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Abstract: Researchers have proposed different methods for testing digital systems and circuits in the
last couple of decades. The need for testing digital logic circuits has become more important than
ever due to the growing complexity of such systems. During the design phase, testing is focusing on
design defects, as well as manufacturing and wear out type of defects. Failures in digital systems
could be caused, for example, by design errors, the use of inherently probabilistic devices, and
manufacturing variability. As a way to test digital systems in a more efficient way, automated test
generation has been proposed to automatically create tests that can quickly and accurately identify
faulty components. Examples of such techniques are the sequential test generation, the scan path
testing, and the random test generation techniques. With the research domain becoming more
mature and growing, it is essential to systematically identify, analyze, and classify these contributions.
We performed a systematic mapping study of automated test generation for digital circuits aimed
at providing an overview of the application of these techniques. We focused on three of the most
widely-used and well-supported hardware description languages (HDLs) for digital systems: Verilog,
SystemVerilog, and VHDL. Our results suggest that the majority of the test generation methods for
digital circuits are focused on the behavioral and register-transfer design levels. Fault-independent
and fault-oriented test generation are the most frequently reported types of test generation methods,
while HDL model simulation is the most common test generation technology used to search for
test cases in these academic studies. While the results are suggesting a growing interest in this
area, the majority of articles are published as conferences papers. Our results show that only 31%
of the methods are implemented as software tools and only 63% of all contributions are actually
generating executable test cases. This study makes three important contributions, (i) a state-of-the-art
of test generation for digital system designs research is provided, (ii) the reported characteristics are
identified in both the primary papers and experimental reports, (iii) gaps and opportunities for future
test generation for digital system designs research are identified.
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1. Introduction

Digital systems are electronic system that are used in every industrial domain from railway,
automotive, process, and automation to communication technologies. Hardware description languages
(HDL) are used to describe the structure and behavior of digital systems for complex embedded
systems, such as application-specific integrated circuits, microprocessors, and programmable logic
devices. Testing of these digital circuits is used to check if the whole system or a sub-component
deviates from its design specification [1]. Testing of circuits designed using HDLs has been an active
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research area for the last couple of decades. A fault is said to have occurred in a digital system if
the behavior of the circuit deviates from its nominal behavior [2]. A digital system with a fault will
therefore not exhibit similar functionality as a circuit without a fault. Fault models [1,3] are used at
different levels of design abstractions for modeling the logical correspondence to a physical defect
(e.g., behavioral, functional, structural fault models). For example, at the behavioral design level, an if
construct can fail when one set of statements is always executed and this logical behavior relates to an
actual defect in the actual hardware. Certain test inputs can be generated to distinguish these logical
differences between the correct and the faulty circuit.

The advancements of VLSI (Very Large-Scale Integrated Circuit) [4] technology has enabled the
manufacturing of complex digital logic circuits on a single chip. This poses many challenges in terms of
both functional and non-functional aspects that need to be considered when testing such systems using
HDLs. Producing a digital system begins with the specification of its design using an HDL and ends
with manufacturing and shipping the overall system. This process involves simulation, synthesis,
testing, and maintenance of such a digital system. Many of the approaches proposed in academia for
test generation have been adopted in different Electronic Design Automation (EDA) tools [5] during
the last couple of decades. In this paper, we undertake a systematic mapping study to present a
broad review of the academic studies on test generation for Verilog, VHDL, and SystemVerilog, three
standard HDLs that are widely supported. The goal of this study is to identify, gather the available
evidence, and to identify possible gaps in test generation of digital systems designed using HDLs,
including but not limited to the following aspects: test generation of HDL-based designs, testing of
performance and timing issues, and testability. We conclude that test generation for digital systems
needs broader studies, and the results of this mapping study can directly help in this effort.

2. Background

In this section, we introduce digital circuit testing and hardware description languages.

2.1. Digital Circuits

Digital circuits can be designed using interconnected logical elements. A few examples of logical
elements are AND/OR gates, registers, inverters, flip flops, and others [6]. A digital circuit must be
able to process finite-valued discrete signals. A well-known digital circuit is a microprocessor used
in digital computers. Digital systems are part of a wider category of discrete systems. Stefan [7]
defined digital systems in a taxonomy of orders based on feedback loops, as follows:, zero-order
systems containing the combinational circuits, 1-order systems containing the memory circuits, 2-order
systems containing the automata, 3-order systems containing the processors, and n-order systems
containing self-organizing circuit behavior. In Figure 1, we show an example of a selection circuit,
an elementary multiplexer for two inputs in different forms from the logical schematic to the structural
description in a hardware description language. There are many other circuits that can be composed for
programmable circuits. For example, latches are memory elements that are triggered by a level sensitive
enable signal. Designing a digital system means the use of such representations and specifications to
engineer a complex system that takes into account the internal state and the evolution of outputs in
the whole system.
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module MUX(output out, input  sel, in1, in0);

wire inv;

        not (inv, sel);

        and (out1, sel, in1),

        (out0, inv, in0);

        or (out, out1, out0);

endmodule

Figure 1. An example of a selection circuit showing the logic schematic for the elementary selector (a),
the logic component for MUX (b), and the structural description in Verilog (c).

HDLs [8] are languages used to describe the hardware function of a digital system. HDLs can be
used to implement and describe the function of a hardware at varying level of abstractions (as shown
in Figure 1). HDLs are widely used languages to manage complex digital systems and can be used
to design and simulate a circuit before implementation. Simulation aids in discovering design errors.
VHDL, Verilog, and SystemVerilog are three examples of hardware description languages and are
considered in this mapping study due to their industrial applicability and popularity [9]. The sample
code given in Figure 1 describes the structural description that specifies all the details at the level of
elementary gates.

2.2. Testing of Digital Systems

Developing a digital circuit starts with a design specification in a high-level design language (e.g.,
Verilog) and ends with manufacturing the system. Different testing processes are involved in each
development stage. Testing and debugging of the design using the HDL model as input in a simulator
can assure the designer that the description of the design meets the specification. The primary goal of
this step is related to design functionality, and detailed timing and physical faults are not addressed.
After obtaining a simulated and tested layout, manufacturing testing is done on the physical circuit
against manufacturing defects (e.g., transistor defects, broken wires). In this paper, we focus on testing
digital systems represented in an HDL (i.e., HDL-based Testing).

To verify a digital system design, a test module needs to be designed to generate stimuli for the
input of the System Under Test (SUT), execute the test cases, and monitor the inputs and the outputs
of the circuit. Wang [6] defines testing of digital circuits as the process of detecting faults in a system
and locating such faults to facilitate their repair. A set of test stimuli called test vectors or patterns are
applied to the inputs of the SUT. The outputs are analyzed by collecting the responses and comparing
it to the expected responses. If the actual behavior deviates from the expected behavior, then a fault
has been detected. In Figure 2, we show the general principles behind test generation for digital
systems. Testing of digital circuits can be classified based on the type of device being tested, the testing
equipment used, and the purpose of testing. Different testing tasks can be performed using the HDL
testing constructs and capabilities. An example of a test generation method is the random generation
of test vectors [10], applying them to the SUT, and selecting these based on their effectiveness in
detecting faults. In some cases, a specialized test device can be used to apply test vectors on the actual
test interface [1]. Virtual test platforms are usually implemented as HDL testbenches that are capable
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of manipulating the SUT in terms of observability. A main characteristic of these test generation
approaches is the HDL model coverage criteria used to guide the search for test cases. Most coverage
metrics for HDLs are based on syntactic properties of a functional design. For example, branch and
path coverage are used for finding test sequences covering all branches and paths in a HDL design.
HDL coverage criteria is also a measure of register-transfer level adequacy that can also be applied at
gate-level for measuring test adequacy at the implementation level.

Test Vectors System Under Test
(SUT)

Input/Output
Comparison

Expected Outputs

Test 
Measurements

Coverage

Fault
Detection

Figure 2. An overview of the test generation process for a SUT.

Many different test generation approaches for HDLs have been proposed at different levels of
design abstractions: system, behavioral, register transfer, logical and physical levels. In this study,
we aim to map this area in terms of the methods used to generate test cases for certain HDLs.

3. Mapping Studies

Different methods have been proposed for verification and validation of circuits designed in
VHDL or Verilog HDLs. To the best of our knowledge, this is the first mapping study on the topic of
test generation for digital systems. A mapping study allows researchers to collect data for providing
an overview of the test generation research area to assess the quantity of evidence existing on this
topic [11]. This research method has been used in the software engineering and testing community to
identify the evidence available and to identify gaps in the application of test generation. For example,
Divya et al. [12] conducted a mapping study on built-in self testing in component-based software.

4. Conducting the Mapping Study

A mapping study is conducted to organize and classify the literature in a specific domain [13].
In our case, the mapping study is performed with the goal of organizing and classifying the literature in
the domain of test generation for digital circuit designs. We have adapted the mapping study method
proposed by Petersen et al. [14]. We have used a five-step method depicted in Figure 3. Each step
has a certain outcome associated with it and these are represented in Figure 3. Each of the steps are
described in the following subsections. These five steps are covering the definition of research question
(shown as (1) in Figure 3), conducting a search for articles ((2) in Figure 3), screening the papers based
on an inclusion and exclusion criterion ((3) in Figure 3), classification of the articles ((4) in Figure 3),
and data extraction and analysis ((5) in Figure 3).

Define Research
Questions

Study Scope

Search for Primary
Studies

Screen Primary
Studies

Use Keywords for
Classification Extract Data

1 2 3 4 5

Collection of Papers Selected Papers Classification Scheme Systematic Map

Figure 3. The mapping study steps performed in this study.

We start by defining the research question in order to clearly define the scope of this study.
A search string is created in order to search for the bulk of papers in the test generation research area.
Terms related to this area are used when forming a search string so that a representative set of papers
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gets through the selection phase. These papers are now filtered by applying the defined inclusion
and exclusion criteria. Keywording is the process of analyzing the abstracts and keywords of the
papers collected with the goal of investigating if a paper fits into the mapping study. Papers where
the inclusion decision is based on abstracts or the full text are read thoroughly. A final set of primary
studies are collected at the end of this step. The primary studies in the final set of papers are reviewed
with the intention to seek answers for the research questions defined. The collected data is presented
in a quantitative and qualitative manner.

4.1. Definition of Research Questions

The objective of this mapping study is to identify, analyze, and classify the methods for test
generation on digital circuits associated with Verilog, VHDL, and SystemVerilog HDLs. The following
research questions are derived from this objective.

• RQ 1. What are the publication trends in the domain of test generation for digital circuits
represented using Verilog, VHDL, and SystemVerilog?

Goal. The goal with this research question is to evaluate the interest, publication types, and
venues targeted by researchers over the years.

• RQ 2. What are the different abstraction levels at which the test generation methods are proposed?
Goal. The goal with this research question is to identify and classify the research
based on abstraction levels for testing digital circuits associated with VHDL, Verilog, and
SystemVerilog HDLs.

• RQ 3. What are the test methods used to generate tests for digital circuits and implemented as
software tools?
Goal. The goal with this research question is to map the methods of testing digital circuits
proposed in terms of the available tooling.

• RQ 4. Which are the different test purposes and goals used in test generation for digital circuits?
Goal. The goal with this research question is to identify the test goals in each of the
primary studies.

• RQ 5. What are the test technologies used in test generation for digital logic circuits?
Goal. The goal with this research question is to identify the technologies on which the test
generation techniques are based on.

• RQ 6. Are the test generation methods for digital circuits creating and executing test cases on the
SUT?
Goal. The goal with this research question is to identify the extent of practical realization of the
test cases and their execution on the digital system.

• RQ 7. What are the metrics used for evaluating the test generation techniques used for digital
systems?
Goal. The goal with this research question is to identify the metrics used to evaluate the efficiency
and effectiveness of the proposed test generation techniques.

4.2. Search Method

Searching for primary studies is the first step in our mapping study. It is an iterative process and
that is carried out on different databases and indexing systems. The objective of this step is to collect all
relevant articles for the study. The selected databases are focusing on this area of research contributions
as these return the most relevant publications [15]. We used the following publication databases: ACM
digital library, IEEE Xplore digital library, and the Scopus scientific database. Following this step,
we framed the search strings based on the research questions. In this study, the search string was
developed based on the scope of the research questions, including the search terms, population (i.e.,
application area), and intervention (i.e., techniques used) [14]. VHDL and Verilog are the expected
keywords that will include all documents with these HDLs in title, abstract, or keywords. The rationale
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for using the terms VHDL and Verilog is that this study will cover studies that discuss these HDLs
upfront. A threat to the validity of this search can relate to the HDL language not necessarily being
highlighted in a paper. To restrict the focus of this mapping study, we considered only those methods
that support Verilog and VHDL as their primary HDL input and mention these languages in their title
or abstract. The term "test generation" has been used to include studies focusing on automated test
generation. This is a generic term used in both hardware and software testing. These keywords are
combined using the logical operators AND and OR. Each chosen database has its own syntax for the
search strings, and we adapted these to exercise each particular database. The search strings applied
to each of the three databases are shown as follows:

• Search String IEEE: ((((VHDL) OR (verilog)) AND ("test generation")));
• Search String ACM: ("VHDL" "verilog" +"test generation");
• Search String Scopus: TITLE-ABS-KEY ("VHDL" OR "verilog" AND "test generation").

We mention here that these search strings were subject to multiple iterations. While other search
keywords can be used to refer to Verilog designs (e.g., netlists) or to automated test pattern generation
techniques (e.g., ATPG), we argue that relevant studies on test generation of VHDL and Verilog designs
will contain these generic keywords in their data fields. To obtain evidence on this matter, we analyzed
the results obtained using these keywords (i.e., ATPG and netlists) and crosschecked them against our
original results and randomly selected papers. While searching for articles on the IEEE Xplore digital
library, the search was restricted to the available metadata, and, while performing this for the Scopus
scientific database, the search was restricted to titles, keywords, and abstracts. The search process was
performed for the time period until 2018. This resulted in a total number of 1131 scientific publications.
Out of these, 932 publications were obtained from the ACM digital library, 105 publication from Scopus
scientific database, and 94 from the IEEE Xplore digital library. In Figure 4, we show the different
steps taken from the initial search to the selection of a final set of papers. In the following subsections,
we detail each of these steps.

ACM

IEEE

SCOPUS

Inital
Search

Initial
Exclusion Merging Exclusion

title/abstract
Exclusion

criteria
Exclusion after

full review

932 877

94 92

61105

373 56 491030

Figure 4. Mapping study steps for searching and selecting the final set of papers.

4.3. Screening the Articles

In this step, we filter the primary studies based on the inclusion/exclusion criteria. The following
criteria were applied for the mapping study:
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• The paper is a scientific publication and not an expert opinion or a summary.
• The paper has been written in English.
• The paper could be accessed as full-text.
• The paper is related to digital system testing.
• The paper presents test generation methods focusing on VHDL, Verilog, or SystemVerilog HDLs.

Figure 4 describes the selection step in detail. From the ACM, IEEE, and Scopus databases, we
obtained 877, 92, and 61 publications, respectively, after excluding the duplicates. In the succeeding
steps, we merged these 1030 resulting publications. Excluding the publications based on titles and
abstracts led to the elimination of 657 publications, and this resulted in 373 papers (out of the 373
extracted papers, 29 were from IEEE, 35 were from Scopus, and 309 were from ACM). This step was
complicated by the fact that, for ACM, the abstract could not be downloaded in any format while
exporting the articles from this database. To address this issue, we extracted these abstracts from ACM
separately using our own filters. It has to be noted that ACM was the database that contributed with
the largest number of publications. Papers were read, and the abstract and titles that clearly indicated
that the contributions were outside the focus of this mapping study were excluded. For example, the
search term "verilog" retrieved studies about verilog in simulation and synthesis related to testing.
If a title or abstract did not understandably uncover the test generation focus of the paper, it was
included for review in the subsequent stages. In the next step, by reviewing the title and abstract
using the inclusion and exclusion criteria above, we obtained 56 publications. Out of the 373 extracted
papers from the previous stage, 294 papers were not directly related to digital-system/circuit testing
and 23 were not directly focused on VHDL, Verilog, or SystemVerilog, resulting in the remaining 56
publications. In this stage, one author read the titles and abstracts of the papers for each criterion, and
another one examined their relevance to this mapping study. In the next step, we excluded 7 articles
since some of these contributions were not available in full-text or the results were already contained
in other extended papers already included. In the end, we obtained 49 primary studies that matched
our research questions.

4.4. Classification

To extract information from all primary studies and answer our research questions, a classification
needs to be defined. To answer our research questions, the primary studies were classified using the
following six different facets based on the automated test generation categorization for digital circuits
proposed by Zander et al. [16] and Utting et al. [17] for model-based test generation approaches:

1. Design Level. In order to manage complexity, testing activities can be considered at different levels
of design abstractions.

2. Test Generator Tooling. Implementation details of the test generator in terms of the architectural
and tooling details used to develop and run the test generator.

3. Test Goal. This dimension defines the goal used to control the generation of test cases.
Test generators can be classified according to which kinds of goals and test generation criteria
they support.

4. Test Generator Technology. This dimension refers to the test generator capability to derive test cases
using different search technologies, such as: graph search, random, search-based techniques,
model checking, and symbolic execution.

5. Test Execution. This dimension is concerned with test execution and the actual implementation of
test cases in a testbench.

6. Test Evaluation. The last dimension refers to the type of test oracle (comparison with the expected
behavior and logic) used and in which conditions the evaluation takes place.
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The classification scheme was developed so that the primary studies could be categorized into
these facets and data extraction could be carried out. A taxonomy is the main classification mechanism
used during data extraction. Taxonomies can be enumerative or faceted [18]; in enumerative, the
classification is fixed, and it is not ideal for an evolving research area, such as the automated test
generation for digital systems area. Hence, we used the faceted classification scheme shown above
where the aspects of categories can be combined or extended and are generic enough. The facets are
drawn from the research questions mentioned in Section 4.1 and adapted from both the digital system
testing literature, as well as the model-based testing community. Apart from the above-mentioned
facets, we considered basic information from each of the primary studies to answer RQ1. The titles and
publication details were collected as basic information from each of the primary studies. The facets
contained basic classification attributes and evolved throughout the process of the mapping study.
In Section 4, we discuss each of the facets and show examples.

4.5. Data Extraction and Analysis

The objective of this step is to analyze the data extracted from the primary studies. In addition,
the direct connections between each of the primary studies and the research questions are derived in
this step. The results of the analysis are presented in qualitative and quantitative form (e.g., graphical
or tabular form). The outcomes of the mapping study are discussed in Section 5. The possible threats
to validity are also considered. We describe in Table 1 the details of the data extraction and analysis.

Table 1. Information about data extraction and analysis.

No. Description Details

1 Bibliographic Info Title, author, publication venue and type (i.e., a conference paper or journal)
2 Test Goal Stated test purpose, including the stopping criteria.
3 Tooling Test generator implementation details.
4 Test Level Abstraction level at which the test generator works.
5 Technology Test generation technology characteristics.
6 Test Execution Information about the execution of generated test cases
7 Test Evaluation Information about the evaluation of the generated test cases
8 Classification Relevance to the predefined categories

The data extraction for this mapping study is defined in Table 1 (i.e., 2 to 7, and the synthesis is
carried out in 8). In the final step, we kept track of the data extraction from each of the primary studies.
The main focus of the analysis is to answer the predefined research questions.

5. Results

We performed the mapping study based on the procedure described in Section 3. In this section,
we present the results. Each of the subsections aim at answering the research questions mentioned in
Section 4.1.

5.1. Publication Trends

We focused on the publication trends by collecting data, such as publication year, type, and venue
for each of the primary studies. The trends are visualized in Figure 5a as a temporal distribution
during the years. In Figure 5b, we show a pie chart depicting the publication types, while, in Figure 5c,
we show a map chart by conference venues.
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(a) Distribution of publications by Year (b) Type of Publication (c) Conference Venues

Figure 5. Distribution of publications by year, type, and conference venues.

The distribution of the publications in Figure 5a spans the time between 1986 to 2018. The first
study on test generation for VHDL- and Verilog-designed digital systems was published in 1986.
The interval between 1993 and 2002 saw a growing interest in the subject among researchers, with an
average of 5 papers published. Until 1993, we see a decreasing number of papers published on test
generation for digital circuits. The most recent upsurge in publications has started on 2013. As an
example, these recent publications mostly focused on fault independent test generation and coverage
directed test generation techniques [19,20]. We can observe a decrease in the number of publications
from 2015 onward. We also collected data about the publication type. The results clearly suggest
that the contributions in test generation for Verilog- and VHDL-designed digital systems are mainly
published in conference venues (i.e., 92% of the publications are conference papers, and only 8%
are journal publications). We also looked at the publication trends by venues. We categorized the
data using the countries in which these conferences were organized. The USA was found to be the
country with the most conference venues in which test generation for digital systems papers have
been published (i.e., 21 publications). France is following by six publications, Germany and Lithuania
have three publications, India has two publications, and the rest have one publication each.

In addition, to assess the impact of the collected data in this research area, we collected the citation
count for each paper. We used Google Scholar citation count based on an automatic search on 6.07.2020.
Our results suggest that papers dealing with test generation for Verilog, VHDL, and SystemVerilog
designs have a citation count of 21 on average. The paper with the highest citation count (i.e., 131)
by Duale and Uyar [21] is targeting VHDL designs and has been published in the IEEE Transactions
on Computers in 2004. These results shows that the impact of this research area in terms of scientific
citations is moderately high for some papers. Nevertheless, several papers have low citation counts,
and this shows that the relative academic impact of certain publications in this area is rather low.
More studies are needed to investigate the specific publication trends and reasons behind these results.

5.2. Test Level

The design and testing of digital systems is performed at several abstraction levels. The abstraction
levels for digital systems are shown in Figure 6 (as adopted from Bengtsson et al. [22]) and Table 2.
System level is the highest abstraction level at which the physical circuit is realized. CAD tools
are develop to aid in the transformation of a circuit from a higher abstraction level to a lower level.
The system level is sometimes called a functional level since the system constraints and functions
are specified (e.g., performance and cost). The behavioral level or the algorithmic level is where the
digital systems are designed in terms of the algorithms and detailed functions used. At this level,
there is no time measurement in terms of clock cycles. In addition, at the RT level, the algorithms are
described in more detail, including the data-paths and controllers. A data-path consist of functional
units, vector multiplexers and registers. The functional units that require several clock cycles are
described at this level. The controller, as the name suggests, generates load signals for registers
and controls the functional units in each data-path. The RT-level is the abstraction level at which
the functions are defined at each clock cycle. Digital systems are designed at the logical level in
terms of their logical synthesis. At this level (also known as the Gate level), the RTL descriptions are
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transformed into logic gates and flip flops. After this synthesis, the digital system is designed at the
physical level using a technology independent description in the logic level that is transformed into a
physical implementation.

(a) (b)

Figure 6. Overall results based on abstraction levels. (a) Abstraction levels; (b) Distribution of papers
based on abstraction levels.

To answer RQ2, we categorized each of the primary studies by the test level these test generation
methods are focusing on. During the data collection phase, we observed that just a few studies
explicitly mentioned the targeted test level. One author read the papers in full-text to identify this
information. We show the overall results in Figure 6b. We notice that the primary studies fall under all
the five levels. The answer to RQ2 was found with the categorization of the studies into these levels.
We discovered that there is a sizeable gap between studies on behavioral level and logic level test
generation methods. Our results suggest that the behavioral level with 17 studies and the RT level
with 16 studies are the most targeted levels by test generation researchers. One possible reason for
this could be explained by the fact that these techniques yield better results in terms of efficiency and
effectiveness early in the development process at higher levels of abstraction. To better understand the
categorization of these techniques, we present examples for each of the test level.

Hayne et al. [23] proposed a test method focused on targeting the coverage of faults at the gate
level. The method devised in this paper applies the test vectors derived from the behavioral level
fault models to gate level realizations of a range of circuits, including arithmetic and logical functions.
The results of this study suggest that using test generation for VHDL can yield better gate level
fault coverage.

Gent et al. [20] proposed a method for test generation at the RT level. This method uses
a combination of a stochastic search technique and a deterministic search aimed for RTL design
validation. The effectiveness of this techniques is measured using branch coverage.

Gulbins et al. [24] proposed a novel approach to functional test generation applied at the
behavioral level using the knowledge of links between inputs and outputs. The behavioral level
fault model that is considered by the authors can handle faults in both the data flow and the control
parts of the digital system. The test generation method is implemented in a tool called GESTE
and applied to generate symbolic tests at the behavioral level. Another study from Pla et al. [4]
proposed a method to generate test from behavioral circuit descriptions that can be used in other
level of abstractions. This method is based on formal modeling of a VHDL description using two
level-independent models: the input/output model and the activation model.

Since not all faults can be modeled at the behavioral level, some methods focused on modeling
only after the synthesis to a lower level [25]. In this way, faults are modeled on one level and after
the synthesis the faults are mapped back. Such a hierarchical test generation method is proposed by
Tupuri et al. [26]. Test cases are generated for faults using commercial ATPGs for individual modules.
Functional constraints extracted for each module are described in Verilog or VHDL and applied to
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the synthesized gate level. As a last step, the module level vectors are translated to processor level
functional vectors. Hence, the process of test generation is performed at multiple levels.

Table 2. Categorization of papers into abstract levels.

Papers Level

[19,24–40] Behavioural

[20,21,34,41–53] RT

[23,54–58] Logic

[52,59–65] Mixed

[4] Independent of any abstraction level

5.3. Tool Implementation

In order to answer RQ3, we collected data from the primary studies related to the tool
implementation details for each test generation method. We intended to map the methods implemented
as tools that can be used by both practitioners and researchers. This dimension is used to evaluate the
level of applicability and practicality.

Our results suggest that 31% of the studies implemented their methods in a tool for testing digital
circuits. Table 3 provides an overview of the tools implemented for test generation for VHDL and
Verilog. One example of such a tool is proposed by Murtza et al. [25] and called VertGen. We considered
other methods, such as the ones proposed by Lu et al. and Rao et al. [30,48], which propose and show
the applicability of these tools for the method applied to test digital circuits.

Table 3. List of method for test generation implemented as software tools.

Paper Tool Name Tool Description

[60] FACTOR Functional constraint extractor is implemented for
hierarchical functional test generation for complex
chips

[57] Test Synthesis Tool The tool employs an RTL model written in Verilog
or VHDL to drive the test generation process.

[25] VertGen VertGen is an automatic testbench generation tool
for Verilog.

[31] Remote Test Generation Tool The tool uses a fault simulation to generate tests
based on transmission models. A transmission
model represents the functions carried out by a
system and is not considering clock and reset
information.

[34] A Constraint Logic Programming (CLP) Tool The tool generates computation constraints, fault
constraints for a VHDL model. Together these
constraints form the ATPG constraints whose
solution produces test sequences.

[61] Gate Level Test Enhancement Tool The tool combines software testing-based methods
at high level with test enhancement methods at
gate level. The tool maximizes coverage of single
stuck-at faults.

[42] Prototype Test Processor for Functional Testing The tool can generate mixed-mode test vectors.
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Table 3. Cont.

Paper Tool Name Tool Description

[24] The GESTE tool The tool supports the generation of symbolic tests
by constructing a path through the graph model.

[38] AgenMix The tool automatically generates test mixes.

[47] FSM from VHDL descriptions. Verification test generation using a circuit model.

[48] Virtual Test Environment (VTE) An open architecture VTE is presented that can be
integrated into various automatic test systems.

[64] VPI based tool The tool is based on Verilog Procedural Interface
that performs module based mixed level fault
simulation and test generation.

[52] Behavioral Test Generator The tool uses path enumeration and constraint
programming techniques to generate design
verification tests.

[53] ATKET Automatic Test Knowledge Extraction Tool
synthesizes test knowledge using structural
and behavioral information available in VHDL
descriptions of a design.

[65] Logic Development Tool A system that provides a link between design and
test and synthesizes the test vectors from VHDL.

5.4. Test Goal

The test goals used by test generation methods vary depending on the level on which testing is
performed. The primary level used for simulation is the Register Transfer (RT) level. Testing at this
level is focusing on detecting only functional defects [1]. In some approaches, test generation involves
generating test vectors that can quickly and accurately identify defects. Navabi el al. [1] provides an
overview on how test generation can be used in several ways for a given circuit. There are just a few
methods that use circuit topologies and functional models of a circuit.

In this mapping study, we were interested at reviewing the different objectives used by test
generation methods for digital circuits. We based this dimension on the categories shown by
Navabi et al. [1]. We collected data regarding the test goals in the data extraction phase and categorized
them into one of the following subdimensions:

1. Fault Oriented Test Generation. This is a method suitable for detecting certain defects.
Fin et al. [54] proposed a fault-oriented test generation method that uses an efficient error simulator
that is able to analyze functional VHDL descriptions.

2. Fault Independent Test Generation. This method automatically creates tests for a large class
of faults. A test is generated and then it is evaluated if it can detect certain injected faults.
This method of test generation is useful when the SUT contains many possible defects [1].
Vedula et al. [60] describe a functional test generation technique for a module embedded in
a large design.

3. Random Test Generation (RTG). Random test generation is a method in which the test vectors are
selected using a random strategy. RTG techniques are complemented with evaluation procedures
that aid in the selection of test vectors. Often, RTG programs target an area of a SUT that contains
faults that are hard to detect [1]. For example, Shahhoseini et al. [50] provided evidence that their
algorithms are simple and useful for efficient test generation.

4. Coverage Directed Generation. This method of generating tests targets a specific coverage metric,
such as statement, branch, or condition coverage of the HDL representation. For example,
Ferrandi et al. [59] developed a test generation algorithm that targets a coverage metric named bit



Designs 2020, 4, 31 13 of 19

coverage. The bit coverage includes full statement coverage, branch coverage, condition coverage,
and partial path coverage for behaviorally sequential models.

In Figure 7, we show the distribution of the primary studies under the four test goal categories.
Our results suggest that 25 publications proposed methods for test generation that are targeting a fault
independent test goal, while 15 other studies focused on generating test cases for a fault-dependent test
goal. It seems that 10% of the papers focused on coverage directed test generation methods, 6% used
random test generation, and 31% of the methods generated tests using a fault-oriented goal, while
51% of the papers focused on fault independent test generation. It seems that random test generation
is only used in a handful of studies, while half of the methods focus on test generation methods for
fault-independent detection as a test goal.

Figure 7. Distribution of studies based on the test goal.

5.5. Technology

In this subsection, we aimed at answering the RQ5 related to the search engine technology
behind the test generation methods. Different technologies are used in these tools, such as simulation,
constraint-based test methods, path-based test methods, and model checking, just to name a few. In the
process of conducting the mapping study, we considered first the information from all primary studies
and established these categories a-posteriori in broader terms. This was done to identify the number of
publications under each of the technology facets and to check if there is an emphasis on one particular
technology. The technology used in the primary studies was categorized as follows:

• Model Simulation—26 primary studies—54%
• Model Checking—6 primary studies—13%
• Automatic test pattern generation—3 primary studies—6%
• Constraint-based test generation—4 primary studies—9%
• Behavioral test generation—1 primary study—2%
• Path-based test generation—2 primary studies—4%
• Test-Bench Generation—2 primary studies—4%
• Test-Sequence Compaction—3 primary studies—6%
• Pseudo-Exhaustive Execution—1 primary study—2%
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Overall, our results suggest that model simulation is the most widely used test generation
technology with 54% of primary studies focusing on it. In Table 4, we show a classification of the
studies based on the different technologies identified. In more than half of the approaches, a model
is developed for the SUT and then this model is executed in simulation to find possible faults in the
system by test generation. In Reference [54], the authors present an error simulator.

Model checking is another popular method for exhaustive verification. Murugesan et al. [43]
proposed a satisfiability-based test generation for stuck-at faults. Automatic test pattern generation
operates by injecting fault into a circuit and then activates the fault followed by propagation to the
output. As a result, the output flips from expected to a faulty signal.

Constraint-based test generation involves conversion of a circuit model into a set of constraints
and developing constraint solvers to generate tests. Constraint-based test generation has been mainly
used for behavioral level functional test generation. Cho et al. [29] describe a behavioral test generation
algorithm that generates tests from the behavioral VHDL descriptions using stuck at open faults and
operation faults.

Path-based test generation is a method dependent on the control flow graph of a program that is
using the selection of control flow paths using a certain test criterion. Other techniques are focusing on
test-benches by generating stimulus waveform and comparing the reference output with that given by
the design under test. In other approaches, Test sequence compaction is used to remove test vectors
that are not necessary in the test sequence, thereby reducing the length of the test sequence. In addition,
at the higher level of abstractions, exhaustive functional testing can be used to detect faults due to the
relative simplicity of the state space. Given that a huge number of test patterns are required, it is not
suitable to be used for industrial applications. One approach focused on reducing the number of test
patterns needed while maintaining a high fault coverage using pseudo-exhaustive executions.

Table 4. Classification of the studies under the different technologies identified.

Papers Technologies

[19,21,23,24,28,30,31,33–35,39,41,44,45,48–51,54,55,57–59,64,65] Model Simulation

[4,20,36,37,43,47] Model Checking

[28,38,53] Automatic Test Pattern Generation

[26,34,52,60] Constraint Based Test Generation

[29] Behavioral Test Generation

[32,56] Path Based Test Generation

[25,40] Test Bench Generation

[42,61,63] Test Sequence Compaction

[46] Psuedo Exhaustive Execution

5.6. Test Execution

Test execution is another part of the classification scheme used in our mapping study. We consider
test execution as an aspect of applicability of test generation techniques. Navabi [1] considers two
of the most common methods of testing: scan testing and boundary scan testing. Test cases can be
executed using a Built In Self Test (BIST) in which a hardware structure applies the test vectors to the
SUT. Fault coverage is used as a measure when evaluating the effectiveness of BIST.

The results suggest that 63% of the studies execute the generated tests. The other approaches
which are generating abstract test cases are just proposing certain algorithms and provide preliminary
results on test effectiveness.
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5.7. Experimental Evaluation

Evaluation is the process of measuring the efficiency and effectiveness of the generated test cases
with the aid of metrics, such as coverage, generation time, number of test cases, and fault detection.
We collected data regarding the evaluation of the proposed methods and the metrics used to evaluate
these. The results suggest that 37% of the primary studies do not evaluate the proposed methods in an
experimental evaluation. A total of 31 primary studies, out of 49 considered for this mapping study,
experimentally evaluated their methods in terms of efficiency or effectiveness.

As shown in Figure 8, 18 studies use test coverage as a proxy metric for effectiveness. Other four
studies used both generation and execution time as a measure of test efficiency. Fault detection
capability has been used in three studies as a proxy measure of effectiveness. It seems that coverage
criteria is the most common metric used for test suite evaluation. Rao et al. [30] propose a hierarchical
test generation algorithm (HBTG) and evaluate their technique using only statement coverage.
Riahi et al. [66] used fault coverage to measure the effectiveness of a random test vector and simulation
run time as a measure of efficiency. Lynch et al. [44] proposed an automatic test pattern generation
(ATPG) system and evaluated in terms of faults detected and isolated.

Figure 8. Distribution of studies under different evaluation metrics.

When a data-flow graph representation is used to generate test sequences, some of the test may
not be feasible. Inconsistencies may be present due to the conditional statements or variables used in
actions [33]. A measure of detecting such inconsistencies is an evaluation metric [33].

Overall, 58% of the primary studies evaluate the test generation methods using the following
types of test coverage criteria: combined coverage, code coverage (e.g., statement coverage, branch
coverage), and path coverage. Some studies are using statement coverage for measuring test quality,
which has been shown to be a rather weak metric [30].

6. Limitations and Threats to Validity

This section discusses the threats and outlines some strategies used to mitigate these
(c.f. Reference [67]). Construction validity relates to the design of the research method and the search
string. In our mapping study, we adopted the research method of Petersen et al. [14]. The search string
was formed to retrieve studies for different databases, and we used well-known test characteristics and
categories. External validity relates to the degree to which the results can be generalized. We minimize
this threat by following a rigorous research methodology and involving an experienced researcher in
data analysis. Internal validity relates to the measured or collected relationships and factors. As the aim
of the study was not to establish a causal relationship on test generation methods, it is not considered
a threat to this study. Conclusion validity relates to researcher bias in the interpretation of the data.
We reduced the risk by involving two authors in the final analysis. Although the results are limited by
the studies included in the used databases, they covered a wide range digital system literature.
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7. Conclusions

We presented the results from a systematic mapping study to map the landscape of test generation
methods for digital systems designed in Verilog, VHDL, and SystemVerilog HDLs. The results of our
systematic mapping study focused on seven different facets: the publication trends, test level, tool
implementation, test goal, test generation technology, test execution, and the experimental evaluation.
We considered 49 primary studies to conduct this mapping study. Our results suggest a considerable
growth in interest in the domain of test generation for digital circuits. The mapping study revealed
that there is an emphasis on test generation for digital circuits at behavioral and RT Level. A majority
of test methods focus on fault independent test generation as their test goal and depend on model
simulation as a technology for experimental test execution.
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