotic homoge-
nization. Next, the density of microstructures is directly incorporated as the function of
microstructures’ design parameters into the topology optimization problem. Thus, the
micro-scale structures are presented over the entire density range. To this end, the main
contribution of this work are summarized as follows:

− Scaling laws of the relative density and elastic tensor of FSF and TPMS microstructures
are derived, which approximates the mechanical properties of the microstructures
based on their relative densities with high accuracy;

− A high-quality connection between adjacent unit cells with different densities is
ensured by utilizing a smoothing operator;

− Set of benchmark cases in mega-voxel are used for validating the results and demon-
strating its versatility to various design problems of practical interest;
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− Up to 36% decrease in structural compliance by utilizing orthotropic microstructures
instead of isotropic ones is achieved, and up to 50% increase in structure stiffness
compared to SIMP and other multi-scale TO methods.

The remainder of this paper is organized as follows. Section 2 presents the overview
of developing parameterized microstructures and merging them with a two-scale TO
framework. The two-scale TO problem formulation and the optimization algorithm is
introduced in Section 3. Section 4 discusses the experimental results of several benchmark
cases study for the proposed framework. Finally, Section 5 concludes the paper and
discusses the limitations and future work.

2. Overview

The overview of the proposed parameterized microstructure-based two-scale TO
problem is illustrated in Figure 1. Our methodology mainly includes three modules. First,
different implicit functions are introduced to generate a unique cellular material family.
How different volume fractions and mechanical properties can be developed by changing
the level-set parameter of each function are also explained. The second step is to calculate
the effective properties of the cellular structure using the asymptotic homogenization
approach. After defining the two-scale topology optimization problem, benchmark case
studies with both isotropic and orthotropic cellular materials as the microstructure are
solved, and the difference between the optimized topologies and the resulting structural
performance is investigated.

Parameterized Cellular Materials Homogenization Process

...

Iterative FEA Solver / Result

Isotropic Anisotropic

Elasticity tensor

Young's modulus
Surface

Optimization Problem

 

 
subject to  

 
 

Define Loading/B.C.Voxelization

F

Figure 1. Flowchart of structural design optimization with isotropic/orthotropic microstructures.

2.1. Mathematical Representation

The surface layer of cellular materials can be expressed by an implicit function consist-
ing of trigonometric terms and the level-surface value. The general level surface can be
represented as:

F : R3 → R
{(x, y, z) ∈ R3‖F(x, y, z)− t = 0},

(1)

where F(x, y, z) is an implicit function that dictates the level surface’s shape, t is the level
parameter. Changing the level parameter t would create distinct members (with different
volumes) of a given family of level surfaces. There is no intersecting or folding in the
geometry created by the trigonometric function. This is one of the benefits these surfaces are
appealing to be employed as the micro-structures in the TO problem. In this paper, implicit
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function-based approximations of triply periodic minimal surface (TPMS) [17,39] are used
to generate four distinct types of isotropic cellular materials, and Fourier series-based non-
periodic functions [29] are used to generate three types of orthotropic cellular materials.
Therefore, there are seven cellular material types to investigate the differences between
orthotropic cellular materials compared with isotropic cellular materials. These seven
different level surface families can be categorized to: (1) isotropic cellular materials, which
are the gyroid (FG), diamond (FD), primitive (FP), and I-WP (FW) [40]; and (2) orthotropic
cellular materials (F1, F2, F3). The functions for modeling isotropic materials are taken from
[17], while the three Fourier series-based functions are detailed as follows:

F1 = cos[
2π

l
(−x + y− z)] + cos[

2π

l
(x + y + z)] + cos[

2π

l
(x + y− z)]

F2 = cos[
2π

l
(x + y− z)] + cos[

2π

l
(x− y + z)] + sin[

2π

l
(x + y + z)]

F3 = sin[
2π

l
(x + y− 2z)] + sin[

2π

0.5l
(x− y + z)] + sin[2x + y + z)],

(2)

where l is the microstructure dimension [29]. An implicit surface with t = 0 can be used as
the base surface by setting t = ±a; two surfaces are generated on both sides of the base
surface with equal offsets, which divide the space into three subspaces (illustrated as in
Figure 2). The volume trapped between two offset surfaces is the target structure. It can be
seen from Figure 2 that with adjusting parameter t, the offset surface’s distance and the
size of the trapped sub-volume (target volume) can be changed. So the structure’s volume
fraction (or the relative density) can be controlled by parameter t.

Figure 2. The red surface corresponds to the base surface (t = 0),and the black and grey color has
been assigned to surfaces with (t = +a) and (t = −a) offsets, respectively. The yellow sphere shell is
the volume trapped between t = [−a,+a].

Since the relative density represents the volume fraction of the solid phase, which is
essential for exhibiting the structure’s mechanical properties (e.g., the elastic modulus),
it is critical to find the relation between the parameter t and relative density. In [39], a
fitting method has been utilized to acquire such a relation, i.e., scaling laws of the relative
density of G-, D-, P-, and W-based cellular structure. An illustrative example of P-type
microstructure is presented in Figure 3. In this work, the same philosophy is applied
to establish the scaling laws of the relative density for FSF microstructures. Specifically,
by generating different cellular materials with various densities (i.e., volume fraction), a
database storing structures’ densities and the corresponding t values is created. Twenty
sample points are considered for each one of the families with relative densities equally
spaced ρ ∈ [ρmin, 1]. ρmin is the minimum volume fraction of the microstructure, and it
is determined such that there be no isolated material in the unit cell. Each one of the
microstructure families has its own distinct ρmin since they have different geometries. The
database is used to establish a mapping between t and the cellular material’s density ρFSF
by fitting a nonlinear regression model solved by the Levenberg–Marquardt algorithm for
orthotropic cellular materials. Equation (3) reveals the mappings between t and ρ for three
FSF cellular materials. In this equation ρ is the volume fraction of the trapped volume
between t = [0, T] surfaces.
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ρF1 = 0.221× t + 0.376, −1.000 ≤ t ≤ 3.41 (3a)

ρF2 = 0.286× t + 0.211, −0.220 ≤ t ≤ 3.23 (3b)

ρF3 = 0.223× t + 0.429, −1.225 ≤ t ≤ 3.3. (3c)

(a) t = −1.41, ρ = 0.08 (b) t = −0.99, ρ = 0.25
Figure 3. Primitive cellular structure scaling laws [39]: ρFP = −0.058 × t2 + 0.269 × t +
0.575, −1.513 ≤ t ≤ 3.12. The material volume can be adjusted by changing the level parame-
ter t.

2.2. Homogenized Model of Microstructure

A numerical homogenization method is utilized to calculate the effective properties
of microstructures, such as the elasticity tensor. Keen readers are referred to [41,42] for
a detailed explanation of the theory behind homogenization. All the procedure of the
homogenization method comes to solving the elasticity Equation (4). In the equation, Eijpq

is the stiffness tensor, ν is the virtual displacement field, χkl is the displacement field which
this equation solves for, ε

0(kl)
pq is the prescribed macroscopic displacement, and Ω is the

microscopic unit cell volume.∫
Ω

Eijpqεij(ν)εpq(χ
kl)dΩ =

∫
Ω

Eijpqεij(ν)ε
0(kl)
pq dΩ ∀ν ∈ Ω (4)

Equation (4) is discretized and solved using finite element analysis (FEA). This proce-
dure is also referred to as the numerical homogenization method. Because of the irregular
geometry of the microstructures studied in this paper, it is necessary to conduct the mesh
dependency [43] for the FEA performed in the homogenization method.

The mesh dependency study is conducted for all TPMS-based and FSF-based mi-
crostructures to ensure that the results from the homogenization study solved by the FEA
method are not dependent on the mesh size selected in the FE solver. Two different studies
were conducted. In the first study, the volume fraction for the microstructures is set to
v f = 0.4, and it is conducted on all cellular structures type Figure 4a. The second study was
conducted on one sample from each family with different volume fractions to show that
the homogenization results are reliable for the whole range of volume fractions considered
for the microstructures Figure 4b. In Figure 4, Nelm is the number of elements in the mesh,
C1111 is the elasticity tensor element value calculated by the FEA with different mesh sizes,
and C∗1111 is the elasticity tensor element value calculated by the FEA with the maximum
number of 1.8 million elements. It can be seen from Figure 4 that after a particular resolution
(Nelm > 105), the homogenization results are independent of the mesh size.

2.2.1. Scaling Laws of the Elasticity Tensors

The cellular structure’s elastic tensor depends on its relative density [44], which is known
as the “scaling law.” Inspired by the tensor scaling laws of TPMS in [39], the relationship
between the elastic tensors and their relative density of the FSF-based cellular materials are
modeled by doing non-linear fitting in this work. For a generalization purposes, the cellular
materials are categorized into two types: (1) isotropic; and (2) orthotropic.
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Figure 4. Convergence and mesh independence. (a) Density filter with linear interpolation in
y-directions; (b) FP before applying density filter.

2.2.2. Isotropic Cellular Materials

Isotropic microstructures like the TPMS-based cellular materials belong to cubic sym-
metric geometry (identical properties along three axes). Therefore, only C1111, C1122, C1212
are needed to compute the elasticity tensor:

C(ρ) =



C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0

0 0 0 C1212 0 0
0 0 0 0 c1212 0
0 0 0 0 0 C1212.

 (5)

For TPMS-based isotropic cellular materials, the tensor scaling law is as follows [39]:

C1111 = C∗1111(a1ea2∗ρe − a1) (6a)

C1122 = C∗1122(a1ea2∗ρe − a1) (6b)

C1212 = C∗1212(a1ea2∗ρe − a1), (6c)

where C∗ijkl are the corresponding elastic constants of the constituent material, ρe is the element
density, a1 and a2 are the constant values that the homogenization results can determine.

2.2.3. Orthotropic Cellular Materials

The orthotropic microstructure contains nine independent elements in its elasticity
tensor, as shown in Equation (7).

C(ρ) =



C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C1122 C3333 0 0 0

0 0 0 C2323 0 0
0 0 0 0 c3131 0
0 0 0 0 0 C1212.

 (7)

It is reported that an exponential function can identify the relationship between con-
stants of the elastic tensors and the relative density well and provides the best combination
between accuracy and compactness of the scaling law [39]. Therefore, the following relation
is exploited to model the tensor scaling law of orthotropic microstructures in this work:

Cijkl/C∗ijkl = bijkl
1 ∗ ρ

bijkl
2

e + bijkl
3 , (8)

where Cijkl is the elasticity tensor elements of homogenized materials, and C∗ijkl is the

elasticity tensor elements of the solid, ρe is the voxel density, bijkl
1 , bijkl

2 , and bijkl
1 are constants
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corresponding to the {ijkl}-element of the elasticity tensor and are unique for each type of
the three orthotropic cellular materials used in this paper.

To acquire the constants in Equation (8), a series of samples were collected to fit these
constants’ values. The collected samples and the fitted scaling law are presented in Figure 5.
There are 20 sample points for each one of the families with relative densities equally
spaced ρ ∈ [0, 0.05, 0.10, . . . , 0.95, 1]. The results show that F2 and F3 cellular materials have
a relatively lower pressure resistance in e1 direction than F1 and stronger shear resistance
in the same direction. In the e2 direction, F1 shows noticeable pressure and shear resistance
compared to the other two. In the e3 direction, all three have strong shear and weak pressure
resistance. It concludes that when there are significant shear stresses in the structure, either
F2, F3 or 90◦ rotated F3 along e3 should be considered for the TO problem. Based on the
fitting results, the elastic tensor scaling laws for the constants of FSF-based cellular materials
are presented in Table 1.

Figure 5. Elasticity tensor scaling laws for three orthotropic cellular materials, each orthotropic
material has nine independent elements in its elasticity tensor. Each row belongs to one of the cellular
materials shown in the left columns.
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Table 1. Scaling law constants for orthotropic cellular materials.

F1 F2 F3

b1 b2 b3 b1 b2 b3 b1 b2 b3

C1111/C∗1111 1.3611 2.6083 −0.0049 1.3299 2.1798 0.0196 1.3385 2.0672 −0.0052
C2222/C∗2222 1.3658 2.0782 −0.0170 1.3593 2.6396 −0.0044 1.3908 2.9141 −0.0204
C3333/C∗3333 1.3612 2.6076 −0.0049 1.3593 2.6396 −0.0044 1.3443 2.8745 0.0078
C2323/C∗2323 0.3952 1.8548 −0.0090 0.3940 1.8536 −0.0083 0.3985 2.1820 −0.0092
C3131/C∗3131 0.3952 1.8549 −0.0090 0.3766 1.8777 0.0064 0.3942 2.1902 −0.0077
C1212/C∗1212 0.3911 1.7194 −0.0099 0.3940 1.8537 −0.0083 0.3952 1.6769 −0.0129
C2233/C∗2233 0.5712 2.7624 0.0012 0.5578 2.9993 0.0182 0.5764 3.3822 0.0025
C1133/C∗1133 0.5596 2.6526 0.0049 0.5578 2.9993 0.0182 0.5503 3.1364 0.0197
C1122/C∗1122 0.5712 2.7623 0.0012 0.5350 3.1039 0.0375 0.5672 3.3762 0.0062

3. Two-Scale Topology Optimization

The modeled microstructures can be encapsulated into the TO framework for struc-
tural optimization with the homogenized effective mechanical elasticity tensors. Thus,
this section establishes a two-scale TO framework with isotropic/orthotropic microstruc-
tures for structural optimization problems. The details of the problem formulation and
optimization method are introduced in the following sections.

3.1. Optimization Problem Formulation

The objective of TO is to find an optimal solution for retaining materials within a
prescribed design domain to achieve the expected structural performance. In this work, we
mainly focus on the structure’s compliance minimization problem—i.e., we aim at maxi-
mizing the structure stiffness by finding the optimal distribution of the cellular material. It
should be noted that the proposed framework is not limited to compliance optimization
problems. The objective function can be formulated to adapt to application-dependent
functionality requirements.

In the developed two-scale TO framework, the design space is discretized into a voxel
grid of hexahedral elements, where each element is to be filled with a cellular structure. At
the same time, each cellular structure family can be adjusted by its relative density (volume
fraction), which dictates the mechanical properties of the element. The density of the
cellular structure is the design variable to be optimized. In typical density-based topology
optimizations, the volume fraction of the elements is formulated as the design variable. In
the optimization process, the optimal mechanical properties for each element need to be
mapped into a relative density field. All of these operations may lead to modifying the
optimized properties of the element. After solving the TO and having the density field
of the optimized structure, a mapping process is used to map a cellular structure to the
optimized density value for each element as the microstructure of the two-scale TO. The
optimization problem could be written as:

min
ρ

: J(ρ) = UT(ρ)K(ρ)U(ρ) (9a)

subject to : ∑ ρeve ≤ Vf (9b)

KU = F (9c)

ρe ∈ [ρ
e
, 1], ∀e. (9d)

The objective of the two-scale TO is to minimize the structure’s compliance J (i.e., work
under an external force), where U denotes the nodal displacement vector and can be calcu-
lated by solving the equilibrium equation. The global stiffness matrix K can be assembled
from elementary stiffness matrices. The Volume fraction Vf controls the amount of mate-
rial used in the final design. F indicates the external force applied to the design domain,
which in our problem is constant in magnitude and direction. The first constraint (9b)
is the volume constraint, which limits the summation of the element volume fractions
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to a given value. The second constraint (9c) is the equilibrium equation, this constraint
is used to calculate the displacement vector U = K−1F. The last constraint (9d), which
is imposed on the element e volume fraction ρe, confirms the connectivity between the
cellular materials. The lower bound ρ

e
is to ensure an acceptable interface connection

between adjacent elements. The lower bound ρ
e

should be predetermined for each one of
the elements families separately, while the upper bound ρe = 1 for all families. Small-level
parameters would result in cellular materials with no material distributed at the voxel
surfaces. A proper interval is needed for the design parameter of the elements to maintain
the connectivity between the elements. Imposing a lower bound ρ

e
is necessary to ensure

that the microstructure complies with the homogenization theory hypothesis and confirm
that the elements have an acceptable interface connection. For a proper connection between
two neighboring microstructures, as shown in Figure 6a,b, the percentage of the surface
overlap (Sint/S) should be larger than 6.4% for each side. In Figure 6, S is the area of
the microstructure surface, and Sint is the area of the surface overlap at the interface of
two microstructures.

(a) (b) (c) (d)

Figure 6. The overlap at the surface interface of two neighboring microstructures. (a,b) the sur-
face area of two random neighboring microstructure at their interface plane, (c) overlaying of the
two surfaces, (d) Intersection surface of two surfaces.

3.2. Elementary Stiffness Matrices

As mentioned, the displacement vector in the objective function (9a) is unknown, and
the equilibrium Equation needs to be solved to find it.

K(ρ)U = F, (10)

where K is the global stiffness matrix, which is the result of assembling all the elementary
stiffness matrices of the microstructures. Using the potential energy approach [45], the
elementary stiffness matrix of a microstructure can be derived:

ke =
∫

Ωe
BT Ce(ρe) B dΩe, (11)

where ke gives the element’s e stiffness matrix, B is the displacement differentiation ma-
trix [46], Ce is the elementary elasticity tensor, and Ωe and ue are the element e volume and
nodal displacement vector, respectively. Each element’s elasticity tensor can be computed
by the element’s density, Young’s modulus, and Poisson’s ratio of the solid material using
the scaling law and the fitted curves Equation (8).

3.3. Optimization Algorithm

This work proposes a gradient-based algorithm to solve the formulated optimization
problem in Equation (9). Specifically, the procedure of the proposed algorithm is as follows:
first, by using the initial data, the elementary stiffness matrix is calculated for each element,
and the results are used to assemble the global stiffness matrix. Second, the displacement
vector can be computed by solving the equilibrium equation once obtaining the global
stiffness matrix. Next, the compliance and the total volume derivatives with respect to the
design variable ρe can be computed as:
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∂J
∂ρe

= uT
e

∂ke

∂ρe
ue = uT

e

[∫
Ωe

BT ∂Ce

∂ρe
B dΩe

]
ue, (12)

and
∂V
∂ρe

=
∂ ∑i ρi

∂ρe
= 1. (13)

The above two derivatives Equations (12) and (13) are calculated as a means to update
the design variables. Then the procedure to update the design variables is to evaluate
the impact of each element’s volume change on the change in the objective function
(i.e., compliance) [47]. This impact is proportional to the sensitivity of the compliance to
the change in the volume of a voxel, which can be calculated with:

ge =
−∂J/∂ρe

∂V/∂ρe
, (14)

where ge is sensitivity of element e. According to Equation (14), a small value of ge means
that the volume fraction of that element can be lowered without significantly affecting the
whole structure’s stiffness. On the contrary, if an element has a relatively large sensitivity
value, a volume fraction increment will result in a noticeable increase in the structure’s
stiffness. The last step of the algorithm is to define stopping criteria. One approach is
to update the design variables until the change in the objective function gets less than
a predetermined threshold. An alternative criterion is to fix the number of iterations.
After the stop criteria are reached, the optimal volume fractions will be procured. The
pseudo-code of the proposed algorithm is summarized as in Algorithm 1.

Algorithm 1: Pseudo-code of the proposed optimization algorithm

1 Define the boundary conditions (Γs, ΓU);
2 Determine the microstructure type: isotropic (P, G, D, W) or orthotropic

(F1, F2, F3);
3 Discretize the design domain Ω, and initialize the design variable ρ0 = v f ; k = 0;

set K, ε;
4 while k ≤ K or ε < 0.01 do
5 .
6 end
7 Compute elasticity tensor CH

pcm(te) of microstructure with homogenization;
8 Calculate global stiffness matrix: Kpcm = ∑n

e=1
∫

Ve
BTCH

pcmBdVe;
9 Find the displacements Uk by solving the equilibrium equation: Uk = K−1

pcmF;

10 Compute the objective function Ck(ρk, Uk), and sensitivities (− ∂Ck

∂ρ );

11 ρk+1 = ρk − ∂Ck

∂ρ ;

12 ε = Ck − Ck−1;
13 k = k + 1; Result: Return the optimal design variables ρ∗

14 .

3.4. Post Processing

In the layout of the optimized structure, low-density microstructures might be placed
adjacent to high-density microstructures. This configuration may lead to geometry frus-
tration problems. For example, in Figure 7b,d, the sudden change in the topology of the
neighboring microstructures can be seen; the sharp transition could cause stress concen-
tration and consequently weaken the structure’s stiffness. An interpolating operator is
applied on all microstructures along three dimensions to have a smooth surface transaction
between microstructures and avoid these problems. To explain how this operator works,
an example in the y direction is illustrated in Figure 7a—consider two microstructures with
their middle points located at (x, y, z) and (x, y + d, z), where d is the distance between
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center of two adjacent microstructures and their relative densities are ρ(i,j,k) and ρ(i,j+1,k).
To have a smooth connection rather than a sudden change in microstructures’ topology, this
distance is divided into n sections; each positioned at (x, y + (i/n) ∗ d, z) with a relative
density of ρ(i,q,k), q ∈ {1, 2, . . . , n}. Linear interpolation is used to calculate these densities:

ρ(i,q,k) = ρ(i,j+1,k) − (ρ(i,j+1,k) − ρ(i,j,k))× (1− q
n
). (15)

Figure 7c,e demonstrates the smooth transition of adjacent microstructures after ap-
plying the smoothing operator. When n is large enough (e.g., n ≥ 20), after applying this
operator, the sudden change in neighboring microstructures’ topology will be eliminated
(Figure 7c,e), and the whole structure will appear as a single object.

(a)

(b) (c) (d) (e)

Figure 7. Interface smoothing of adjacent microstructures with variant design-parameter (ρe). (a) Den-
sity filter with linear interpolation in y-directions. (b) FP before smoothing. (c) FP after smoothing.
(d) F1 before smoothing. (e) F1 after smoothing.

Minimum Feature Size

Since linear interpolation is used for the post-processing, increasing n will improve
the smooth transition, but practically it can not be larger than the resolution of a single mi-
crostructure which depends on the size of the microstructure and the 3D printer resolution.
Table 2 summarizes the maximum possible resolution for different SLA printers based on
their resolution and the microstructure size.

Table 2. Minimum microstructure feature size based on the printer resolution.

Printer xy- Res. (mm) Max. Res. n-Range Feature Size (mm)

ANYCUBIC
(Photon Mono X)

100 [20, 100] 5.0
0.05 150 [20, 150] 7.5

200 [20, 200] 10.0

Creality
(Halot-One Plus)

100 [20, 100] 4.0
0.04 150 [20, 150] 6.0

200 [20, 200] 8.0
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4. Numerical Results

This section considers several benchmark cases to study the effect of parameterized
function-based isotropic and orthotropic microstructures on the two-scale TO output
structure’s stiffness. Comparative studies were conducted to demonstrate the performance
of the proposed framework with function-based microstructures. First, the orthotropic
microstructures were compared with isotropic ones. Then the proposed framework was
applied to different standard structure design problems. Lastly, two illustrative applications
of the proposed method are presented.

4.1. Benchmark Problems

In order to test the impact of using function-based cellular materials in TO, four
benchmark design problems were investigated in this work. For simplicity, they are named
Cases I, II, III, and IV here. The details of each problem are as follows:

• Case I: This problem is a bending beam with a rectangular cross-section, bottom left
edge hinged, roller support for the bottom-right edge, and a uniform load applied to
the bottom middle of the beam. The graphic illustration of the boundary condition is
presented in Figure 8a;

• Case II: The second problem is a classic cantilever beam problem. In which the beam
has a rectangular cross-section, left face fixed, and a uniform load applied to the
bottom-right edge of the beam as shown in Figure 8b;

• Case III: This case is an alternative version of the bending beam, and the problem has
been configured as follows: both the bottom-left and the bottom-right edge of the
beam are hinged, and a uniform load is applied to the bottom middle of the beam
shown in Figure 8c;

• Case IV: The fourth problem is an L-shaped structure, clamped from the top surface
of the structure, and a uniform downward load is acting on the right top edge of the
structure, as shown in Figure 8d.

Figure 8. Four structure design benchmark testing problems.

In the first three cases, the beam had dimensions of 30 cm× 10 cm× 5 cm, and the load
magnitude was 200 N/cm. For Case IV, the L-shaped structure dimensions are detailed in
Figure 8d. For the four cases, the objective was to minimize the structure’s compliance, and
the base material properties were E = 1 GPa (Young’s modulus) and ν = 0.3 (Poisson’s
ratio). They were also subjected to the constraint of maximum volume fraction Vf of 40%.

4.2. Isotropic versus Orthotropic Cellular Materials

Compared to isotropic cellular materials, orthotropic ones have more flexibility for im-
plementing direction-dependent mechanical properties. Thus, orthotropic microstructures
can significantly enhance the design space and achievable directionality. In this section, a
comparison experiment between isotropic and orthotropic cellular materials is conducted
to reveal the superiority of orthotropic microstructures. For demonstration purposes,
Case I is studied here. In this benchmark problem, the design domain was discretized into
30× 10× 5 uniform voxel grid, and each voxel was filled once with isotropic and then
again with orthotropic microstructures. As a conceptual demonstration, the proposed
two-scale TO problem used FP and F1 for isotropic and orthotropic cellular structures.
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Figure 9 presents the optimized density distribution of two types of cellular materials with
the proposed TO framework. It can be seen that the selected cellular material in Figure 9
has orthotropic properties. While in Figure 9b, the cellular material used is isotropic, and it
has similar properties along the three axes of the Cartesian coordinate system.

Figure 9. Density distribution of (a) orthotropic cellular material, and (b) isotropic cellular material
in benchmark Case I. Right column represents the effective Young’s modulus surface for each one of
the microstructures.

Directional Tunability

To further verify the design flexibility and structural performance by using the or-
thotropic cellular materials, the infilling orientation of the microstructure is considered here.
Specifically, a rotation with different angles was performed on the cellular materials, and
the resulting structural compliance was estimated. Here, the orthotropic cellular material
was rotated with 0◦, 90◦ about the x-axis, and 90◦ about the z-axis. These three orientations
were randomly selected for the sake of the study (the rotational angle will be considered as
the design parameter in future studies). Then, these three structures were compared with
the one filled with isotropic cellular material. The design configurations are illustrated in
Figure 10. Moreover, the resulting mechanical performance (compliance) of these designs
is shown in Table 3.

Table 3. Improvement in the structure’s stiffness by rotating the microstructures.

Orthotropic (F2) Isotropic (FP)

Rotation 0◦ x-90◦ z-90◦ 0◦

Comp. 1884 1441 1793 1844
Imp. −2.2% 28% 2.76% -

The proper selection of cellular material and rotation can result in a 28% drop in the
structure’s compliance. Looking at the two other arrangements of the orthotropic cellular
material (0◦ and z-90◦), they have similar performances compared to isotropic cellular
material. This indicates that they have similar stiffness characteristics in the direction of the
principal stresses caused by the loading. However, by rotating the orthotropic material,
the stiffer direction of the material aligns with the stresses’ direction and results in lower
compliance, which reveals enhancement in structural integrity. Experimental results herein
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verify that the orthotropic microstructures have more design flexibility and achievable
directionality than the isotropic ones within the proposed TO framework.

Figure 10. Rotating orthotropic cellular material compared with isotropic material.

4.3. Performance Evaluation

This section provides comprehensive comparison studies to verify that orthotropic
materials achieve better directional tunability. As a baseline, both the classical SIMP
method [48] and state-of-art multi-scale method [25] (for simplicity, named “multi-scale”
henceforth) are also applied to find the optimal structures for the four benchmark cases.
First, these methods’ computational performance and then the optimal structures’ mechan-
ical performance from different approaches are compared.

4.3.1. Computational Performance

The computational cost is one of the challenges for high-resolution structural optimiza-
tion. Therefore, a TO method is usually expected to be computationally efficient to reach
the optimal solution. To further examine the efficiency of the two-scale TO [49] in handling
both isotropic and orthotropic cellular materials, its convergence time is compared with
the multi-scale method. For demonstration purposes, Case I is used as an illustration study.
For the settings of the SIMP method, the design domain was discretized by an 8-node
hexahedral element mesh using a uniform grid. The penalization parameter was set to
p = 3. The same number of elements were used for all three methods to compare fairly.
The design volume was constrained to last for 40% of the design domain volume in all
methods. The convergence criteria for the optimization problem was either 200 iterations
or the difference between two consecutive iteration compliances smaller than 0.01, which
happens first. For the two-scale TO, F2 cellular material was considered with [0.05, 1] as the
lower and upper limits for elements density, and for multi-Scale, ′iso′ setting [25] was used.
To further test the proposed method’s performance, various elements in the micro-scale
were used in the two-scale method. All experiments were implemented on a PC with a
2.4 GHz 8-Core Intel i9 CPU, 32GB RAM, and an 8 GB graphic card within the environment
of MATLAB R2020b. The comparison results are listed in Table 4. The two-scale method has
the lowest convergence time (273% faster than the multi-scale method), while the achieved
compliance is smaller than the other method. Furthermore, the convergence time does
not change when varying the number of micro-scale elements. This is mainly because a
parameterized cellular structure is used in the two-scale method, which does not increase
the computational time with the increasing micro-scale elements. Experimental results



Designs 2022, 6, 73 15 of 22

reveal that the two-scale method is robust, using either isotropic or orthotropic cellular
material as the microstructure.

Table 4. Convergence time comparison of different topology optimization methods. Best results are
specified by bold font.

Two-Scale Multi-Scale [25]

No. of Elements (Total) 5× 106 1.2× 107 1.9× 108 1.2× 107

No. of Elements (Micro) 153 203 503 203

No. of Elements (Macro) 1500 1500 1500 1500
Compliance 147.9 141.2 134.5 189.7

Time to Converge (s) 141 140 141 386

4.3.2. Structural Performance

The structural performance was studied using different TO methods in this section to
investigate the mechanical properties of the optimized structures.

4.3.3. Level Parameter Effect

In the two-scale TO framework, different cellular material families would affect the
mechanical performance of the final structure. To investigate the difference between having
an isotropic cellular material and an orthotropic cellular material as the microstructure in
the TO framework, the same TO problem was solved twice, first with isotropic materials
and then with orthotropic ones. Cases I–III are studied here. The three cases’ boundary
conditions, force magnitudes, positions, directions, and beam dimensions remained the
same. A 30× 10× 5 uniform voxel grid was used to discretize the design domain. For the
cellular material, Fp was used as the isotropic material and F1 as the orthotropic cellular
material. A minimum volume fraction ρmin = 0.05 was used to meet the voxels’ connec-
tivity constraint for both cellular materials. Microstructures with different mechanical
properties were contemplated for the three cases, and the final optimized structures for
three benchmark cases are presented as in Figure 11.

Figures 11d–f show the results for the three TO problems with an isotropic cellular ma-
terial with ρmin = ρmax = 0.4 (uniform density distribution). Considering the given volume
constraint, a uniform distribution of the voxel with (ρ = 0.4) through the design domain is
sensible. In Figure 11g–i, isotropic cellular material was used in the TO framework and
the bounds for the elements’ volume fraction are [0.05, 0.1], and in Figure 11j–l, orthotropic
cellular material has been used with the same bounds for the elements’ volume fraction
([0.05, 1]). Comparing the compliance for the structures in Figure 11d,g, it is evident that
the two-scale topologically optimized structure with isotropic material has 75% less com-
pliance than the uniform structure. It reveals that by increasing the maximum allowable
volume fraction (ρmax) for each voxel, the TO will converge to a stiffer design, reducing
compliance. From Figure 11g,j, it can be observed that by switching to orthotropic cellular
materials, the structure compliance has decreased by 26%. It indicates that the superiority
of orthotropic microstructures is a valid hypothesis, and stiffer optimized structures with
the same volume fraction constraints can be achieved using orthotropic cellular materials
instead of isotropic cellular materials.

4.3.4. Comparison with Multi-Scale and SIMP

To see the structure performance of the two-scale TO with orthotropic cellular mate-
rials, the optimal compliance of this method is compared with SIMP, and multi-scale [25]
methods. Both isotropic and orthotropic microstructures are used in the two-scale TO frame-
work. Different TO methods are applied to the four benchmark cases, and the optimized
structure’s compliance is presented in Table 5. As can be seen, the obtained compliance of
the two-scale TO method with isotropic cellular material is smaller but close to the SIMP
and multi-scale methods. The optimal structures of the three TO methods are shown in
Figure 11m–r. The cantilever beam Figure 11n of multi-scale has the greatest compliance
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value C = 2126.7. The force’s line of action is twice further from the support point, which
results in a longer moment arm and yields a larger moment. As the end of the cantilever
beam is free to move in the direction of the applied force and, as explained, the force
produces a larger moment, displacements in the structure would be higher, which means
larger compliance is expected with the same magnitude of the applied force. Between the
two bending beams, the one with the roller supports anticipates having larger compliance
since the right end of the beam is free to move horizontally, resulting in the increment of
structural displacements. It can be seen from Figure 11m,r that both multi-scale and SIMP
methods have larger compliance in Cases I and III. Compared to the multi-scale and SIMP
methods, the two-scale method using proposed function-based microstructures achieves
a noticeable drop in compliance using isotropic cellular material, and the compliance is
reduced even more by using orthotropic cellular material as revealed in Table 5. For the
bending beam Figure 11a (Case I), 26% drop in compliance is achieved by switching to
orthotropic cellular material in the two-scale TO framework. For the cantilever beam in
Figure 11b (Case II), there is a 20% decrease in compliance compared to the two-scale with
isotropic cellular material; for the bending beam with two hinged edges in Figure 11c
(Case III), the decrease is 19%.

Figure 11. Final optimized structures and their compliance values with different microstructures
properties and comparison results with other TO methods: (a–c): three benchmark problems (F = 1 in
all three cases); (d–l): optimal structure of the two-scale TO method [49] with isotropic and orthotropic
microstructures; (m–r): optimal structures using multi-scale [25] and SIMP methods, respectively.

Table 5. Structural performance comparison of different TO methods on four benchmark cases.

Case I Case II Case III Case IV

No. of Elements (Total) 1.2× 107 1.2× 107 1.2× 107 9.1× 108

SIMP Compliance 359.4 2647.2 170.6 2204.4
multi-scale [25] Compliance 251.3 2126.7 135.8 2017.9

Two-Scale (isotropic FP) Compliance 234.3 1726.8 129.8 1895.1
Two-Scale (orthotropic F1) Compliance 172.1 1378.4 104.3 1623.4

Improvement to SIMP 52% 48% 39% 26%
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From Table 5, we can also observe that the compliance of optimal structures with
orthotropic microstructure is lower than the isotropic one in the four benchmark cases.
This further verifies the conclusion in Section 4.2, i.e., the orthotropic microstructure has
a wider design space and can achieve higher structural stiffness than the isotropic one
with the same settings. The optimal structure obtained by the proposed framework with
isotropic and orthotropic microstructures for Case IV is presented in Figure 12. The L-shape
structure has been set up in a particular way that the stress state of the structure is as close
as possible to the plane stress. The results show that orthotropic cellular material F1 has
handled the stress distribution much better than the isotropic cellular material Fp.

Figure 12. Optimal results of Case IV (L-shape Structure) with two different cellular material ar-
chitectures: (a) Boundary condition and loading, (b) Optimized structure (compliance = 840) with
orthotropic cellular material F1, (c) Optimum structure (compliance =1130) with isotropic cellular
material FW .

The above experimental results show that using orthotropic cellular materials as the
microstructure in the configuration of the TO problem opens an avenue for high-resolution
structure design. The structures optimized by the orthotropic cellular materials have better
performance (i.e., lower compliance) than structures optimized by conventional materials
or purely isotropic cellular materials. Having access to choose between materials with
isotropic/orthotropic mechanical properties in optimizing a structure enables designers and
engineers to create relatively light but stiff structures that were impossible to manufacture
with conventional materials.

4.3.5. Homogenization Result versus Full-Scale FEA Simulation

In this section, FEA results are used for full-scale structures to validate the result of
asymptotic homogenization and illustrate that employing orthotropic microstructures in
the two-scale TO framework effectively reduces compliance. The full-scale structures are
imported to FEBio software [50] as VTK files generated in MATLAB. Since the structures are
voxelized, the VTK files can be treated as mesh files and each voxel as an 8-noded hexahe-
dral element. The base material is defined as an "isotropic elastic" material with its young’s
modulus set to (E = 3.5× 106) and Poisson’s ratio to (ν = 0.3). Each microstructure is dis-
cretized into 15 sections in each dimension, resulting in a total of 15× 15× 15 voxels. For
the first three study cases, the design domain is discretized into 30× 1× 10 microstructures,
and for Case IV there are 27× 1× 27 microstructures in the design domain.

Figure 13 plots the maximum displacement of the optimized and uniform structure
under different load magnitudes, Fp microstructure has been used in constructing the
structures used to plot this figure. The optimized structure results from Two-scale TO, and
the uniform structure is the uniform distribution of the Fp microstructure throughout the
entire design domain. The uniform and optimized structures’ volume fraction is set to
(ν f = 0.4). The results from AH are reasonably close to the FEA results, which shows that
the predicted mechanical properties for the microstructures using AH are almost identical
to the FEA outcomes.
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Figure 13. Max-Displacement/Load plot comparison between asymptotic homogenization and finite
element analysis results for both optimized and uniform structure.

The FEA results for all four studied cases are plotted in Figure 14 with F1 cellular
material for the TO microstructure. The FEA results show that the maximum displacement
belongs to Case IV structures, which have the maximum compliance based on the TO results.
On the contrary, Case III shows the smallest maximum displacement in FEA simulations
and has the smallest compliance.

(a) Case I (b) Case II (c) Case III (d) Case IV
Figure 14. FEA simulation results with F1 microstructure (F = 3 KN).

4.4. Applications

The previous sections show that adopting orthotropic cellular materials in the two-
scale TO method achieves a better performance in reducing compliance than conventional
TO methods and can handle high-resolution structure designs. To assure that orthotropic
cellular materials can also be associated with complex geometries (with various bound-
ary conditions and loading). Here, two complex geometries are selected: the Stanford
bunny and the armadillo models. As a conceptual demonstration, both examples are
subjected to minimum compliance with the boundary conditions and loading shown in
Figures 15 and 16. To avoid having any trimmed meshes in the FEA, only inside of the
geometry is discretized with an offset of three microstructures from the boundary, and the
offset region of the geometry which has not been discretized with hexahedral meshes is
shown in gray color as shown in Figures 15b and 16b.

The bunny model resolution is 38× 47× 47 at the macro-scale with 50× 50× 50 micro-
scale voxels, which means the final design will end up with more than 1 billion voxels.
The armadillo has 42× 46× 55 elements in the macro-scale and the same micro-scale size
as the bunny model, leading to more than 1.5 billion voxels in the final design. Each
structure’s voxels are void if they lay outside the model. The convergence time of the
two models is presented in Table 6, and the final optimized porous structures of the two
models are shown in Figures 15 and 16, respectively. It can be seen from Table 6 that
the proposed framework can achieve a high-resolution, lightweight, and high-stiffness
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design for complex geometries in a decent time. This reveals the potential of the proposed
framework in high-resolution and lightweight structure design problems.

Figure 15. Stanford bunny model: (a) boundary condition and loading, (b) optimization result using
isotropic (FD) cellular material.

Figure 16. Armadillo model: (a) boundary condition and loading, (b) optimization result using
orthotropic (F3) cellular materials.

To further compare the effect of the anisotropy of used material in topology opti-
mization, the rise in compliance of the structure is plotted while removing material from
the design domain for Case I. Stress distribution in Case I is plane-stress (σz ∼= 0), and F1
microstructure is selected because of its maximum Young’s modulus direction, which is in
the same plane. As shown in Figure 17, the structure’s compliance rises with reducing the
structure’s weight by removing material as is expected. Compared to the rise in compliance
when isotropic material has been used (orange line), orthotropic microstructures (blue line)
have a minor compliance increase with the same weight drop as isotropic material. These
results further explain that the orthotropic microstructures can enlarge the design space
and enhance the mechanical performance of the designing structure.

Figure 17. The change of structural compliance with the reduce of the structure’s weight using
isotropic and orthotropic cellular materials.
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Table 6. Resolution and convergence time of the proposed framework in two applications.

Bunny Armadillo

No. of Elements (Total) 1.05× 1010 1.32× 1010

No. of Elements (Micro) 503 503

No. of Elements (Macro) 83,942 106,260
Time to Converge (min) 44 64

5. Discussions

Recent developments in additive manufacturing made it possible to fabricate cellular
materials with complex geometric features, which were almost impossible to manufacture
with traditional manufacturing processes. More than ever, researchers are focused on com-
bining the design process of various types of microstructures with topology optimization.
However, no fully developed algorithm integrates the highly anisotropic microstructures
with the TO framework. The current manuscript could be the first step in creating such
a framework.

A directional tunability study is conducted to further investigate this theory that
including anisotropic (orthotropic) microstructures in the TO framework would improve
the final design performance. Although this study is limited to only 90◦ rotations and
needs major improvements in future work, it shows that including microstructures with
anisotropic mechanical behavior is advantageous. It can be concluded that if the anisotropic
cellular material is aligned in the right direction (stiffer in the direction of the largest normal
stress), it will result in a much stiffer final optimized structure.

6. Conclusions

This paper explores the influence of function-based cellular materials with isotropic
and orthotropic mechanical properties on parameter-based two-scale topology optimiza-
tion. A gradient-based algorithm is used to solve the optimization problem efficiently by
integrating the two-scale optimization problem and parameterized microstructures with a
full-density range. A validity interval and density interpolation strategy have been applied
to enhance the interface connectivity between the micro-scale elements.

Experimental results demonstrate the computational efficiency and superior structural
and mechanical properties of the orthotropic cellular materials. It is also shown that design
flexibility and achievable directionality of micro-scale elements can be increased with
orthotropic cellular materials in the TO framework.

Other design parameters (e.g., rotation angles) can also be introduced to the two-scale
TO framework for further research directions. As most of these parameterized cellular
materials are non-isotropic materials, the microstructures’ arrangement could significantly
influence the whole structure’s integrity. Optimizing the angles of the cellular material calls
for new constraints to prevent material interference and poor connection at adjacent voxels’
interfaces. Those constraints are also worth investigating in future work.
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