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1. Introduction

Additive manufacturing (AM), or commonly, 3D printing, has been witnessed in
various applications and purposes such as industrial applications in consumer products,
energy, aerospace, medical, spare parts [1–6] and research and development activities such
as prototyping, testing and material development [7–9]. What is common to all of these
is that AM is not possible without the 3D model resulting from the design phase. Since
AM allows the manufacture of complex geometries, we can improve the performance of
the products through that. However, it is challenging to specify the best geometry for
each purpose since we can optimize different things such as the mass, strength, price,
manufacturing speed or performance. In addition, different AM processes require different
approaches. This Special Issue offers a platform for researchers to study and report different
design aspects of AM by taking into account differences between AM processes. Five
original articles were published in this issue.

For the powder bed fusion of Ti6Al4V, Akram et al. [10] established a linear relationship
between percentage elongation and the combined size of α lath and powder layer thickness
using the rule of mixtures. They studied the microstructure’s effect on the magnitude
and anisotropy of the resultant mechanical properties, such as the yield strength and
elongation. A Hall–Petch relationship was established between the α lath size and the yield
strength magnitude for the as-built, heat-treated, transverse, and longitudinal built samples.
Percentage elongation was affected by both α lath size and powder layer thickness, due to
its correlation with the prior β columnar grain size.

To increase the spanwise length of the wing of unmanned aerial vehicles (UAV),
Bishay et al. [11] studied a new design for the core of span-morphing. The purpose of
morphing the wingspan is to increase lift and fuel efficiency. The main components that
make up the structure are zero Poisson’s ratio honeycomb substructure, telescoping carbon
fiber spars and a linear actuator. The design maintains the airfoil shape and cross-sectional
area during morphing because of its transverse rigidity and spanwise compliance. The wing
model was analyzed computationally, manufactured, assembled and experimentally tested.

Guo et al. [12] compared the shape, porosity and mean curvature between triply
periodic minimal surfaces and tetrahedral implicit surfaces. For replacing the conventional
Cartesian coordinates, they developed a new coordinates system based on the perpendic-
ular distances between a point and the tetrahedral faces to capture the periodicity of an
implicit tetrahedral surface. For the triply periodic minimal surface, various tetrahedral
implicit surfaces, including P-, D- and G-surfaces, were defined by combinations of trigono-
metric functions. For demonstration, they made a femur scaffold construction to demonstrate
the process of modeling porous architectures using the implicit tetrahedral surface.

Topology optimization and laser-based powder bed fusion additive manufacturing
were utilized by Orne et al. [13] to develop space flight hardware. They redesigned and
manufactured two heritage parts for a Surrey Satellite Technology LTD (SSTL) Technology
Demonstrator Space Mission and a system of five components for SpaceIL’s lunar launch
vehicle. During topology optimization, they incorporated AM manufacturing constraints
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such as the minimization of support structures, removing the unsintered powder and the
minimization of heat transfer jumps. The designs were verified by finite element analysis.
The components were fabricated, and the AM artifacts and in-process testing coupons have
undergone verification and qualification testing.

Chadha et al. [14] explored the AM-enabled combination of function approach for
the design of modular products. The approach replaced sub-assemblies within a modular
product or system with more complex consolidated parts. This can increase the reliability
of systems and products by reducing the number of interfaces and optimizing the more
complex parts during the design. The fewer parts and the ability of users to replace or
upgrade the system or product parts on-demand should reduce user risk and life cycle
costs and prevent obsolescence. A case study for redesigning the AIM-120 AMRAAM
Airframe was presented to illustrate the concept.

These studies show many different design and optimization paths for AM. Part consol-
idation, topology optimization, porous and lattice structures, modularity and optimizing
mechanical properties can be performed with AM through design and AM process param-
eters. This opens a window where possibilities are endless, but finding the best ones is
highly challenging. Moreover, the development of new AM processes and materials such
as 4D printing will produce totally new challenges for design since dynamic behavior after
the 3D printing needs to be considered. These could example include combining topology
optimization with 4D printing and functionally graded adaptive metamaterials [15,16].
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