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Abstract: The use of machine-learning techniques is becoming more and more frequent in solving all
those problems where it is difficult to rationally interpret the process of interest. Intrusion detection
in networked systems is a problem in which, although it is not fundamental to interpret the measures
that one is able to obtain from a process, it is important to obtain an answer from a classification
algorithm if the network traffic is characterized by anomalies (and hence, there is a high probability of
an intrusion) or not. Due to the increased adoption of SW-defined autonomous systems that are dis-
tributed and interconnected, the probability of a cyber attack is increased, as well as its consequence
in terms of system reliability, availability, and even safety. In this work, we present the application
of different machine-learning models to the problem of anomaly classification in the context of
local area network (LAN) traffic analysis. In particular, we present the application of a K-nearest
neighbors (KNN) and of an artificial neural network (ANN) to realize an algorithm for intrusion
detection systems (IDS). The dataset used in this work is representative of the communication traffic
in common LAN networks in military application in particular typical US Air Force LAN. This work
presents a training phase of the different models based on a multidimensional-scaling preprocessing
procedure, based on different metrics, to provide higher performance and generalization with respect
to model prediction capability. The obtained results of KNN and ANN classifiers are compared with
respect to a commonly used index of performance for classifiers evaluation.

Keywords: intrusion detection systems; machine learning; supervised learning; artificial neural
networks; K-nearest neighbors; statistical learning theory; classification problems; data mining;
features selection

1. Introduction

NIDS, network intrusion detection systems, are software or hardware tools that
analyze the traffic of one or more segments of a LAN (local area network) to detect
anomalies in the flows or probable computer intrusions [1]. The most common NIDS
are composed of one or more probes located on the network, which communicate with a
centralized server, which generally relies on a database.

Among the anomalous activities that can occur and that can be detected by NIDS,
there are unauthorized accesses, propagation of malicious software, abusive acquisitions
of privileges belonging to authorized subjects, traffic interceptions (sniffing), and denial of
service (DoS) attacks.

The logic on which NIDS rely to recognize unauthorized flows can be divided into:

- Pattern matching: the ability of NIDS to match flows to signatures, antivirus style, and
promptly notify them. Signatures typically indicate a set of conditions, for example: If
a packet is IPv4-TCP, the destination port is 31337, and the payload contains foo to
trigger the “alarm”.

- Anomaly detection: the detection of suspicious flows thanks to a sophisticated mecha-
nism of functions and mathematical algorithms based on the RFCs-IETF (request for
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comments-internet engineering task force) and their standards. If one or more traffic
flows do not meet the standards, the system signals the error with the usual alarm.

In general, the network sensors that communicate with the centralized NIDS server
carry out passive full-duplex monitoring of the network, positioned behind a network tap,
which can be brutally defined as a “tap” that regulates traffic and ensures that the probe
remains invisible on the network. For the sensors to work properly, they must undergo a
continuous updating of signatures to counter the latest vulnerabilities.

Intrusion detection techniques can be divided into (i) misuse detection, which uses pat-
terns of well-known attacks or system weaknesses to identify intrusions, and (ii) anomaly
detection, which tries to determine a possible deviation from established patterns of normal
system use.

A misuse detection system, also known as signature-based intrusion detection system,
identifies intrusions by searching for patterns in network traffic or data generated by
applications. These systems encode and compare a series of characteristic signs (signature
actions) of the various types of known intrusion scenarios. These characteristics can be, for
instance, changes of ownership of a file, certain character strings sent to a server, and so on.
The main disadvantages of such systems are that the known intrusion patterns normally
require to be entered manually into the system, but their disadvantage is mainly that they
are not able to detect any future (therefore unknown) type of intrusion if it is not present
in the system. Their great benefit is that they generate a relatively low number of false
positives and are adequately reliable and fast.

To obviate the problem of the mutations, the anomaly-based intrusion detection
systems were born, which analyze the functioning of the system in search of anomalies.
The anomaly-based intrusion detection makes use of profiles (patterns) of normal system
use derived from statistical and heuristic measurements of system characteristics (e.g.,
the CPU used and the I/O activities of a particular user or program). The anomalies are
analyzed, and the intrusion detector tries to define whether they are dangerous to the
integrity of the system. Anomaly detectors have a set of rules that define the normal state
of the system. These rules define characteristics such as network load, type of network
protocols used, active services, type of packets, and more. These rules are used to identify
anomalies that are passed to the analyzer, which determines their dangerous level.

The main problems linked to anomaly-detection units are mainly related to the se-
lection of the system characteristics to be adopted. Indeed, system characteristics can
vary enormously according to the various computing environments; furthermore, some
intrusions can only be detected by studying the relationships between different events
because the single event could correctly fit into the profiles.

Beneficial for anomaly-detection units is the adoption of technologies derived from
artificial intelligence so that they can learn from their mistakes and not report anomalies
that have already been identified as nonmalignant.

To this aim, this paper compares different machine-learning (ML) techniques in detect-
ing anomalies in a LAN communication traffic, analyzing in detail the effects of “parametric
variations” on the final accuracy. The algorithms are applied on a dataset of public domain,
representative of the problem of intrusion detection, that has been preliminary analyzed
for what concerns the representatives of the characteristics derived from the network
analyzer. A safety-critical application consisting of a distributed control system for defense
applications was selected as the application case study.

Hereafter, the paper is organized as follows: Section 2 reviews the use of ML paradigms
for intrusion detection systems (IDS) and describes the advantages in the usage of MATLAB
in the model’s development. Section 3 provides a review of the state of the art to create the
adequate context to our work.

Section 4 proposes the considered case study plus a preprocessing based on multi-
dimensional scaling analysis to compact the features to be used for the ML classification
design. Section 5 deals with the design of a ML classifier for IDS in which are described
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and compared the developed models, K-nearest neighbors (KNN) and artificial neural
network (ANN). Conclusions are discussed in Section 6.

2. Machine-Learning Approach and Development Tool
2.1. Machine-Learning (ML) Paradigms

Below is a map of the fundamental concepts related to ML methods [2,3], in order to
identify them as a useful tool for intrusion detection.

ML tasks are typically classified into three broad categories, depending on the nature
of the “signal” used for learning or the “feedback” available to the learning system. These
categories, also known as paradigms, are as follows:

- Supervised learning: in which the model is given examples in the form of possible
inputs and the respective desired outputs, and the objective is to extract a general rule
that associates the input to the correct output.

- Unsupervised learning: in which the model aims to find a structure in the inputs
provided without the inputs being labeled in any way.

- Reinforcement learning: in which the model interacts with a dynamic environment
in which it tries to achieve a goal (e.g., drive a vehicle) with a teacher telling it only
whether it has achieved the goal. Another example is learning to play a game by
playing against an opponent.

Halfway between supervised and unsupervised learning is semi-supervised learning,
in which the teacher provides an incomplete training dataset, i.e., a training dataset among
which there is data without the respective desired output. Transduction is a special case
of this principle, in which the entire set of problem instances is known during learning,
except for the part of the desired outputs that is missing.

Another categorization of machine-learning task is found when considering the de-
sired outputs of the ML system, as schematized in Figure 1.

Designs 2021, 5, x FOR PEER REVIEW 3 of 23 
 

 

Section 4 proposes the considered case study plus a preprocessing based on multidi-
mensional scaling analysis to compact the features to be used for the ML classification 
design. Section 5 deals with the design of a ML classifier for IDS in which are described 
and compared the developed models, K-nearest neighbors (KNN) and artificial neural 
network (ANN). Conclusions are discussed in Section 6. 

2. Machine-Learning Approach and Development Tool 
2.1. Machine-Learning (ML) Paradigms 

Below is a map of the fundamental concepts related to ML methods [2,3], in order to 
identify them as a useful tool for intrusion detection. 

ML tasks are typically classified into three broad categories, depending on the nature 
of the “signal” used for learning or the “feedback” available to the learning system. These 
categories, also known as paradigms, are as follows: 
- Supervised learning: in which the model is given examples in the form of possible 

inputs and the respective desired outputs, and the objective is to extract a general 
rule that associates the input to the correct output. 

- Unsupervised learning: in which the model aims to find a structure in the inputs 
provided without the inputs being labeled in any way. 

- Reinforcement learning: in which the model interacts with a dynamic environment 
in which it tries to achieve a goal (e.g., drive a vehicle) with a teacher telling it only 
whether it has achieved the goal. Another example is learning to play a game by 
playing against an opponent. 
Halfway between supervised and unsupervised learning is semi-supervised learn-

ing, in which the teacher provides an incomplete training dataset, i.e., a training dataset 
among which there is data without the respective desired output. Transduction is a special 
case of this principle, in which the entire set of problem instances is known during learn-
ing, except for the part of the desired outputs that is missing. 

Another categorization of machine-learning task is found when considering the de-
sired outputs of the ML system, as schematized in Figure 1. 

 
Figure 1. Machine-learning paradigms schematization. Figure 1. Machine-learning paradigms schematization.



Designs 2021, 5, 9 4 of 22

- Classification: the outputs are divided into two or more classes, and the learning
system must produce a model that assigns the unseen inputs to one or more of these.
This is usually done in a supervised manner. Antispam filtering is an example of
classification, where the inputs are emails and the classes are “spam” and “non-spam”.

- Regression: which is also a supervised problem, the output and model used are
continuous. An example of a regression is determining the amount of oil in a pipeline
by having measurements of the attenuation of gamma rays passing through the
pipeline. Another example is predicting the value of the exchange rate of a currency
in the future, given its values in recent times.

- Clustering: in which a set of inputs is divided into groups. Unlike in classification,
the groups are not known beforehand, making it typically an unsupervised task.

As far as the application of the ML in the context of the algorithms of intrusion
detection is concerned, reference is made to the paradigm of supervised learning and to
the problem of classification. In fact, the features that will be extracted from the analyzing
device of the network traffic can be pre-analyzed to decide if the observations made are
relative to normal traffic or in which anomalies are present. Therefore, we speak of a
“labeled” dataset, i.e., one in which the right answers for the model to learn are known
(obviously only for the learning phase).

In this paper, we will refer to supervised learning, making the implicit working
assumption that at least in the learning phase, the learning algorithm has the opportunity
to compare the prediction with the actual response.

2.2. ML for IDS

Electronic distribution of information is becoming increasingly important, and the
complexity of the data exchanged between systems is increasing at a rapid pace. Computer
networks today carry all kinds of data, voice, and video traffic. Network applications
require full availability without interruption or congestion. As the information systems in
a company grow and develop, more networking devices are deployed, resulting in large
physical ranges covered by the networked system. It is crucial that this networked system
operates as effectively as possible, because downtime is both costly and an inefficient use
of available resources. Network and/or protocol analysis is a range of techniques that
network engineers and technicians use to study the properties of networks, including
connectivity, capacity, and performance. Network analysis can be used to estimate the
capacity of an existing network, look at performance characteristics, or plan for future
applications and upgrades [4,5].

One of the best tools for performing network analysis is a network analyzer like
Wireshark. A network analyzer is a device that gives you a very good idea of what is
happening on a network by allowing you to look at the actual data that travels over it,
packet by packet. A typical network analyzer understands many protocols, which enables
it to display conversations taking place between hosts on a network. Wireshark can be
used in this capacity.

Network analyzers typically provide the following capabilities:

- Capture and decode data on a network
- Analyze network activity involving specific protocols
- Generate and display statistics about the network activity
- Perform pattern analysis of the network activity.

Network analyzers can automatically derive a set of features that characterize network
traffic [6]. This means that the network analyzer associates values to the features for each
time in which the network traffic is observed. In other words, the network analyzer can be
used to create a dataset that can be used in the training process of any machine-learning
model. Figure 2 shows the schematic representation of essential steps in usage of ML to
implement an intrusion detection algorithm.
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2.3. MATLAB for Machine/Deep Learning

MATLAB is used by engineers and scientists to develop, automate, and integrate
machine/deep-learning models into their domain-specific workflows. It helps them achieve
this by providing:

• An open framework that supports interoperability with Python and other open-source
deep-learning frameworks.

• Capabilities that extend beyond modeling to develop end-to-end applications.
• Integration and simulation of machine/deep-learning models into larger domain-

specific systems.
• Dedicated support from engineers at MathWorks, developers of MATLAB.

The development efforts of MATLAB are aimed at addressing the entire system design
workflow, represented in Figure 3, for building systems that rely on machine/deep learning.
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This workflow is being applied to develop domain-specific machine/deep-learning
applications in areas such as computer vision, signal processing, controls systems (rein-
forcement learning), image processing, automated driving, audio processing, and wire-
less systems.

For each of the domain’s mentioned above, MATLAB provides specialized tools and
functions for data preprocessing and preparation, training interfaces, evaluation tools, and
reference examples.

Having the right data is critical to the success of developing a deep-learning model but
can be a time-consuming process. MATLAB provides apps for automating domain-specific
labeling (signal labeler, image labeler, video labeler & audio labeler) and functions for
preprocessing data, which aim at saving development time.
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Users have the choice if they would like to use models developed in MATLAB,
pretrained models such as GoogleNet or ResNet-50, or those available in OpenSource
Frameworks TensorFlow, PyTorch or ONNX through framework interoperability. MAT-
LAB’s deep-learning toolbox provides interactive apps that automate network design,
training, and experiment management, allowing users to avoid steps that can be automated
or eliminated.

Deep-learning models created in MATLAB can be integrated into system-level de-
signs, developed in Simulink, for testing and verification using simulation. System-level
simulation models can be used to verify how deep-learning models work with the overall
design, and test conditions that might be difficult or expensive to test in a physical system.

These applications are being deployed to embedded and production systems through
automatic code generation. Automatic code generation generates optimized native code
for Intel and ARM CPUs, FPGAs, SoCs, and NVIDIA GPUs for deep networks along with
preprocessing and postprocessing, eliminating errors of transcription or interpretation.

3. Related Works

This section recalls the works [7–20] from which inspiration was taken for the applica-
tion of ML models and to make a comparison between the state-of-the-art results and the
results achieved by the techniques we presented in the next sections.

The review in [7] intends to provide an exhaustive survey of the currently proposed
ML-based intrusion detection systems to assist network intrusion detection system develop-
ers to gain a better intuition. The usefulness of this paper is to summarize the fundamental
concept of ML and the intrusion detection problem, but in fact it does not present an
innovative method or operational procedure of learning-model design as it is done in next
sections of our paper.

The work in [8] compares different supervised algorithms for the anomaly-based
detection technique. The algorithms have been applied on the KDD99 dataset, which is the
benchmark dataset used for anomaly-based detection technique.

In [9], a novel supervised ML system is developed to classify network traffic whether
it is malicious or benign. To find the best model considering detection success rate, a com-
bination of a supervised learning algorithm and feature selection method has been used.

In particular, the authors present the application of an SVM (support vector machine)
model compared to an artificial neural network (ANN) based on a back-propagation
algorithm, applying them to the NSL–KDD dataset to which is also applied a statistical
feature selection procedure.

In such works, the two models presented arrived at a final accuracy of 82% and 94%
in the best cases, respectively. These results are much lower than the results achieved by
the techniques proposed in this paper, especially about the result of our classifier based on
k-NN, which arrives up to 99.6%.

Regarding ANN, the result of the authors in [9] is probably due to having used only
“fully-connected” layers without exploiting the “batch normalization” stage, and a rather
limited number of neurons for each hidden layer. It is possible to make this comparison
because the NSL–KDD dataset used in [9] and our dataset (see Section 2) are organized
with the same set of features and the same number of training examples.

In [10], a very detailed investigation is reported for observing several issues on
the intrusive performance by using the ML classification. Here, an ML-classification
algorithm is used for detecting the several categories of attacks. Furthermore, this study
evaluates the performance criteria based on the feature extraction and ML-classification
techniques algorithm.

In paper [11], the authors use novel feature reduction-based ML algorithms for detect-
ing anomalous patterns in the recently provided dataset, declaring that a “high” accuracy
of 86.15% has been achieved. In this paper, a comparison is presented between more
classical statistical methods such as “naive Bayesian” and “logistic regression” models and
ML models such as “decision tree” and “random forest”, evaluating the variation of the
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results as the number of features considered in a new representation space of the starting
dataset is changed, reducing the number of features used down to 10.

In [11], there are reported rather mediocre results, especially about statistical methods
that came to have an accuracy limited to about 75%.

In [12], a new hybrid-ML algorithm is presented that combines two existing algo-
rithms to improve both the trained classification model performance and training time in
network intrusion detection. Hybrid-ML algorithm means that multiple learning models
are employed simultaneously, usually one in series with the other, so that the upstream
one “helps in understanding the dataset” of the next one.

Usually this approach is used when there are no resource problems of the platforms
used for the deployment of the algorithms both in terms of computing power and memory
space, especially during the training phase.

In [12], the authors exploit this approach to reach an accuracy of 86.1%, which in fact
is relatively low considering the type of application and compared to other works.

The authors in [13] presented the results of their experiments in evaluating the per-
formance of detecting different types of attacks, analyzing the recognition performance
by applying the random forest algorithm to the various datasets that are constructed from
the Kyoto 2006+ dataset, which is the latest network packet data collected for developing
intrusion detection systems.

This is the only work in which a result of comparable accuracy with the one we
derived is presented, hovering around 99%. The authors decided to exploit the decision
tree as a learning model, associating an Ensemble learning paradigm (random Ffrest) that
has the defect of being strongly subject to the phenomenon of overfitting and has a very
high computational cost with respect to a k-NN model, for example.

In the study reported in [15], an analysis was carried out by using ML approaches
to determine whether the data received on the internet was normal or abnormal data. In
order to achieve this goal, the KDD Cup 99 dataset, which is frequently used in literature
studies, was classified by naive Bayes (NB), bayes NET (bN), random forest (RF), multlayer
perception (MLP), and sequential minimal optimization (SMO) algorithms.

The intrusion detection system is used in analyzing huge traffic data; thus, an efficient
classification technique is necessary to overcome the issue. This problem is considered
in [16]. Well-known ML techniques, namely, SVM, random forest, and extreme learning
machine (ELM), are applied.

These techniques are well-known because of their capability in classification. The NSL-
knowledge discovery and data-mining dataset was used, which is considered a benchmark
in the evaluation of intrusion detection mechanisms. The results indicated that ELM
outperforms other approaches.

In [17] by using k-means clustering algorithm and an alternative method of support
vector machine classification algorithm, it can automatically construct the distribution of
normal packet payload and detect its deviation. Furthermore, the method proposed by the
authors showed that the proposed hybrid algorithm provides significantly more detection
accuracy than the most used open-source Snort system.

The authors of [18] presented a method which integrated a clustering algorithm with
support vector machine to improve the accuracy and recognition rate of IDS. Firstly, the
preprocessed data was processed by clustering algorithm and divided into several subsets,
and then ML algorithm was used to model each subset.

In [19], the authors analyzed the advantages and disadvantages of the existing in-
trusion detection algorithm, focused on the in-depth study of the intrusion data feature
based on deep learning, proposed a new feature selection method, conducted experi-
ments with the special dataset of intrusion detection, and verified the scientific support
and practicability of the theoretical method through full comparative experiments and
parameter analysis.
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In [20], the performances of some supervised (i.e., KNN and SVM) and unsupervised
(i.e., isolation forest and k-means) algorithms were evaluated for intrusion detection, using
dataset UNSW-NB12.

The research presented in [21] was focused on the evaluation of characteristics for
different well-established machine-leaning algorithms commonly applied to IDS scenar-
ios. To do this, a categorization for cybersecurity datasets into several groups was first
considered. Making use of this division, [21] sought to determine which neural network
model (multilayer or recurrent), activation function, and learning algorithm yielded higher
accuracy values, depending on the group of data.

The work presented in [22] provides an interactive method of visualizing network
intrusion detection data in three-dimensions. The objective was to facilitate the under-
standing of network-intrusion-detection data using a visual representation to reflect the
geometric relationship between various categories of network traffic. This interactive visual
representation can potentially provide useful insights to aid the understanding of machine
learning results.

The survey in [23] comprehensively reviews and compares the key previous deep
learning-focused cybersecurity surveys. Through an extensive review, this survey provides
a novel fine-grained taxonomy that categorizes the current state-of-the-art deep learning-
based IDSs with respect to different facets, including input data, detection, deployment,
and evaluation strategies.

In general, the problem with the works mentioned above is the absolute accuracy of
the algorithms, which is around 85% on average. This value is unacceptable in applications
where a high rate of security of systems under attack is required, such as the military
defense field, which is instead referred to in the work developed in this paper.

4. Use Case Dataset Analysis and Preprocessing
4.1. Dataset Analysis and Managing

The dataset [24] to be audited was provided, consisting of a wide variety of intrusions
simulated in a defense-network environment. It created an environment to acquire raw
TCP/IP dump data for a network by simulating a typical US Air Force LAN, as shown
in Figure 3. This case study has been selected as being representative of a safety-critical
networked application.

The features which composed the used dataset with a brief description of the meaning
of each one are reported below. In this sense, the dataset used in this work is organized
as the more commonly used KDD-99 dataset. The main difference is that our dataset it is
representative of military scenario, meanwhile the commonly used dataset are related with
classic LAN from a non-safety-critical application.

Table 1 provides the list of features of the used dataset with a short description, dividing
features in terms of “Basic”, “Content-based”, “Time-based” and “Connection-based”.
Table 1 also details if the reported feature is a “Continuous” (C) or “Discrete” (D) one.

Table 1. Features Description.

Label/Feature Name Type Description

Basic features
Duration C Length (number of seconds) of the connection

Protocol-type D Type of protocol, e.g., tcp, udp, etc.
Service D Network service at the destination, e.g., http, telnet, etc.

Flag D Normal or error status of the connection
Src-bytes C Number of data bytes from source to destination
Dst-bytes C Number of data bytes from destination to source

Land D 1 if connection is from/to the same host/port; 0 otherwise
Wrong fragment C Number of “wrong” fragments

Urgen C Number of urgent packets



Designs 2021, 5, 9 9 of 22

Table 1. Cont.

Label/Feature Name Type Description

Content-based features

Hot C Number of “hot” indicators (hot: number of directory
accesses, create and execute program)

Num-failed-logins C Number of failed login attempts
Logged-in D 1 if successfully logged-in; 0 otherwise

Num-compromised C
Number of “compromised” conditions (compromised
condition: number of file/paths not found errors and
jumping commands)

Root-shell D 1 if root-shell is obtained; 0 otherwise
Su-attempted D 1 if “su root” command attempted; 0 otherwise

Num-root C Number of “root” accesses
Num-file-creations C Number of file creation operations

Num-shells C Number of shell prompts
Num-access-files C Number of operations on access control files

Num-outbound-cmds C Number of outbound commands in an ftp session
Is-host-login D 1 if login belongs to the “hot” list; 0 otherwise

Is-guest-login D 1 if the login is a “guest” login; 0 otherwise
Time-based features

Count C Number of connections to the same host as the current
connection in the past 2 s

Srv-count C
Number of connections to the same service as the
current connection in the past 2 s
(same-host connections)

Serror-rate C % of connections that have “SYN” errors
(same-host connections)

Srv-serror-rate C % of connections that have “SYN” errors
(same-service connections)

Rerror-rate C % of connections that have “REJ” errors
(same-host connections)

Srv-rerror-rate C % of connections that have “REJ” errors
(same-service connections)

Same-srv-rate C % of connections to the same service
(same-host connections)

Diff-srv-rate C % of connections to different services
(same-host connections)

Srv-diff-host-rate C % of connections to different hosts
(same-service connections)

Connection-based features
Dst-host-count C Count of destination hosts

Dst-host-srv-count C Srv_count for destination host
Dst-host-same-srv-rate C Same_srv_rate for destination host
Dst-host-diff-srv-rate C Diff_srv_rate for destination host

Dst-host-same-src-port-rate C Same_src_port_rate for destination host
Dst-host-srv-diff-host-rate C Diff_host_rate for destination host

Dst-host-serror-rate C Serror_rate for destination host
Dst-host-srv-serror-rate C Srv_serror_rate for destination host

Dst-host-rerror-rate C Rerror_rate for destination host
Dst-host-srv-rerror-rate C Srv_rerror_rate for destination host

The LAN topology is Figure 4 in [24] was representative of a real distributed control
system for defense applications and was blasted with multiple attacks. A connection is
a sequence of TCP packets between a source IP address and a target IP address under
some well-defined protocol. The sequence of TCP packets is starting and ending at some
specific time deadlines, between which the data flows. Also, each connection is labeled
as either normal or as an attack with exactly one specific attack type. Each connection
record in [24] consists of about 100 bytes. For each TCP/IP connection, 41 quantitative
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and qualitative features are obtained from normal and attack data (3 qualitative and
38 quantitative features). The class variable has two categories: Normal and Anomalous.
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To be able to use the dataset, it is also necessary to convert the features that assume
categorical values into alternative features that assume numerical values. A possible choice,
which besides being the most used is also the one adopted in this work, is that of “dummy”
variables [25]. The concept of dummy variables is schematized in the Figure 4.

Each column of d in Figure 5 represents one of the categories in c. Each row corre-
sponds to an observation and has one element with value 1 and all other elements equal to 0.
The 1 appears in the column corresponding to that observation’s assigned category.
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Upon visual inspection, some columns of the dataset consist of many zeroes, and some
features take on significantly larger values than others. To avoid these distortion effects
from affecting the classification process using one of the chosen learning models, another
preliminary operation is to apply normalization to the columns of the dataset. Some
features have a “very small” variability, which returns downstream of normalization many
NaNs (not-a-number). This happens in when the Zi =

Xi−µ
σ/√n

transformation is applied.
Therefore, for columns in the dataset with small variance, the calculator interprets division
by a very small number as a NaN. It can be assumed that the columns of the dataset that
have many NaNs have little information content and can therefore be eliminated.

4.2. Multidimensional-Scaling Analysis

Multidimensional scaling (MDS) is a set of techniques for projecting points from a
multidimensional space into a space of lower dimension [26]. The aim is to try to reproduce
as much as possible the distances between the original points but in a space of reduced
dimension. The input for MDS is “proximity data”, i.e., the observed similarities or
dissimilarities between all pairs of observations.

The proximity matrix is usually visualized as a lower triangular matrix of non-negative
values, with the implicit idea that the values on the diagonal are all zero and that the upper
triangular part of the matrix is a mirror image of the lower triangular part (i.e., the matrix
is symmetrical).

The general MDS problem can be specified, in its essence, as follows: given a matrix
of proximity between objects (i.e., observations or variables), one wants to reconstruct
the original map as precisely as possible. Another aspect of the problem is that the
number of dimensions in which the given entities are to be projected is not known a priori.
Consequently, determining the number of dimensions is another problem to be solved. The
operating procedure for deriving the matrix representing the data in the reduced space of
the new features is given below [27].

The feature matrix X ∈ RNo x N f , where No is the number of accumulated observations
and N f is the number of features extracted from each observation, can be written as follows,
where xij represents the value that the jth feature takes on at the ith observation.

X =


x11 x12 · · · x1,N f

x21 x22 · · · x2,N f

· · · · · · · · · · · ·
xNo ,1 xNo ,2 · · · xNo,N f

 (1)

The “similarity” matrix D ∈ RN f x N f is constructed, defined through the choice of
metric (which then defines the measure of similarity between observations in the dataset,
i.e., between the rows of X). Usually the Euclidean distance dij or the cosine of similarity
θij are chosen. Equation (2) shows the formal definition of the two metrics dij and θij.

dij = ||
⇀
v i −

⇀
v j|| =

√
∑No

k=1

(
xki − xkj

)2
and θij =

〈
⇀
v i,

⇀
v j

〉
||⇀v i|| ||

⇀
v j ||

(2)

where
⇀
v h =

[
x1h, x2h, . . . , xN f h

]T
. Then the general element of the similarity matrix can

be written as [D]ij = Dij = d2
ij or θ2

ij. Let define the “double centering” matrix C ∈ RN f x N f

as in Equation (3):

C = IN f −
1

N f

⇀
1
⇀
1

T
=


(

N f − 1
)

/N f · · · −1/N f
...

. . .
...

−1/N f · · ·
(

N f − 1
)

/N f

 (3)
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with
⇀
1 = [1, . . . , 1] ∈ RN f and apply a congruence transformation to the matrix D, defining

the new “barycenter” matrix B = − 1
2 CT DC. The eigenvalues are calculated, selecting

those with the highest value λ1, . . . , λNs , with Ns the new number of features, and the
eigenvectors of B relative to the selected eigenvalues

⇀
u 1, . . . ,

⇀
u Ns are calculated.

U =
[
⇀
u 1 . . .

⇀
u Ns

]
∈ RN f x Ns is defined as the base change matrix.

The matrix that represents the data in the new features space can be calculated as
Xnew = XU

√
Λs ∈ RNo x Ns , where Λs = diag(λ1, . . . , λNs) ∈ RNs x Ns .

The results obtained with both the choice of Euclidean distance, equivalent to Principal
Component Analysis (PCA), and cosine of similarity were compared.

With dij the dataset is reduced to seven new features with which about 85% of the
initial information content described, while with θij it is reduced to five features in the
new feature space with more than 93% of the information content described, as shown in
Figure 6.
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It should be noted that the articles in the Related Works section adopt methods
that are computationally heavy, as they require recursive procedures such as wrapper
filtering. Instead, this work applies a direct method of construction of the base change
in the new feature space, choosing as metric of comparison between the columns of the
dataset the cosine of similarity, which, as mentioned above, gives results much better than
the Euclidean distance and the PCA.

4.3. Performance Analysis

In this work we present the development of classification models for a binary classifi-
cation problem with an application to intrusion detection systems. In binary classification
problem, if P (positive) and N (negative) are the possible labels/classes for each observation,
a classification model can produce only four results, see Figure 7:

• TP (true positive): if the model predicts P, and it is also the correct answer.
• FP (false positive): if the model predicts P, but the correct answer is N.
• TN (true negative): if the model predicts N, and it is also the correct answer.
• FN (false negative): if the model predicts N, but the correct answer is P.
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In this way, it is possible to define a useful representation called contingency or
confusion matrix, that is basically a table in which the results of classification model
predictions are collected.

From this representation of the prediction result by the classification model, it is
possible to define some useful index to evaluate the model itself in terms of quality in
classifying ability. In particular, the most used index in practice are the following described:

• Sensitivity or true-positive rate (TPR) it is defined as TPR = TP
P = TP

TP+FN = 1− FNR
which represents the number of predicted P with respect to the total P in the dataset.

• Specificity or true-negative rate (TNR) it is defined as TNR = TN
N = TN

TN+FP = 1− FPR
which represents the number of predicted N with respect to the total N in the dataset.

• Precision or positive-predictive value (PPV) is defined as PPV = TP
TP+FP = 1− FDR

which is the number of correct prediction about P with respect to the total number of
predicted P.

• Accuracy (ACC) that is defined as ACC = TP+TN
P+N and represents the total number

of correct answer by the model with respect to the total number of observation in
the dataset.

Intuitively, the usage of only accuracy as an estimation of the performance is not
correct from a conceptual point of view. Since the accuracy merges the result in the ability
of the model to correctly predict both P and N, it is not possible to evaluate if the model is
better at correctly predicting P or N.

Basically, a high value of accuracy can derive by very good ability of the model
to correctly predict only one of the possible classes. From this simple consideration
when a model performance is evaluated, the other indexes of quality are also required.
Furthermore, those considerations are very useful for comparing different models of
classifier, since different models can be able to predict very different classes but with
similar accuracy.

It depends on the final application, but this can be useful if one of the classes is more
“relevant” to correctly predict with respect to the other one. For example, in intrusion
detection systems, it is intuitive that it is more important to correctly predict the observation
related with the “anomaly” label compared to the “normal” one.

In the final analysis of each proposed model, we report a table to compare the classi-
fication result with respect to the above-described coefficients. In every section in which
a different model is presented, the results are summarized in terms of confusion matrix,
and in the case of the ANN classifier, the training loss and accuracy functions behavior are
also shown.
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5. Design of Machine-Learning-Based Classifiers
5.1. K-Nearest Neighbors Classifier

The k-nearest neighbors (k-NN) is an algorithm used in pattern recognition for classi-
fying objects based on the characteristics of objects close to the one under consideration [3].
In k-NN classification, the output is a class membership. An object is classified by a plu-
rality vote of its neighbors, with the object assigned to the most common class among its
k-nearest neighbors (k is a positive integer, typically small). If k = 1, the object is simply
assigned to the class of that single nearest neighbor. The k-value in the k-NN algorithm
determines the number of training data points that are to be considered while determining
the class of the test data points. The essential steps to implement a k-NN classifier are
as follows:

• Starting from the training dataset matrix X ∈ RNo x N f , with which a categorical vector
C ∈ RNo of the classes to which each accumulated observation belongs is associated.

• Each observation can be represented by a vector
⇀
P i =

[
xi1, . . . , xiN f

]T
whose compo-

nents are relative to the values assumed by the features. In essence, each row of X is a
“sample vector” to which a class Ci is associated.

• Once a metric has been chosen, typically the Euclidean norm, the distances di = ||
⇀
P∗ −

⇀
P i ||

between the new observation and those in the dataset are calculated.
• The vector of pairs (ith distance from

⇀
P∗, ith class) is then constructed,

⇀
V = [(d1, C1), (d2, C2), · · · , (dNo , CNo )]. By sorting

⇀
V according to the distances di

in an increasing way and fixing the value of the parameter k, the first k classes are
selected, and a majority policy is applied to decide which class the new observation
belongs to.

Noticeably in the k-NN technique, the truly learning phase is not present, because the
training set is composed by the accumulated observations, which are compared every time
with the new ones.

In the case below, the best result was obtained for k = 1, see Figure 8, comparing in
terms of total accuracy the cases for k = 1,2,3,4,5,10,20,40,100, and 200 following the classic
heuristic choice, for which k must be a relatively small number compared to the size of
the dataset. As expected, for a value of k that is “too large”, k the performance of the
algorithm degrades. This phenomenon in the presented case occurs for k > 5. By contrast,
for increasing k in the range k ∈ [1, 2, 3, 4, 5], where we would expect that the increase
of k increases the performance, in reality for k = 1,2,3,4, and 5, we obtain substantially
equivalent performance (k is reported as the best in any case). This phenomenon can
be assigned to the intrinsic structure of the dataset, in which probably, even if perfectly
balanced between the two possible categories (normal or anomaly), the structure of the
observations is highly repetitive.

Furthermore, it has been verified that the choice of metric is practically irrelevant to
the total accuracy, having compared test results of K-NN models with both distance and
cosine similarity metrics. This can be attributed to the fact that in the feature space, points
that belong to a class in addition to being condensed on domains at different distances from
the origin, also have a substantially different average orientation of the pointing vectors.
This peculiarity is obviously not modified in the initial manipulation of the dataset through
the algebraic transformations in the space of reduced dimension features.
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5.2. Artificial Neural Network Classifier

We can consider an artificial neural network (ANN) as a “black box” algorithm, with
inputs, intermediate layers in which happens the real “learning” phase, and outputs that
consists of the result. The neural network is composed of “units” called neurons, arranged
in successive layers. Each neuron is typically connected to all neurons in the next layer via
weighted connections. A connection is nothing more than a numerical value (the “weight”),
which is multiplied by the value of the connected neuron.

Each neuron, as schematically represented in Figure 9, sums the weighted values of
all the neurons connected to it and adds a bias value. An “activation function” is applied
to this result, which does nothing more than mathematically transform the value before
passing it to the next layer.
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In this way, the input values are propagated through the network to the output
neurons, which is practically all that a neural network does. The goal of the training phase
is to adjust weights and bias to get the desired result. For this purpose, there are different
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techniques. Neural network learning is based on the algorithm of updating the weights of
neurons. The update algorithms are basically based on gradient descent. Once an objective
function is set, during the learning phase the neuron weights will re-arrange to minimize
that function.

Many network architectures have been elaborated. In this work, for IDS, we refer to the
architecture represented in Figure 10, which identifies a feed-forward neural network [28].
In the neural network of Figure 10, the fully connected layers admit only connections with
the neurons of the previous and following layers and not between neurons of the same
layer. The training options used in this work are the SGDM (stochastic gradient descent
with momentum) algorithm, initial learning rate of 0.0001, and loss function MSE (mean
squared error).
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The essential formulation of the SGDM (stochastic gradient descent with momen-
tum) algorithm is given in Equation (4), where α is the learning rate and β is the convex
combination coefficient such that β ∈ (0, 1).

wk+1 = wk − αvt
vt = βvt−1 + (1− β)∇wLoss

(4)

SGDM is a method which helps accelerating gradient vectors in the right directions,
thus leading to a faster convergence. SGDM is one of the most popular optimization
algorithms and many state-of-the-art ANN models are trained using it. Momentum is a
physical property that enables a particular object with mass to continue in its trajectory
even when an external opposing force is applied, which means overshoot. For example,
one speeds up a car and then suddenly hits the brakes, the car will skid and stop after a
short distance, overshooting the mark on the ground. The same concept applies to neural
networks, during training, the update direction tends to resist change when momentum is
added to the update scheme.

When the neural net approaches a shallow local minimum it is like applying brakes but
not enough to instantly affect the update direction and magnitude. Hence the neural nets
trained this way will overshoot past smaller local minima points and only stop in a deeper
global minimum. Thus, momentum in neural nets helps them get out of local minima
points so that a more important global minimum can be found. Too much momentum may
create issues as well as systems that are not stable, which may create oscillations that grow
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in magnitude. In such cases, one needs to add decay terms and so on. It is just physics
applied to neural net training or numerical optimizations.

Four different models based on the structure presented in Figure 11 were compared,
differing in the number of neurons in each of the fully connected layers and in the number
of times the common structure is repeated. Note that in the case of the neural network used,
as shown in the figures above, all 41 features are passed as input. This defines a middle
ground between classical machine learning and deep learning, where the network is also
used to fulfil the task of feature extraction from the raw data [29]. In the considered case
used in Section 4.1, the network analyzer provides structured measures, already organized
in features, that are useful to fully exploit the potentialities of learning models based on
artificial neural networks. Therefore, the models tested in this work use all the 41 features
of the considered case study in Section 4.1, without exploiting the process of feature space
reduction described in Section 4.2 that instead was useful to reduce the computational cost
associated to the K-NN classifier design in Section 5.1.
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Figure 11. Different artificial neural networks compared.

Figures 12 and 13 show the trends (average mean value) of the loss function and of
the accuracy, during the phase of training, for each of the four nets (NN0, NN1, NN2, and
NN3 in Figure 11) tested. Figures 14 and 15 show training loss and accuracy functions.
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The best result is obtained by NN3 , whose confusion matrix is shown in Figure 16. The
results are comparable with those obtained with the k-NN classifier designed in Section 5.1.

For what concerns the best ANN trained, the training-validation behavior of loss and
accuracy functions are also proposed in Figures 14 and 15 to better understand that the
obtained result does not suffer from overfitting with the training choices discussed before.
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5.3. Models Comparison

In the following we summarize in table form, see Table 2, the obtained results, com-
paring the k-NN and ANN with respect to the classic statistical index previously described.

Table 2. Summary of the obtained results.

Model TPR TNR PPV ACC

KNN 0.9959 0.9956 0.9949 0.9957
ANN 0.9926 0.9920 0.9910 0.9923

The models are basically equivalent in terms of absolute ability to correctly classify
the observation from the test set, with each index of interest over a value of 99%. In this
particular case used, the KNN classifier sims a little bit better than the trained ANN. This
can be due both to the specific dataset organization and to the size of the used ANN,
which in any case, in respect to the more commonly used, it is a “small” feedforward
neural network.

In machine-learning theory, there are more models to use to face classification prob-
lems. In this work we choose the K-NN models because of its specific advantage in
simplicity and interpretability, which can be summarized as follows:

• it does not learn anything in the training period. It does not derive any discriminative
function from the training data. In other words, there is no training period for it. It
stores the training dataset and learns from it only at the time of making real-time
predictions. This makes the KNN algorithm much faster than other algorithms that
require training, e.g., SVM, linear regression etc.

• since the KNN algorithm requires no training before making predictions, new data
can be added seamlessly which will not impact the accuracy of the algorithm.

• KNN is very easy to implement. There are only two parameters required to implement
KNN, i.e., the value of k and the distance function (e.g., Euclidean or Manhattan, etc.)

Clearly, there are also some disadvantages, related to the number of features in the
data representation. In large datasets, the cost of calculating the distance between the new
point and each existing point is huge, which degrades the performance of the algorithm.
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In our work, in fact, a features reduction/selection procedure is presented to avoid any
problems related with data dimensionality.

The other model we propose to fit the data and predict anomaly in network traffic is
a feedforward artificial neural network, with specific structure described in the previous
section. The usage of an ANN instead of more complex architecture such as CNN (convolu-
tional neural network) or RNN (recursive neural network) is related to the application itself,
since the collected observation can be organized in tabular dataset and each observation
comes from the analysis of a network sniffer, which in general directly provides a set of
statistical features from the communication traffic. In machine/deep-learning practice it is
suggested to use ANN with a tabular dataset, CNN with an images dataset, and RNN with
a sequence dataset. This means that for intrusion detection systems, it is not required, and
probably not appropriate, to apply more complex architecture such as RNN or CNN. ANNs
also have a higher-fault robustness ability with respect to other architecture, providing the
capability to work with also incomplete data. Furthermore, due to the higher complexity,
CNN and RNN suffer from the problem of gradient vanishing/exploding, and the obtained
results are less interpretable compared to ANN ones.

6. Conclusions

Two machine-learning methods for anomaly classification in intrusion detection sys-
tems have been presented and compared on the same dataset representing the data traffic
of a LAN for defense applications.

A feature reduction method based on multidimensional scaling has been also ex-
ploited, highlighting that the choice of cosine of similarity as a metric for comparing the
observations that form the training set gives better results than PCA, where the metric is
the Euclidean distance in the feature space.

The classification results have been presented in terms of confusion matrices that
highlight that the two methods, in absolute terms of final accuracy, which are practically
equivalent. However, in the specific case of the dataset under consideration, K-NN proved
to be slightly better, both in the classification of the anomaly class and in the normal class.

The results presented are related to the use of K-NN after the procedure of reduction of
the space of the features, in order to be sure to avoid overfitting phenomena and that then
the results obtained in the testing phase are generalizable to other future observations ob-
tained with a network analyzer, provided obviously that the features that are extrapolated
in an automatic way are the initial 41.

For use of the ANN instead, a mixed approach between the classic machine learning
and the deep learning was followed. However, the network is left to learn which of
the 41 initial features are representative of all the information contained in the dataset.
Since the data extracted by the network analyzer is already organized in the form of both
quantitative and qualitative features, it is probably not formally legitimate to speak of real
deep learning.

It should also be noted that the results of the application of the methods presented
here have been obtained on a dataset which is representative of a realistic scenario of
concrete interest in terms of application, such as a defense application (US Air Force LAN).
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