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Abstract: During the execution of construction projects, uncertain events, such as delays, prolonga-
tions and disruptions of project activities, have the potential to cause a significant deviation between
the planned and realized state of a project. As a result, progress on important project objectives can
decrease and this leads to critical delays as well as heavy profit loss. For this reason, we propose the
implementation of the customized evolutionary algorithm to generate resilient baseline schedules
which include a sufficient number of time floats to absorb the negative impact of uncertainty. This
way, the baseline solution is searched as a trade-off between project duration, its final profit and the
overall baseline stability. The proposed algorithm is applied to real construction project data and
the results of the analysis suggest improved stability for resilient baseline schedules. Application of
the genetic algorithm to solve the existing multi-objective problem enables practical implementation
of new technologies and methods in construction management. Resilient baseline schedules can be
used in an uncertain environment to achieve more accurate predictions and support decision making
in the areas of construction scheduling and costing.

Keywords: genetic algorithm; resilience; multi-objective optimization; construction project; baseline
schedule; resource-constrained project scheduling problem; RCPSP

1. Introduction

Construction projects are performed in complex dynamic surroundings where uncer-
tainty and risk can negatively affect the achievement of time, budget, and quality goals [1].
Therefore, in the construction industry, it is extremely important to effectively manage
project objectives such as duration, cost and quality, as well as the associated uncertainty [2].
For this reason, a realization of forecasted project goals depends on calculating reliable
baseline schedules, where the goal is not only to minimize project duration or maximize
final profit but also to minimize the deviation between the planned and realized state. One
way to overcome uncertain disruptions in the baseline schedule is to act proactively and
build resilience into the scheduling process [3].

Resilience in a broad context can be determined either as the speed to recover an
equilibrium state or as the magnitude of disruption that can be absorbed within the original
equilibrium state [4]. Thus far, research in resilient project scheduling has relied more on the
second interpretation of resilience, investigating the proactive methods for building reliable
baseline schedules with the increased ability to absorb the negative impact of uncertainty
throughout the execution state.

In recent years, there have been several research studies that show the importance of
proactive resilience in construction scheduling under uncertain conditions. Most of the
studies define the project scheduling with the resilience criteria as the complex trade-off
between the stability of a schedule and satisfaction of other project objectives, such as
makespan minimization [4–7]. Accordingly, resilience is built into the baseline schedule
by inserting sufficient time floats which serve as time buffers for absorbing the negative
impact of uncertain disruptions.
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Considering the scheduling problem for construction projects, a prevailing method
in academic studies is to build upon the basic resource-constrained project scheduling
problem (RCPSP). This is a fundamental and challenging problem in project scheduling,
applicable to construction management, as well as to other industries, where the principal
concern is how to organize a considerable number of activities under limited resources
for the highest performance. The application of the underlying RCPSP method to resilient
scheduling is inherent in designing reliable baseline schedules for construction projects.
For a review of the extensive literature in resource-constrained scheduling problems, we
refer to Brucker et al. [8], Pellerin et al. [9], Hartmann and Briskorn [10], Franco-Duran and
Garza [11] and Habibi et al. [12], for example.

The first study of resilience in proactive project scheduling with resource constraints
and uncertain activity durations considers resilience as the magnitude of disruptions that
can be absorbed before the schedule departs from its equilibrium [5]. In their research,
authors [5] explore the equilibrium of a baseline schedule as the duration-related concept:
an equilibrium state represents a makespan for which the project’s duration is minimized,
yet the realized performances are stable. Therefore, the baseline solution is considered to
be more resilient when there is less makespan tardiness and the deviation of start times
is lower. In another study, the concept of resilience has been applied to a construction
project case study [4]. This time, a multi-objective scheduling framework was developed
under generalized precedence relationships and the resilience criteria. The stability of a
baseline schedule is improved through a combination of time buffers and activity floats,
and resilience is again regarded as a magnitude of disturbance absorption before the project
baseline changes its structure. Proactive resilience in construction scheduling has also been
analyzed by a recent study [7], where the equilibrium of a project is extended to measure
not only time deviation but also the difference between the planned and realized profit from
the contractor’s perspective. This way, resilient project scheduling has been enriched by
the comprehensive optimization model, which puts baseline scheduling under uncertainty
into a more practical setting for complex construction projects.

No matter which technical definition is preferred to describe the resilience of a baseline
schedule, an important question remains: how to reliably measure the negative impact of
disruptions that can be absorbed into the original solution? One approach in proactive
scheduling is to employ simulation techniques to approximate the expected performance
under uncertain conditions. This way, the deviation between planned and realized states
can be calculated [5]. However, this approach is time-consuming, especially when it comes
to integrating simulation and optimization practices. Therefore, the practical solution is
to employ a surrogate measure (SM) which could estimate the behavior of the baseline
schedule under uncertain conditions. The current literature proposes different measures
to illustrate the resilience of a project, such as slack-based functions [5], the combination
of activities’ floats and risks associated with the completion of a project [4], and weighted
resource-constrained free floats [6], among others.

Although progress has been made in investigating project resilience, the application
of a comprehensive resilience framework on complex construction projects remains limited.
This research, therefore, investigates a solution technique for the latest optimization prob-
lem [7] when it comes to resilience scheduling in construction projects. We have developed
a customized genetic algorithm (GA) to enable the solving process for the large project
networks in the context of proactive resilient scheduling. The purpose of this study is to
assess the applicability of the existing optimization tools and techniques on the problem
of resilient scheduling, where the systems’ equilibrium is appraised in relation to both
makespan tardiness and the final profit deviation. Moreover, one of the central questions
examines whether the baseline solutions with higher SM values show a better response to
uncertainty. This analysis is based on real data from the construction project, and it will be
discussed in more detail in the following chapters.
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2. Methods
2.1. Resilient Scheduling Framework

Figure 1 illustrates the application of the framework for project resilience in proactive
scheduling in the construction industry. Geambasu [13], who was first to introduce the
concept of project resilience, recognizes resilience facilitators at each management level. For
instance, the legitimacy and common vision of project objectives are recognized as resilience
enablers on the strategic level. Accordingly, the project objectives for construction schedules
are set at the highest level of the proactive resilience approach. The long-term vision is to
minimize the duration of a construction project while maximizing the final profit.
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In the next stage of resilience build-up, the multi-objective optimization problem is
adapted to incorporate stability into the proactive scheduling process. Previous studies
have proposed the explicit mathematical model which aims to improve the probability
of reaching project objectives [7]. The authors have employed the resilience surrogate
measure as an additional optimization objective in the underlying problem of simultaneous
makespan minimization and final profit maximization. The idea is to provide enough
resource-technology float time in the baseline schedule so the impact of uncertainty can be
absorbed as much as possible. This is again aligned with the fundamental project resilience
framework [13], where proactive planning is recognized as one of the main resilience
facilitators at the intermediate management level.

Finally, at the structural level of project resilience, Geambasu [13] suggests the use
of advanced technology to reduce the overall complexity. Due to the rapid development
of technology for combinatorial optimization, the size and scope of problems that can
be solved continuously increase [14]. Therefore, by using state-of-the-art optimization
technology, we were able to customize a genetic algorithm and propose a novel solution
process for the complex problem of proactive resilience scheduling. We have applied the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [15] to the construction project
scheduling problem since the considerable amount of input information requires the use of
metaheuristic techniques in order to obtain a feasible solution in computationally effective
time. Due to its versatility and usability, the NSGA-II has become one of the standard
approaches to solving various scheduling problems in the construction industry, which
has been tested in different studies [16]. Some of the recent models in the construction
scheduling which have been solved by NSGA-II focus on optimizing other important as-
pects along with the project makespan minimization, such as material procurement [17,18],
crew planning [19], project prioritization [20], location and workspace congestion [21], as
well as project financing [22]. Due to metaheuristics’ efficiency in similar construction
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scheduling problems, we decided to apply the NSGA-II algorithm from the open-source
framework pymoo [23] that allows customization of the algorithm to the user needs.

The main contribution of this paper is an application of the customized genetic algo-
rithm to the existing problem of resilient project scheduling. The concise workflow of the
NSGA-II algorithm applied to the problem of resilient scheduling for construction projects
follows the general procedure depicted in Figure 2. In a nutshell, an optimization problem
is represented as the extended RCPSP framework: the optimal baseline schedule tends to
simultaneously minimize project duration and maximize final profit, while being resilient
to uncertain disruptions. A resilient scheduling problem, for which we propose the solving
algorithm, was introduced in a recent research study [7]. However, due to the clarity and
repeatability of solving process, we’ll explain the problem in more detail in Section 2.3.
Subsequently, the multi-objective optimization problem is being solved by the proposed
genetic algorithm, which is thoroughly explained in Section 2.5.
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Figure 2. General workflow considering the application of GA on the resilient scheduling problem
for construction projects.

Once the termination condition for the customized NSGA-II algorithm is met, the
result is obtained as the Pareto front of multiple baseline schedules. Following the proposed
framework, we were able to apply the customized GA to the existing construction project
and validate the solving process. Validation on a test case is shown in Section 3.

2.2. Optimization in Resilient Scheduling

Previous research on resilient project scheduling is largely based on adopting the
optimization approach to overcome the adverse effects of uncertainty. As can be seen from
several studies [4–7], the prevailing method is to search for a proactive baseline schedule
through the optimization process, so the output solution contains enough time slacks
or time buffers that would absorb the anticipated disruptions. Thus far, different multi-
objective mathematical models have been proposed in which one or more of the objective
functions tend to improve the project resilience through the use of different surrogate
measures. Some of the recent studies on optimizing project schedules with resilience
criteria are briefly summarized in Table 1.
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Table 1. Summary of recent papers on proactive resilient scheduling in project optimization.

Reference Optimization Model Solution Procedure Surrogate Measure Cash Flow Calculation

[5] N/A Heuristic algorithm Mean-variance model No
[4] Multi-objective RCPSP NSGA-II Time buffers and activity floats No
[6] Bi-objective RCPSP N/A Resource-technology free float No

[7] Multi-objective RCPSP Hierarchical approach
with exact algorithm

Weighted sum of
resource-technology free floats Yes

Current Multi-objective RCPSP Customized NSGA-II Weighted sum of
resource-technology free floats Yes

The previous solution techniques for resilient scheduling with finance flow calculations
included were focused solely on exact procedures [7]. Due to the numerical complexity of
the underlying RCPSP problem, which is known to be NP-hard [24], the previous study [7]
was restricted to solving only problems of limited size. Therefore, the present research
facilitates resilient scheduling in real construction projects, since the application of the
customized NSGA-II algorithm enables solving the problems with a considerable amount
of input variables.

2.3. Optimization Problem

This research is a follow-up study on the previously introduced multi-objective re-
silient scheduling problem in the construction industry [7]. The proposed algorithm is
applied to the existing optimization problem, for which the full mathematical model is
provided in Appendix A. During the optimization process, the Pareto front is searched
with the goal of determining resilient baseline schedules. The proposed solving algorithm
examines the vast solution space to simultaneously satisfy following objectives:

• Minimize the duration of a project;
• Maximize the final profit (i.e., minimize the overall expenses);
• Maximize the surrogate measure for resilience.

Considering the calculation of surrogate measure for resilience, the idea is to maximize
the weighted sum of resource-technology free float FFi, for all activities i in the set of
project activities A, so the floats are distributed properly throughout the baseline schedule.
Therefore, in order to obtain SM value, we multiply the float amount FFi of each activity i
by its weight wi, as shown in Equation (1).

SM = ∑
i∈A

(wi × FFi) (1)

Calculation of the FFi value means that we determine the amount of time for which
an activity can be prolonged without postponing the start times of succeeding activities. At
the same time, non-violation of both precedence and resource constraints must be ensured.
The weights wi are obtained by summing ASi, DPi, ACi and RUi, which are expressed as
shown in Equations (2)–(6), respectively.

ASi =
Nsucc

n
(2)

DPi =
di

∑n
i=1 di

(3)

ACi =
ci

∑n
i=1 ci

(4)

RUi =
∑k

r=1 uir

∑n
i=1 ∑k

r=1 uir
(5)
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Finally,

wi =
ASi + DPi + ACi + RUi

4
(6)

Notice that:

• Equation (2) calculates the relative number of successors per activity, ASi. The number
of both direct and indirect successors Nsucc for the activity i is divided by the number
of all activities in a project n (both dummy start and dummy end are included);

• Equation (3) measures the relative duration of the activity, DPi;
• Equation (4) states the relative cost of the activity, ACi;
• Equation (5) determines relative resource usage as required by the activity, RUi.
• Equation (6) calculates the weight of the activity, wi.

As can be seen in [7], by weighting the resource-technology free float FFi, resilience in
the baseline schedule is built properly since it is more important to provide bigger FFi to
the activities which are considered as more prone to the negative impact of uncertainty (ac-
tivities with the high number of successors, longer and more expensive activities, activities
with high resource consumption).

Considering the optimization constraints, they refer to the following:

• Each activity, including the dummy start and end, can be started only once;
• Precedence relations between activities must be respected;
• At the end of each month, the cumulative cash gap (before receiving the payment from

the investor) must not exceed the permitted credit limit;
• Resource constraints must be respected at all times;
• No pre-emption of activities is allowed.

To determine the final profit from the role of the contractor, we have followed
the established finance flow calculations for the construction projects as seen in the
existing literature [25,26].

To the best of our knowledge, this is the first study to employ the NSGA-II algorithm
to the problem of resilient scheduling, if resilience of the baseline schedule is regarded as an
increased probability of reaching two project objectives: expected due date and profit. This
way, the budgeting of the baseline schedule is considered along with the scheduling phase,
providing an additional level of financial stability in the baseline schedule [7]. According
to [22], finance requirements should be regarded as a critical resource that contractors
in the construction industry must timely procure. Otherwise, due to lack of finances,
contractors may find themselves unable to execute important construction activities, which
in turn could cause negative impacts both to reaching project milestones and respecting the
financial requirements of the project.

2.4. Research Design

For this research, we used the Python programming language and pymoo open-
source framework [23] to develop the customized algorithm for solving the multi-objective
problem of resilient project scheduling. The general framework of solving process is shown
in Figure 3.

First, the solving process begins with a project manager who is required to input
project data (e.g., project start time, list of activities and their precedence relations, duration
time and direct cost for each activity, resource consumption and availability, financial
requirements for the project, etc.). Gathered data are loaded into the Python programming
code, which is based on the existing mathematical model [7]. After that, the optimization
problem is solved by the customized NSGA-II algorithm from the pymoo open-source
framework. This algorithm will be explained in more detail in the following section. Finally,
the result is obtained as a Pareto front of solutions, which is represented by several baseline
schedules with different values of makespan, profit and resilience, i.e., different objective
values. At the end, a project manager is responsible for reviewing the obtained solutions
and selecting the most suitable baseline schedule according to project requirements.
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2.5. Customized Genetic Algorithm

Genetic algorithms, which belong to the larger class of evolutionary algorithms, work
with a population of solutions, so the diverse set of Pareto solutions can be found in one
single run of the algorithm [15]. In this research, we customized the NSGA-II to solve the
problem of resilient scheduling in the construction industry.

2.5.1. Initialization for the Genetic Algorithm

The procedure of solving the multi-objective problem with a genetic algorithm starts
with generating an initial population. Visualization of the initialization process is illustrated
on a simple example in Figure 4. Considering the common metaheuristic approach in
solving RCPSP problems, which is to operate on a representation of the schedule rather than
on the schedule itself [27], the initial population is created at random, where individuals
are represented through precedence feasible activity lists. Regarding accepted practices in
project scheduling, most of the genetic operations in the proposed algorithm are performed
on the activity list for each individual in a population. However, due to the sensitivity of
the underlying problem, our approach calls for a meticulous examination of slight changes
in a baseline schedule. Therefore, every individual in a population is required to consist of
two main parts: the first is the precedence feasible activity list, while the second represents
a particular baseline schedule built from the activity list itself.

Another commonplace procedure is to use SSGS to schedule the start of each activity
for the earliest feasible moment. This procedure would make sense if we were searching
only for a minimal makespan. However, the underlying resilient scheduling problem
may guide the search for optimal solutions beyond the minimal duration of a project:
it is highly possible that a somewhat prolonged schedule will have a better resilience
measure due to the presence of enough time floats in the baseline solution. Other than
that, numerous technological constraints in construction projects bind the solution space in
which activity lists are searched for, resulting in a relatively small number of precedence
feasible combinations of activity lists.

For these reasons, in our research, we allow the prolongation of the schedule originally
built by the SSGS procedure. We propose the shifting procedure to search for a high
number of diverse individual solutions through the number of generations. In the shifting
procedure, a baseline schedule is at first randomly prolonged up to the maximal percentage
of the original SSGS schedule, and then each activity is randomly shifted within the
available time frame.
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scheme (SSGS) is selected over PSGS because the latter method searches in a smaller solution space
than the former, so the optimal schedule may not be found when considering a regular performance
measure, such as project minimization [29].

2.5.2. Evaluation

After generating the initial population of solutions, the fitness of each individual is
evaluated regarding the project’s duration, baseline profit, and value of a weighted resource-
technology free float, i.e., an SM value. The calculations are conducted based on the existing
mathematical model presented in Appendix A. To evaluate all objective functions, only
the information from the second part of the candidate solution is needed. The fitness of
an individual is evaluated based on the particular baseline schedule and accompanying
resource usage data, so the surrogate measure value can be accurately calculated.

2.5.3. Survival and Selection

The survival phase is often regarded as the core of a genetic algorithm [23]. For
multi-objective problems, sorting the individuals by their fitness functions is not as straight-
forward as in single-objective optimization problems. To overcome the slow process of
sorting the individuals in a population by comparing each solution with every other so-
lution in a population, the NSGA-II algorithm brings an effective and fast non-dominant
sorting approach paired with crowding-distance calculation [15]. This part of the algo-
rithm is applied directly from the open-source framework [23] to solve the multi-objective
resilient project scheduling problem.

Before applying the genetic operators, individuals need to be selected to participate
in the crossover procedure. Selection of the parents is accomplished through the binary
tournament procedure, which has been helpful for faster convergence. Here, random
pairs of individuals enter the competition tournament and only the winner can proceed to
further steps.
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2.5.4. Genetic Operators

After the selection phase, the current population consecutively confronts crossover
and mutation steps, where the genetic material of two-parent individuals is exchanged.
The aim of this process is to improve the fitness of two offspring that will derive from their
parents. In this research, we customized genetic operators in the following manner.

For the crossover part, we allow for a certain percentage of individuals to skip the
crossover procedure completely. In this case, all data which are carried with an individual
are simply transferred to the next stage, i.e., to the mutation process. The intention behind
this decision is that we try to enhance the preservation of the favorable genetic material
in our solutions. Often, the offspring produced from the exceptionally fit parent solutions
results in lower fitness values. On the other hand, for those individuals where the crossover
is performed, we use the simple one-point crossover operator [30] on the activity lists of two
parents, since the offspring individual encoded in this manner will preserve precedence
feasibility, which is extremely important in construction scheduling. From newly produced
activity lists, we create an initial baseline schedule by use of SSGS and again apply the
shifting procedure to search for resilient solutions, as shown in Figure 5.
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After the crossover has taken its place, a mutation operator performs on the current
population. For the same reasons as previously described, in this stage, we also perform
actual mutation only on a certain percentage of individuals. If a mutation is conducted, the
algorithm randomly selects which type of mutation will be performed. The first mutation
type is performed on the activity list part of the candidate solution: two activities will
exchange their positions if this move results in a precedence feasible activity list. The
exchange procedure continues until mutation has been achieved. The second mutation
type refers to fine-tuning of the current schedule. Therefore, the mutation is executed only
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on the second part of the candidate solution. This action causes only slight changes in the
current baseline: if there is enough resource-technology free float for an activity, its start
is randomly shifted to a new position in the given time frame. This way, we again try to
enhance the diversity of the elitist population while searching for Pareto solutions through
the number of generations. The described loop continues until the stopping criterion is met.
In this case, we opt for a certain number of generations.

3. Application of Customized Algorithm on a Test Case

The customized NSGA-II algorithm was applied to the case study to validate the
proposed framework for proactive resilient scheduling in a construction project. For this
study, real-life project data are used from a publicly available database [31,32]. We opted
for a construction project named “Claeys-Verhelst Premises” since existing data include
comprehensive information needed for a detailed resilience analysis. Due to the complexity
of the underlying case study, the customized NSGA-II ran for 100 generations, where
the population size was bound to 20 individuals. Mutation probability was set to 0.4,
while the crossover percentage was chosen as 0.7. To ensure the computational feasibil-
ity, the optimization process was terminated when the maximal number of generations
was reached.

3.1. Project Description

The selected project considers an expansion of the company premises through the
construction of a new three-floor building harboring a warehouse, office space, a small
showroom, and recreational facilities for the employees. The construction of the commercial
building has taken place in Oudenburg, Belgium. The planned duration of a construction
project was 442 days, considering standard eight-hour working days. The precedence
network of the project consists of 49 non-dummy activities. Additional project data include
information about resources, costs and durations of activities in the project, both in the
planned and realized state. Required input on contract terms and financial data was not
available from the database, so the cash flow calculation is performed based on hypothetical
information, as can be seen in Table 2. All financial costs in Table 2 (TDC, Overheads,
Mobilization, Tax, Markup, Bond and other monthly payments) are expressed in EUR.

Table 2. Financial data and contract terms for the test case.

Symbol Data Value Units

OP Overhead percentage 0.15 % of Total Direct Costs (TDC)
MP Mobilization percentage 0.05 % of (TDC + Overheads)
TP Tax percentage 0.02 % of (TDC + Overheads + Mobilization)
MP Markup percentage 0.20 % of (TDC + Overheads + Mobilization + Tax)
BP Bond percentage 0.01 % of (TDC + Overheads + Mobilization + Tax + Markup)

ADV Advance 0.10 % of (TDC + Overheads + Mobilization + Tax + Markup + Bond)
D Penalty (per day of prolongation) 0.0001 % of (TDC + Overheads + Mobilization + Tax + Markup + Bond)

RET Retainage 0.05 % of monthly payment from investor to contractor
ir Interest 0.008 % of cumulative interest charges per month
h Surplus 0.005 % of cumulative monthly cash flow after payment
k Interest on unused credit 0.002 % of unused portion of credit
W Credit limit 700 thousands of financial units (EUR)

3.2. Steps for Resilience Analysis

As the result of the optimization process, a diverse set of baseline solutions is obtained.
In this set, each baseline solution will produce a unique combination considering the
project’s duration, final profit, and surrogate measure value. It is now up to a project
manager to assess the project’s requirements and decide which baseline solution will be
chosen among others.
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In this analysis, the goal is to assess the resilience performance of different baseline
solutions under real-life settings. Here, we are comparing the deviation between the
planned and realized states of the construction project by use of real project data. When
comparing two solutions, a baseline schedule with a lower deviation between the planned
and realized state is considered to be more resilient to uncertainties. In resilience analysis,
we focus on the deviation in the two most important estimates for every project manager:
deviations considering the project’s duration and final profit.

As shown in Figure 6, the first step of the resilience analysis is to select a baseline
schedule with the highest surrogate measure value from the obtained Pareto set of solutions.
This way, we model the behavior of the project manager who is interested in obtaining the
most resilient baseline solution. Objective functions of minimized project duration and
maximized profit can be used as additional criteria if there are several baseline solutions
with equal surrogate measure values. After that, we use the real project data to calculate
deviations between baseline predictions and realized states.
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In real life, on account of uncertain disruptions, there will be inevitable changes con-
sidering activities’ durations and costs. During execution, a project manager is responsible
for timely updating of the schedule of a project by using reactive procedures, consider-
ing the data available in specific decision moments [33]. However, it is a challenging
task to reconstruct project managers’ decisions with absolute certainty, so the current re-
silience analysis relies on the use of an algorithmic approach to reliably generate realized
schedules when actual performances are known. By applying the same serial generation
scheme (SSGS) algorithm to different baseline solutions, we can objectively estimate their
resilience behavior.

3.3. Realized State Simulation

To generate the realized schedule and to calculate deviations between planned and
realized states, we applied robust serial schedule generation scheme (SGS) [34] on the
precedence feasible activity list, where actual durations and costs for all activities are
known from the project database. In this analysis, we go for the robust serial SGS procedure
over the parallel one since the general method was already embedded in the body of the
existing algorithm code and needed only small coding interventions. Presumptions on the
completeness of schedules built by robust serial SGS are the same as for their non-robust
variants, meaning that the serial procedure generates a larger class of schedules than the
parallel one [34].

An activity list is obtained as a first part of the selected Pareto solution, which always
consists of two elements: a precedence feasible activity list and a complete baseline schedule.
Therefore, we are generating a realized schedule by iterating through an activity list, but
instead of starting these activities in the earliest possible moment, we schedule them at their
feasible positions that are as close as possible to their planned starting time in a baseline
schedule [34]. Naturally, during the robust serial SGS, we employ durations and total costs
of activities from the actual project data, rather than the baseline predictions which were
used only to obtain a Pareto set of solutions in the first place.

Finally, the analysis is performed by comparing realized performances of the most
resilient Pareto solution and the behavior of the baseline solution provided in the project’s
database. However, when it comes to analyzing the realized performances, note that the
robust serial SGS approach is just one way to approximate reality. Rather than using a
solely algorithmic approach, the state actually realized relies also on decisions taken by a
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person, considering the information available in the certain decision moment. Therefore,
a realized state can differ from the overall output solution produced by robust serial
SGS. Altogether, in this research, a robust serial SGS is needed as an approach to make
an objective evaluation on the performances of different baseline schedules, when both
planned and actual realizations of activities’ durations and costs are known.

3.4. Resilience Analysis on Project Data

The results for the resilience analysis are obtained by comparing the most resilient
solution from the Pareto front with the original baseline, as provided in the project’s
database. Except for the original scenario based on real data (Scenario 1), we included three
additional hypothetical scenarios. Scenario analysis was used for a more comprehensive
examination of the behavior alternatives in the realization of a construction project. As
follows, a more detailed evaluation of the project data can show the impact of possible
alternative outcomes in the comprehensive resilience analysis. Table 3 lists the sample
data which was modified in relation to the real input data, with the purpose of modelling
different scenarios. This way, we estimate the behavior of the resilient baseline schedule in
response to uncertain impacts (prolongation of certain activities and their increase in total
cost). In each additional scenario, we chose three different uncertain activities, based on
the data for risk analysis in the case study, and we change their durations and their direct
costs. In the scenario analysis, we explored different combinations of realized states for the
activities with the broad duration distribution profiles, according to real project data.

Table 3. Scenario sample data.

Scenario 2 Scenario 3 Scenario 4

Modified activities ID 6, 25, 26 2, 28, 35 3, 18, 36

Hypothetical durations 35, 50, 22 95, 15, 25 40, 40, 40

Hypothetical costs 44.258, 420.212,170.815 75, 157.54, 102.06 210, 135.55, 56

In the first modified scenario (Scenario 2), we changed the hypothetical duration and
cost for the following activities: “demolition”, “facades” and “outside windows”. After-
wards, in Scenario 3 we altered the duration and cost for “building permit”, “polished
concrete” and “floors”. Finally, the modified activities in Scenario 4 are: “hire contractor”,
“foundation beam” and “drywall”. These activities were selected based on risk analy-
sis, which is available in the database for the project [31,32]. For all modified activities,
uncertainty levels are considered to be high and they have a wide distribution of their
duration profiles.

As can be seen from the results of the resilience analysis in Figure 7, both makespan
deviation and profit deviation are significantly lower for the most resilient baseline sched-
ule than for the original baseline schedule provided by the case study, when the robust
serial SGS procedure was followed to simulate the realized state of the project. Considering
the units in the conducted analysis, makespan deviation is shown as days of project pro-
longation from the planned duration, while the profit deviation is displayed in thousands
of financing units (in EUR). In the original scenario, the makespan deviation between
planned and realized state for the most resilient baseline solution is 5 days, while the
realized profit is smaller for 19.68 thousand financing units. To compare, the real baseline
solution performs significantly worse: makespan deviation results in 88 days of delay,
while the profit is decreased by 123.7 thousand financing units. In Scenario 2, the most
resilient baseline shows no project tardiness at all, and profit deviation is also drastically
low: only 4.45 thousand financing units. Scenario 3 produces similar results: 15 days of
project tardiness for the most resilient case and profit deviation of 29.66 thousand financing
units. The original baseline in Scenario 3 gives 98 days of time delay and EUR 133,510
profit delay. To conclude, Scenario 4 exhibits a time delay of 33 days and a profit deviation
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of EUR 62,710 for the most resilient case, compared to a time delay of 116 days and a profit
deviation of EUR 164,710 for the original solution.
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However, in this case, the price for making the baseline solution resilient to uncertain-
ties is not negligible: the most resilient makespan is 18.78% longer than the original one.
Therefore, the additional set of resilience analysis examines behavior for the entire Pareto
front, cumulatively across all scenarios. To distinguish between different baseline solutions,
two groups of baseline schedules are set up: on the one hand, there are makespans with
moderate SM values and lower baseline durations and, on the other hand, there are longer
baselines with higher SM values. When compared to the original baseline, the former group
had on average 7.15% lower duration, while the latter makespans were on average 8.82%
longer than the original one. It can be seen from data in Figure 8 that the obtained Pareto set
of solutions consists of only 15% schedules with high SM values (higher than 80 SM units),
while the remained baselines have moderate SM values (between 35 and 80 SM units).

This time, not only were makespan and profit deviation examined across all scenarios
but also the start time deviations calculated for a comprehensive resilience analysis. As
shown in Figure 8, Scenario 1 and Scenario 3 produce very similar results: average start
deviations are 74.34 and 76.11 days for schedules with high SM values, together with 90.86
and 93.1 days for schedules with moderate SM values. Scenario 2 shows the following
results: average start deviation is 41.59 days for schedules with high SM values, and
49.55 days for schedules with moderate SM values. Along with that, Scenario 4 reveals
95.14 days of average start deviation for high SM and 114.0 days for moderate SM.

From the graph above, it can be seen that baseline schedules with high SM values
have on average 37% lower makespan tardiness and roughly 46% lower profit deviation
than the baseline solution. On the other hand, baseline schedules with moderate SM
values show 28% higher makespan tardiness and circa 20% higher profit deviation than the
original solution.
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4. Discussion and Conclusions

This research analyzes resilience behavior of the baseline solution for a real construc-
tion project. First, the NSGA-II algorithm was customized and applied to the existing
multi-objective optimization problem for improving the resilience of the baseline schedule.
This enabled finding the resilient baseline schedules for a complex precedence network in a
construction project. It was hypothesized that the baseline solution with a higher SM value
should demonstrate increased stability when comparing planned and realized states. The
results of the resilience analysis indicate a positive correlation between the improvement
of SM value in the baseline solution and lower deviation of other project objectives in the
realized state. Both the project tardiness and the profit deviation decreases as the SM value
improves. Moreover, deviation in activities’ start times is also reduced for the baseline
solutions with higher SM values. This way, the stability of baseline schedules is improved
and the effectiveness of the scheduling process in construction projects is enhanced.
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These results may be explained by the fact that baseline solutions with a higher SM
value tend to have longer durations of their makespans. Accordingly, prolonged baselines
include more time floats which can absorb the negative impact of uncertain events during
the execution of a construction project. Hence, in further research, we suggest more
focus on the analysis of the cases which have diverse SM values and approximately equal
results of their other two objective functions: project duration and final profit. Further
studies on the interaction between makespan prolongation and resilience improvement are
therefore recommended.

Another important research question that could be asked considers reliable simulation
of the project execution state. In this research, we relied on the robust serial SGS to model
the realized state when durations and costs for all activities were known based on the real
data information. However, not only are other algorithmic approaches available to simulate
the behavior of the construction project (e.g., robust parallel SGS), but also different reactive
procedures are being investigated which could assist project managers when deciding
on optimal execution of activities in complex construction projects. Future studies on
both proactive and reactive scheduling are suggested for further progress and a better
understanding of construction project resilience.

Since this is the first time that the existing resilience scheduling problem [7] has
been solved for a larger construction project by the use of the metaheuristic algorithm, a
comparison of presented outputs with results obtained by different methods would require
further investigation. Therefore, we suggest future research regarding the application of
different computational intelligence paradigms, such as Particle Swarm Optimization (PSO),
Simulated Annealing (SA), Tabu Search (TS), for example. This way, the solving process for
resilient scheduling in complex construction projects could be analyzed in more depth by
comparing distinguishing features and performances of different metaheuristic methods.

This research contributes to existing knowledge considering proactive resilience in
construction scheduling by proposing the novel solving process. A customized NSGA-II
algorithm has been applied to the optimization problem, where resilience of a baseline
schedule is evaluated in relation to two project objectives. Based on the findings of the
test case analysis, it can be suggested that the application of evolutionary optimization
tools can help project managers to seek resilient baseline schedules by acknowledging the
uncertain disruptions as early as in the planning phase of a construction project.

The proposed approach has introduced a practical solution for improved construction
planning in terms of reliability of baseline scheduling and costing practices. The advantage
of the presented framework is that it does not require any additional input information, as
is the case in the standard planning procedure. Once the project information is gathered
(list of activities, their planned durations and direct cost, precedence relations, resource
constraints, financial requirements, etc.), the rest of the proposed solving process is straight-
forward. However, since the presented research was conducted mainly by using the Python
programming language, we recommend a synthesis of the proposed solving procedure
with the existing planning applications as a future research direction. This way, a more
user-friendly solution could be developed for simultaneous optimization and planning
practice in the software environment which is familiar to project managers. In conclusion,
integrated use of optimization methods and latest programming tools throughout the
scheduling and costing process can lead to better preparedness and to minimization of the
overall deviation between the planned and realized state, which in turn can have a positive
effect on reaching the project goals, such as overall duration and final profit.
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Appendix A

The Appendix A contains details supplemental to the existing optimization prob-
lem [7], for which the customized NSGA-II solving process was developed and explained
throughout of this research article. Table A1 summarizes the notation used in the optimisa-
tion model. The multi-objective optimisation model (MOO) for resilient baseline scheduling
in construction projects is expressed as follows:

Objective functions :
Min ∑

t∈T
t× xn+1,t (A1)

Max f (P) := CGl + PTl +
l

∑
eom=1

Ieom × (1 + ir)l−eom (A2)

Max ∑
i∈A

(wi × FFi) (A3)

Constraints of the problem :

∑
t∈T

xit = 1, ∀i ∈ A ∪ {0, n + 1} (A4)

∑
t∈T

t× xit ≤ ∑
t∈T

t× xjt − di, ∀(i, j) ∈ E (A5)

CGeom ≤W; ∀eom ∈ EOM (A6)
n

∑
i=1

t

∑
q=max{0,t−di+1}

uir × xiq ≤ ar, ∀t ∈ T, ∀r ∈ R (A7)

xit ∈ {0, 1}, ∀i ∈ A ∪ {0, n + 1}, ∀t ∈ T (A8)

Table A1. Parameters and sets used in the optimization problem.

Symbol Description

T Length of the planning horizon (t = 1, 2, . . . , m)
xit Binary decision variable which equals 1 if activity i starts at the time t, 0 otherwise
A Set of project activities (i = 1, 2, . . . , n), including dummy start 0 and dummy end n + 1
E Set of precedence relations
R Set of project resources (r = 1, 2, . . . , k)
wi Weight of activity i
di Expected duration for activity i
ci Deterministic cost of activity i
uir Consumption of resource r as required by activity i
ar Availability of resource r during project time T
q Start of the time period for which the resource constraint is checked

FFi Resource-technology free float for activity i

https://www.project-management.ugent.be/research/data/realdata
https://www.project-management.ugent.be/research/data/realdata
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Table A1. Cont.

Symbol Description

P Final profit at the end of a project
EOM End of the month considering project timeline (time step used when calculating Cash Flow), (eom = 1, 2, . . . , l)
CGeom Cumulative cash flow value at the end of the month eom

PTl Payment at the end of the project timeline
Ieom Total interest charges at the end of the month eom
ir Interest rate per period
W Credit limit for the project
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7. Milat, M.; Knezić, S.; Sedlar, J. Resilient Scheduling as a Response to Uncertainty in Construction Projects. Appl. Sci. 2021, 11, 6493.
[CrossRef]

8. Brucker, P.; Drexl, A.; Mo, R.; Pesch, E. Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods.
Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]

9. Pellerin, R.; Perrier, N.; Berthaut, F. A Survey of Hybrid Metaheuristics for the Resource-Constrained Project Scheduling Problem.
Eur. J. Oper. Res. 2020, 280, 395–416. [CrossRef]

10. Hartmann, S.; Briskorn, D. An Updated Survey of Variants and Extensions of the Resource-Constrained Project Scheduling
Problem. Eur. J. Oper. Res. 2022, 297, 1–14. [CrossRef]

11. Franco-Duran, D.M.; de la Garza, J.M. Review of Resource-Constrained Scheduling Algorithms. J. Constr. Eng. Manag. 2019,
145, 03119006. [CrossRef]

12. Habibi, F.; Barzinpour, F.; Sadjadi, S.J. Resource-Constrained Project Scheduling Problem: Review of Past and Recent Develop-
ments. J. Proj. Manag. 2018, 3, 55–88. [CrossRef]

13. Geambasu, G. Expect the Unexpected: An Exploratory Study on the Conditions and Factors Driving the Resilience of Infrastructure
Projects. Ph. D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2011.

14. de la Banda, M.G.; Stuckey, P.J.; Van Hentenryck, P.; Wallace, M. The Future of Optimization Technology. Constraints 2014, 19,
126–138. [CrossRef]

15. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

16. ElMenshawy, M.; Marzouk, M. Automated BIM Schedule Generation Approach for Solving Time-Cost Trade-off Problems. Eng.
Constr. Archit. Manag. 2021, 28, 3346–3367. [CrossRef]

17. Kar, S.; Kothari, C.; Jha, K.N. Developing an Optimum Material Procurement Schedule by Integrating Construction Program and
Budget Using NSGA-II. J. Constr. Eng. Manag. 2021, 147, 04021017. [CrossRef]

18. Zhang, Y.; Cui, N. Project Scheduling and Material Ordering Problem with Storage Space Constraints. Autom. Constr. 2021,
129, 103796. [CrossRef]

19. Elkabalawy, M.; Moselhi, O. Optimized Resource-Constrained Method for Project Schedule Compression. Eng. Constr. Archit.
Manag. 2021. [CrossRef]

20. El-Abbasy, M.S.; Elazouni, A.; Zayed, T. Generic Scheduling Optimization Model for Multiple Construction Projects. J. Comput.
Civ. Eng. 2017, 31, 04017003. [CrossRef]

21. Tao, S.; Wu, C.; Sheng, Z.; Wang, X. Space-Time Repetitive Project Scheduling Considering Location and Congestion. J. Comput.
Civ. Eng. 2018, 32, 04018017. [CrossRef]

22. El-Abbasy, M.S.; Elazouni, A.; Zayed, T. Finance-Based Scheduling Multi-Objective Optimization: Benchmarking of Evolutionary
Algorithms. Autom. Constr. 2020, 120, 103392. [CrossRef]

23. Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9364(2008)134:11(885)
http://doi.org/10.3390/app11020650
http://doi.org/10.1007/s10479-019-03375-z
http://doi.org/10.3934/jimo.2016.12.719
http://doi.org/10.1016/j.procs.2021.01.192
http://doi.org/10.3390/app11146493
http://doi.org/10.1016/S0377-2217(98)00204-5
http://doi.org/10.1016/j.ejor.2019.01.063
http://doi.org/10.1016/j.ejor.2021.05.004
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001698
http://doi.org/10.5267/j.jpm.2018.1.005
http://doi.org/10.1007/s10601-013-9149-z
http://doi.org/10.1109/4235.996017
http://doi.org/10.1108/ECAM-08-2020-0652
http://doi.org/10.1061/(ASCE)CO.1943-7862.0002028
http://doi.org/10.1016/j.autcon.2021.103796
http://doi.org/10.1108/ECAM-12-2020-1019
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000659
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000745
http://doi.org/10.1016/j.autcon.2020.103392
http://doi.org/10.1109/ACCESS.2020.2990567


Designs 2022, 6, 16 18 of 18

24. Blazewicz, J.; Lenstra, J.K.; Kan, A.H.G.R. Scheduling Subject to Resource Constraints: Classification and Complexity. Discret.
Appl. Math. 1983, 5, 11–24. [CrossRef]

25. Au, T.; Hendrickson, C. Profit Measures for Construction Projects. J. Constr. Eng. Manag. 1986, 112, 273–286. [CrossRef]
26. Elazouni, A.M.; Metwally, F.G. Finance-Based Scheduling: Tool to Maximize Project Profit Using Improved Genetic Algorithms.

J. Constr. Eng. Manag. 2005, 131, 400–412. [CrossRef]
27. Kolisch, R.; Hartmann, S. Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem: Classification and

Computational Analysis. In Project Scheduling; International Series in Operations Research & Management Science; Springer:
Boston, MA, USA, 1999.

28. Demeulemeester, E.; Herroelen, W. Project Scheduling; International Series in Operations Research & Management Science; Kluwer
Academic Publishers: Boston, MA, USA, 2002; Volume 14.

29. Kolisch, R. Serial and Parallel Resource-Constrained Project Scheduling Methods Revisited: Theory and Computation. Eur. J.
Oper. Res. 1996, 90, 320–333. [CrossRef]

30. Hartmann, S. A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling. Nav. Res. Logist. 1998, 45, 733–750.
[CrossRef]

31. Vanhoucke, M.; Coelho, J.; Batselier, J. An Overview of Project Data for Integrated Project Management and Control. J. Mod. Proj.
Manag. 2016, 3, 6–21.

32. Batselier, J.; Vanhoucke, M. Construction and Evaluation Framework for a Real-Life Project Database. Int. J. Proj. Manag. 2015, 33,
697–710. [CrossRef]

33. Dahmani, S.; Ben-Ammar, O.; Jebali, A. Resilient Project Scheduling Using Artificial Intelligence: A Conceptual Framework.
In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems; Dolgui, A.,
Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; IFIP Advances in Information and Communication Technology;
Springer International Publishing: Cham, Switzerland, 2021; Volume 630, pp. 311–320. ISBN 978-3-030-85873-5.

34. Van de Vonder, S.; Ballestín, F.; Demeulemeester, E.; Herroelen, W. Heuristic Procedures for Reactive Project Scheduling. Comput.
Ind. Eng. 2007, 52, 11–28. [CrossRef]

http://doi.org/10.1016/0166-218X(83)90012-4
http://doi.org/10.1061/(ASCE)0733-9364(1986)112:2(273)
http://doi.org/10.1061/(ASCE)0733-9364(2005)131:4(400)
http://doi.org/10.1016/0377-2217(95)00357-6
http://doi.org/10.1002/(SICI)1520-6750(199810)45:7&lt;733::AID-NAV5&gt;3.0.CO;2-C
http://doi.org/10.1016/j.ijproman.2014.09.004
http://doi.org/10.1016/j.cie.2006.10.002

	Introduction 
	Methods 
	Resilient Scheduling Framework 
	Optimization in Resilient Scheduling 
	Optimization Problem 
	Research Design 
	Customized Genetic Algorithm 
	Initialization for the Genetic Algorithm 
	Evaluation 
	Survival and Selection 
	Genetic Operators 


	Application of Customized Algorithm on a Test Case 
	Project Description 
	Steps for Resilience Analysis 
	Realized State Simulation 
	Resilience Analysis on Project Data 

	Discussion and Conclusions 
	Appendix A
	References

