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Abstract

Recent advances in artificial intelligence (AI) have transformed ophthalmic diagnostics,
particularly for retinal diseases. In this prospective, non-randomized study, we eval-
uated the performance of an AI-based software system against conventional clinical
assessment—both quantitative and qualitative—of optical coherence tomography (OCT)
images for diagnosing diabetic macular edema (DME). A total of 700 OCT exams were
analyzed across 26 features, including demographic data (age, sex), eye laterality, visual
acuity, and 21 quantitative OCT parameters (Macula Map A X-Y). We tested two classi-
fication scenarios: binary (DME presence vs. absence) and multiclass (six distinct DME
phenotypes). To streamline feature selection, we applied paraconsistent feature engineering
(PFE), isolating the most diagnostically relevant variables. We then compared the diagnos-
tic accuracies of logistic regression, support vector machines (SVM), K-nearest neighbors
(KNN), and decision tree models. In the binary classification using all features, SVM and
KNN achieved 92% accuracy, while logistic regression reached 91%. When restricted to the
four PFE-selected features, accuracy modestly declined to 84% for both logistic regression
and SVM. These findings underscore the potential of AI—and particularly PFE—as an
efficient, accurate aid for DME screening and diagnosis.

Keywords: retinal diseases; machine learning; optical coherence tomography; diabetic
macular edema; artificial intelligence; support vector machine; paraconsistent feature
engineering

1. Introduction
Artificial intelligence (AI) has emerged as a transformative technology in the field

of ophthalmology, particularly in the diagnosis and management of retinal diseases. AI
encompasses a variety of computational techniques that aim to mimic human cognitive
processes such as learning, reasoning, and problem-solving [1–3]. Within AI, machine
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learning and its subfield, deep learning, have demonstrated significant potential in med-
ical imaging. Deep learning, especially convolutional neural networks (CNNs), enables
automated recognition of pathological features with high accuracy by extracting relevant
patterns from large datasets [4–7].

In retinal imaging, AI systems have been applied to fundus photography, optical coher-
ence tomography (OCT), and OCT angiography (OCTA) to detect and classify conditions
such as diabetic retinopathy, age-related macular degeneration, and glaucoma [8–17].

Diabetic macular edema (DME), a major complication of diabetic retinopathy, is
characterized by retinal thickening and intraretinal fluid accumulation due to abnormal
vascular permeability. As one of the leading causes of blindness in working-age adults,
DME poses a significant diagnostic and management challenge worldwide. Diagnostic
tools, such as OCT, are essential, providing detailed data on macular structure, but their
interpretation critically depends on the specialist’s expertise, leaving the final decision
entirely in the hands of the healthcare professional. In this context, the development of AI
tools to support decision-making is extremely valuable to improve patients’ quality of life
and optimize clinical workflow [18].

Studies have shown that deep learning models can match or even surpass the perfor-
mance of experts in identifying diabetic retinopathy from fundus images [5,18]. AI-based
screening systems, such as IDx-DR, have received approval from and are being integrated
into primary care settings to enable earlier diagnosis and reduce the burden on special-
ists [19].

Despite these advances, several limitations persist. The “black box” nature of many
AI models, where the decision-making process is not transparent, raises concerns about
reliability and clinical trust [20]. Furthermore, the quality and diversity of training datasets
can significantly impact model performance, leading to potential biases and limited gen-
eralization across different populations and imaging devices [2,9,21]. Therefore, rigorous
validation in diverse scenarios is essential.

The integration of AI into ophthalmology is particularly beneficial for regions with
limited access to retina specialists. Teleophthalmology platforms incorporating AI can
provide timely and cost-effective screening, aiding in the early detection of sight-threatening
diseases [22–25].

Although recent literature demonstrates a growing interest in the application of AI
for ophthalmological diagnoses, a systematic review revealed a specific gap: no previous
study has addressed the pre-diagnosis of DME using the paraconsistent feature engineering
(PFE) approach [18]. Current AI techniques focus predominantly on clinical image analysis,
while PFE offers an innovative method for selecting the most informative features from
raw data, boosting the accuracy of machine learning models. This work is justified by the
need to explore this innovative approach, using a robust dataset to develop and compare
different intelligent models that can aid in the pre-diagnosis of DME.

Thus, the main objective of this study is twofold: first, to establish which intelligent
models, when combined with PFE, are most effective for DME screening; and second, to
compare the performance of these models in characterizing the prediagnosis of DME accu-
rately and reliably. By filling this gap, this research not only makes a unique contribution
to the fields of ophthalmology and AI, but also aims to offer an accessible and effective tool
that can improve clinical outcomes and patient quality of life.

2. Materials and Methods
This was a retrospective, open-label, non-randomized, comparative study conducted

at the Rubens Siqueira Research Center in São José do Rio Preto, Brazil. The primary
objective was to evaluate and compare the clinical analysis (quantitative and qualitative) of
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OCT images with a quantitative analysis performed by an AI-based software system in the
diagnosis of DME. The study was approved by the Human Research Ethics Committee of
the Faculdade de Medicina de São José do Rio Preto under Opinion No. 7.772.688, registered
on Plataforma Brasil (CAAE: 191219925.2.0000.5415), and the Committee acknowledged
and approved the request for waiver of the Free and Informed Consent Form (TCLE).

2.1. Study Population and Data Collection

Data from a total of 700 examinations of 387 patients with clinically suspected DME,
performed between 2023 and 2024, were included in the final dataset. The study population
consisted of 214 men and 173 women, with ages ranging from 23–91 years (mean age:
62.5 years). The dataset comprised 351 examinations of the right eye and 349 of the left
eye. All examinations were evaluated by a specialist physician (Dr. Rubens Siqueira) and
his team. The inclusion criteria were patients ≥18 years of age with suspected DME. The
exclusion criteria included media opacities that significantly impair visualization, a history
of allergic reactions to fluorescein dye, substance abuse.

Patients underwent a complete ophthalmologic evaluation, including best-corrected
visual acuity (BCVA) using the Early Treatment Diabetic Retinopathy Study (ETDRS)
protocol [26], slit-lamp biomicroscopy, applanation tonometry, indirect ophthalmoscopy,
and fluorescein angiography using the Eidon FA confocal scanner (Centervue, Padua, Italy).

2.2. OCT Image Acquisition and Analysis

OCT imaging was performed with a Nidek RS-3000 Advance 2 optical coherence
tomography scanner, which has a resolution of 7 µm and a scan speed of 40,000 A-scans
per second. Acquisition protocols included macular cube scans centered on the fovea.

Structural parameters, including central subfield thickness, the presence of intraretinal
fluid (IRF) and subretinal fluid (SRF), and pigment epithelial detachment (PED), were
recorded. Retinal thickness was measured in micrometers and compared between manual
clinical and AI-based assessments.

2.3. Feature Vector and Preprocessing

The AI system used a vector of 26 features for each exam. This vector was composed of:

• Demographic and clinical data: Patient ID, age, sex (male/female), and eye laterality
(right/left).

• Visual acuity: Patient’s visual acuity.
• ETDRS parameters: 18 features derived from ETDRS thickness and volume maps,

covering the nine macular sectors (e.g., etdrs9_1 to etdrs9_9 for thickness and etdrs9v_1
to etdrs9v_9 for volume).

• Other OCT metrics: Fovea minima (foveamin) and total area volume (whole/total).
• Diagnosis: The phenotype verified by the physician, which served as the label for

supervised learning.

Table 1 details all 26 features used. Initially, the data were loaded from a structured
spreadsheet. Preprocessing involved removing instances with null values to ensure data
quality and integrity. To enable modeling, the categorical features (diagnosis, eye, and
sex) were transformed into numerical format using the LabelEncoder encoder from the
Scikit-learn Python library (version number 0.24.1).
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Table 1. Feature set used in AI-based analysis of OCT for DME diagnosis.

Order Abbreviation Meaning

1 ID Patient ID

2 R/L eye Definition of the examined eye (right or left)

3 VisualAcuity Patient’s visual acuity level

4 etdrs9_2 Upper inner ring

5 etdrs9_4 Lower inner ring

6 etdrs9_6 Upper outer ring

7 etdrs9_8 Lower outer ring

8 foveamin Measurement of the fovea minima

9 etdrs9v_2 Upper inner ring volume

10 etdrs9v_4 Lower inner ring volume

11 etdrs9v_6 Upper outer ring volume

12 etdrs9v_8 Lower outer ring volume

13 whole/total Measurement of the volume of the total area

14 Diagnosis Phenotype verified by doctor

15 Sex Patient sex (male or female)

16 etdrs9_1 ETDRS ring center

17 etdrs9_3 Internal nasal ring

18 etdrs9_5 Internal temporal ring

19 etdrs9_7 External nasal ring

20 etdrs9_9 Outer temporal ring

21 etdrs9v_1 ETDRS ring center volume

22 etdrs9v_3 Inner nasal ring volume

23 etdrs9v_5 Internal temporal ring volume

24 etdrs9v_7 External nasal ring volume

25 etdrs9v_9 Temporal outer ring volume

26 Age Patient’s age on the day of the examination

2.4. Paraconsistent Feature Engineering (PFE)

A central step of the methodology was the application of PFE, an algorithm based on
paraconsistent logic, to select the most relevant subset of features for diagnosis [27]. PFE
evaluates the adequacy of each feature based on two independent criteria:

• α (Intraclass Similarity): Measures how similar the values of a feature are within the
same class (e.g., all patients with DME).

• β (Interclass Dissimilarity): Measures how different the values of a feature are between
different classes (e.g., between patients with and without DME).

From α and β, PFE calculates two fundamental metrics: the degree of certainty
(G1 = α − β) and the degree of contradiction (G2 = α + β − 1). These metrics position each
feature on a “paraconsistent plane” (Figure 1). The goal is to identify features that maximize
the degree of certainty (G1→1) and minimize the degree of contradiction (G2→0). This
ideal point (1,0) on the plane represents a feature that is perfectly homogeneous within a
class and perfectly distinct between classes, indicating high predictive power.
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Figure 1. Paraconsistent plane: distribution of features by certainty and contradiction. Adapted
from [27]. CV: Coefficient of Variation.

When applying PFE to the dataset, the algorithm identified the four most relevant
features among the 24 analyzed: (ID and diagnosis were not included in the test).

1. ‘R/L eye’: The laterality of the examined eye.
2. ‘etdrs9v_7’: The volume of the external nasal ring.
3. ‘sex’: The patient’s sex.
4. ‘etdrs9_6’: The thickness of the superior external ring.

This subset of four features was then used to train and test a separate set of AI models,
allowing for direct comparison with models trained with the full set of 26 features.

2.5. Artificial Intelligence Models

The AI system used multiple supervised learning classifiers to assess the diagnosis
of DME. The models were implemented in Python (version number 3.8.8), using libraries
such as Pandas for data manipulation and Scikit-learn for machine learning algorithms and
metric evaluation.

The following models were evaluated:

• Logistic Regression (LR): A linear classifier commonly used in medical diagnosis due
to its interpretability and effectiveness in binary classification tasks [28].

• Support Vector Machines (SVM): A robust algorithm that finds an optimal hyperplane
to separate data into classes. It is particularly effective in high-dimensional spaces and
for nonlinear problems when combined with kernel functions [29].

• K-Nearest Neighbors (KNN): A nonparametric method that classifies a new sample
based on the majority class of its ‘k’ nearest neighbors in the feature space. It is intuitive
and useful when the relationship between variables is complex and nonlinear [29].

• Decision Trees (DTREE): Highly interpretable models that use a hierarchical tree
structure to make decisions, dividing the feature space into homogeneous subsets [30].

2.6. Experimental Scenarios and Performance Evaluation

The tests were carried out in two different scenarios to evaluate the performance of
the models at different levels of diagnostic complexity:

a. Scenario 1 (Binary Classification): This task classified the scans into two categories:
Y (Yes), for patients with DME, and N (No), for patients without DME. This scenario
included 131 positive cases (Y) and 569 negative cases (N).

b. Scenario 2 (Multiclass Classification): A more complex task with six phenotypes:
Y (Yes, with DME), Y-Mer (Yes, with epiretinal membrane), Y-Perifoveal (Yes, with
perifoveal edema), N (No), N-Anomalies (No, but with other anomalies), and N-Mer
(No, but with epiretinal membrane).
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In both scenarios, the four AI models (SVM, KNN, DTREE, LR) were trained and
tested with two configurations of the feature: (i) the full set of 24 features and (ii) the subset
of four features selected by PFE. This resulted in a total of 16 distinct tests. Cross-validation
was employed to ensure the robustness of the results and avoid overfitting.

Performance was evaluated using a comprehensive set of metrics, including confusion
matrix, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), F1-Score, and the area under the receiver operating characteristic curve
(AUC-ROC).

2.7. Statistical Analysis

All statistical analyses were conducted using Python (version number 3.8.8) libraries
such as Scikit-learn for metric calculations and Matplotlib/Seaborn for visualization. The
analyses followed standard machine learning practices, including splitting the data into
training and testing sets to assess the models’ generalization ability.

3. Results
Demographic Data

The study population included 700 examinations from 387 different patients. Of these,
214 (55.3%) were men and 173 (44.7%) were women. The mean age was 62.5 years (range:
23–91 years). The distribution of examinations was 351 (50.1%) for the right eye and 349
(49.9%) for the left eye.

Scenario 1: binary classification (presence vs. absence of DME)

In the binary classification scenario, the objective was to distinguish between exams
with DME (representing class ‘Y’ with n = 131 cases), and those without DME (representing
class ‘N’ with n = 569 cases). The results of the four models with the full set of 24 features
and with the subset of four features of the PFE are presented in Table 2.

Table 2. Performance metrics for binary classification models (DME presence vs. absence) using 24
and 4 features.

Model Features Classification
Score

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Y: F1
Score

N: F1
Score

AUC
Score (%)

SVM Normal (24) 129 92 89 93 65 98 76 95 81.8

SVM Paraconsistent
(4) 117 84 64 85 27 96 38 91 61.7

DTREE Normal (24) 120 86 64 90 54 93 58 91 73.4

DTREE Paraconsistent
(4) 106 76 33 84 31 86 32 85 58.3

KNN Normal (24) 129 92 89 93 65 98 76 95 82

KNN Paraconsistent
(4) 108 77 35 84 27 89 30 86 57.7

LR Normal (24) 127 91 93 90 54 99 68 95 76

LR Paraconsistent
(4) 117 84 67 85 23 97 34 91 60

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the receiver operating
characteristic curve; SVM: support vector machines; DTREE: decision trees; KNN: K-nearest neighbors; LR:
logistic regression.

With 24 features:

The SVM and KNN models performed best, both achieving 92% accuracy. They also
had AUC-ROC scores of 81.8% and 82.0%, respectively, indicating excellent discrimination
ability.
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The LR model also showed robust performance, with an accuracy of 91% and a good
balance between sensitivity (93%) and specificity (90%).

The DTREE model had the lowest performance among the four, with an accuracy
of 86%.

With four features (PFE):

With the reduced feature set, all models experienced a drop in performance.
SVM and LR were the best models in this scenario, both with an accuracy of 84%.

However, sensitivity was notably lower compared to using 24 features, especially for
SVM (64%).

KNN and DTREE performed even worse, with accuracies of 77% and 76%, respectively.
The confusion matrix for the best model (SVM/KNN with 24 features) is shown in

Figure 2, showing high accuracy in classifying negative cases (N), but with some false
negatives for positive cases (Y).

Figure 2. Confusion matrix for SVM/KNN with 24 features (binary scenario). This matrix shows that
of the 26 actual edema cases (Y), 17 were correctly predicted, while nine were classified as negative
(false negatives). Of the 114 negative cases (N), 112 were correctly predicted and only two were
incorrectly classified as positive (false positives) [18].

Scenario 2: Multiclass classification (six phenotypes)

In Scenario 2, the models were challenged to classify the exams into six distinct
phenotypes. The increased complexity of this task resulted in an overall decrease in
performance compared to the binary scenario, as detailed in Table 3.

With 24 features:

• SVM was the best-performing model, achieving an accuracy of 84.3% and an AUC
score of 82.7%. ROC curve analysis (Figure 3) showed that the model was particularly
good at distinguishing the ‘N’ (No: AUC = 0.89) and ‘Y’ (Yes: AUC = 0.89) classes, but
struggled with less frequent classes, such as ‘N-Anomalies’ (AUC = 0.53).

• LR also performed well, with an accuracy of 81%.
• KNN and DTREE had accuracies of 80.7% and 68.6%, respectively.
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Table 3. Multiclass classification performance (six DME phenotypes) using full and PFE-reduced
feature sets.

Model Features Classification
Score

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Y: F1
Score

N: F1
Score

AUC
Score (%)

SVM Normal (24) 118 84.3 68 83 81 99 74 93 82.7

SVM Paraconsistent
(4) 108 77 88 77 33 99 48 86 64.6

DTREE Normal (24) 96 68.6 43 82 29 88 34 85 53.8

DTREE Paraconsistent
(4) 85 61 38 75 29 77 32 76 48.9

KNN Normal (24) 113 80.7 76 84 76 95 76 89 58.5

KNN Paraconsistent
(4) 108 69 60 74 29 89 39 81 47.3

LR Normal (24) 114 81 86 81 57 100 69 89 72.8

LR Paraconsistent
(4) 117 78 80 78 38 99 52 87 56

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the receiver operating
characteristic curve; SVM: support vector machines; DTREE: decision trees; KNN: K-nearest neighbors; LR:
logistic regression.

Figure 3. ROC curve for SVM with 24 features (multiclass scenario). Displays micro-average and
per-class AUC scores, illustrating the model’s ability to differentiate multiple phenotypes.

With four features (PFE):

• Again, performance decreased with the reduced feature set. LR was the best model,
with an accuracy of 78%, closely followed by SVM with 77%.

• ROC curve analysis for SVM with four features (Figure 4) showed that the discrimina-
tion ability for the ‘Y’ class improved slightly (AUC = 0.90), but overall, the perfor-
mance remained inferior to the model with 24 features.
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Figure 4. ROC curve for SVM model with 4 PFE features (multiclass scenario). Performance curve of
the paraconsistent model, highlighting improvement in Y class detection and overall reduction in
accuracy for rare classes.

4. Discussion
The results of this study contribute to the growing body of evidence supporting the

application of AI in the diagnosis of retinal diseases, particularly DME [7,31–33]. The
observed diagnostic accuracy of up to 92% using the SVM and KNN models highlights
the potential of AI-based algorithms to complement traditional clinical assessments [5,20].
These results are in line with previous studies, in which deep learning models demonstrated
expert-level performance in identifying retinal pathologies in fundus photographs and
OCT scans [4,24,34].

A notable aspect of this study is the use of paraconsistent logic to select features
that increase diagnostic accuracy. This approach, combined with machine learning algo-
rithms such as LR and SVM [35,36], allows for a robust assessment of key variables in
OCT data. Previous research suggests that ETDRS-based metrics, in particular the para-
consistent algorithm, are among the most reliable predictors of visual outcomes in retinal
diseases [25,37].

The difference in sensitivity and specificity between the LR and SVM models observed
in this study can be attributed to inherent differences in how these algorithms handle data
variance and complexity. LR models are often more interpretable and perform well on
binary classification tasks when the data are linearly separable, while SVMs can be more
effective in complex, nonlinear spaces but may underperform when the training dataset is
limited or imbalanced [20,24].

These findings also highlight the importance of dataset quality and size in training
AI models. As noted by Gulshan et al. [5] and Ting et al. [24], AI performance in ophthal-
mology is highly dependent on the diversity and volume of training data. The relatively
small dataset of this study may limit the generalizability of the results. Therefore, larger,
multiethnic datasets acquired from diverse imaging systems are essential to improve model
performance and ensure clinical applicability [21,24,38]. The use of PFE not only reduces
the number of features, but also improves model interpretability, which is critical for
clinical adoption.

Furthermore, integrating AI into clinical workflows must address concerns related
to the “black box” problem, in which clinicians are unable to identify how AI systems
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arrive at a diagnosis. This challenge has led to calls for explainable AI, in which model
decisions are transparent and justifiable, especially in medical settings [18,20]. Furthermore,
ethical considerations such as data privacy, informed consent, and bias mitigation must be
addressed as AI becomes more prevalent in healthcare [1,19].

This study reinforces the usefulness of AI as a complementary tool for diagnosing
retinal diseases. With further development, validation, and integration, AI systems could
play a significant role in expanding access to retinal care, improving diagnostic accuracy,
and supporting clinical decision-making, particularly in settings where retinal specialists
are scarce.

This comparative study demonstrates that AI-based diagnostic systems using algo-
rithms such as SVM and LF can identify DME with high accuracy, reaching up to 92%
in the binary classification scenario. PFE proved to be a viable strategy for reducing the
dimensionality of the problem, creating simpler and more efficient models. Although
accuracy is slightly reduced, the ability to achieve reasonable performance (84% accuracy)
using only four features instead of 24 offers a practical and cost-effective solution for clinical
DME screening, especially in resource-limited settings.

From a clinical ophthalmological perspective, the use of AI-based systems for DME di-
agnosis can represent an important tool for supporting medical decision-making, especially
in screening and primary care settings. The ability to achieve high accuracy with a reduced
number of variables reinforces its practical applicability and cost-effectiveness. However,
its safe integration into clinical routine will require multicenter validation, therapeutic
impact analysis, and transparency in the interpretation of results.

5. Conclusions
This study demonstrates that AI-assisted models, especially when optimized via PFE,

can offer accurate and cost-effective tools for DME screening. These tools are especially
valuable in primary care or underserved regions. Further multicenter validation and
explainable AI integration will be essential for routine clinical adoption.
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