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Abstract: Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily
affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations
in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of
the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly
expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Indi-
viduals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly
gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are
typically asymptomatic and benign, they can induce visual impairment in some patients. This review
provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and
therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus
on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1
pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of
retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research
to transform scientific laboratory discoveries to improved patient outcomes.

Keywords: NF1; pediatric low-grade glioma; childhood; optic nerve; chiasm; ocular pathologies;
animal models; mice; OCT; chemotherapy

1. Introduction

Neurofibromatosis Type 1 (NF1) is a rare, multifaceted genetic disorder with a complex
spectrum of phenotypic clinical manifestations making treatment challenging. The most
common feature is café au lait patches on the skin [1]. The prevalence of NF1 is reported to
be one in ~3500 individuals [2,3], and although NF1 is an autosomal dominant condition,
~50% of cases occur by de novo mutations [4]. NF1 stems from mutations in the Nf1 tumor
suppressor gene, located on chromosome 17q11.2, encoding the neurofibromin protein [5].
Neurofibromin regulates the activity of the RAS-MAPK signaling pathway crucial for cell
growth and division [6,7]. In normal conditions, neurofibromin binds RAS to regulate RAF-
MEK-ERK activation of the MAPK pathway; however, mutations in the Nf1 gene result in
reduced or absent neurofibromin activity in individuals with NF1, causing uncontrolled
cell growth and tumor formation (Figure 1) [8]. Neurological manifestations begin at
birth or during early childhood. Individuals are at increased risk of developing tumors
of the central nervous system (CNS), including the brain and spinal cord [9]. Clinical
manifestations can include benign peripheral nerve sheath tumors, bone deformation,
and even curvature of the spine (scoliosis). Scoliosis, which may affect motor abilities,
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is estimated to be present in ~20% of children with NF1, accounting for approximately
~2% of all pediatric scoliosis cases [10,11]. Features that may also be present include short
stature and macrocephaly [12]. Although most NF1 individuals display normal intelligence,
learning disabilities are quite common [13–16].
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sion of RAS-GTP to its inactive form (RAS-GDP), thereby modulating cell growth and migration 
through the MAPK/ERK and mTOR pathways. In NF1 patients, mutations of neurofibromin signif-
icantly reduce its natural activity, resulting in abnormal hyperactivation of the MAPK/ERK and 
mTOR pathways. Consequently, uncontrolled cell growth and migration lead to the development 
of gliomas in the optic pathway, potentially affecting vision. Created with BioRender.com. 

This review specifically focuses on visual abnormalities associated with NF1. Tumors 
of the optic nerve associated with NF1, termed optic pathway gliomas (OPGs), are usually 
benign. OPGs can occur anywhere along the optic pathway, from the optic nerve to the 
optic chiasm, and they can cause visual disturbances that can be either anatomical (stra-
bismus-eye misalignment) or functional (by decreasing the visual field or visual acuity) 
[17]. However, some NF1 individuals experience visual deficits that cannot be fully ex-
plained by the presence of OPGs. In light of this, there is evidence from animal models 
suggesting that individuals with NF1 may be at higher risk for retinal ganglion cell (RGC) 
dysfunction and degeneration [18]. RGCs are a unique neuronal cell type located in the 
innermost portion of the retina that transmit visual information along their axons (form-
ing the optic nerves) to the brain [19,20]. RGCs are a vital component for visual function 
and other non-image-forming functions such as circadian photoentrainment and the pu-
pillary reflex [21,22]). Like other neurons in the CNS [23] which lack regenerative capacity 
[24], RGC injury often leads to cell death and permanent vision loss. 

Figure 1. Diagram illustrating the formation of optic pathway gliomas (OPGs) in children with
Neurofibromatosis Type 1. Under normal conditions, growth factors stimulate the activation of RAS-
GDP to RAS-GTP through son of sevenless (SOS). Neurofibromin (Nf1 gene) regulates the conversion
of RAS-GTP to its inactive form (RAS-GDP), thereby modulating cell growth and migration through
the MAPK/ERK and mTOR pathways. In NF1 patients, mutations of neurofibromin significantly
reduce its natural activity, resulting in abnormal hyperactivation of the MAPK/ERK and mTOR
pathways. Consequently, uncontrolled cell growth and migration lead to the development of gliomas
in the optic pathway, potentially affecting vision. Created with BioRender.com.

This review specifically focuses on visual abnormalities associated with NF1. Tumors
of the optic nerve associated with NF1, termed optic pathway gliomas (OPGs), are usually
benign. OPGs can occur anywhere along the optic pathway, from the optic nerve to the optic
chiasm, and they can cause visual disturbances that can be either anatomical (strabismus-
eye misalignment) or functional (by decreasing the visual field or visual acuity) [17].
However, some NF1 individuals experience visual deficits that cannot be fully explained by
the presence of OPGs. In light of this, there is evidence from animal models suggesting that
individuals with NF1 may be at higher risk for retinal ganglion cell (RGC) dysfunction and
degeneration [18]. RGCs are a unique neuronal cell type located in the innermost portion
of the retina that transmit visual information along their axons (forming the optic nerves)
to the brain [19,20]. RGCs are a vital component for visual function and other non-image-
forming functions such as circadian photoentrainment and the pupillary reflex [21,22]).
Like other neurons in the CNS [23] which lack regenerative capacity [24], RGC injury often
leads to cell death and permanent vision loss.
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The mechanism underlying RGC degeneration in NF1 involves alterations in genes and
signaling pathways that regulate cell growth, differentiation, and survival. Further research
is needed to fully understand the relationship between NF1 and RGC degeneration, and to
develop effective treatments for this condition. Although some individuals with NF1 have
a distinct genotype/phenotype correlation [25,26], heterogeneity in clinical presentation is
observed in patients and could be attributed to stochastic events, environmental factors,
or modifier genes [27–29]. Advances in imaging now allow for non-invasive examination
of the retina (optical coherence tomography, OCT) and tumor size and position (magnetic
resonance imaging, MRI; magnetic resonance spectroscopy, MRS), offering invaluable
“in vivo” measurements. NF1 cases can be examined by infrared fundus autofluorescence
(IR-FAF) and OCT to characterize choroidal abnormalities [30] in addition to measurements
of retinal nerve fiber layer thickness [31]. Using magnetic resonance imaging (MRI) with
contrast enhancement, the optic nerve sheath complex in patients with optic pathway
gliomas can be visualized as hypointense on T1-weighted images and hyperintense on
T2-weighted images compared to the normal optic nerve [32,33]. Measured parameters
include diameter and signal intensity of the optic nerve as well as degree of tortuosity [34].
For diagnostic purposes, imaging and clinical examination is sufficient; however, it is
difficult to link these observations to predict vision loss attributed to retinal ganglion cell
loss or tumor progression. Ex vivo examination of OPGs is rare as surgical removal is
an uncommon practice [35,36]. Thus, the scarcity of enucleated eyes in pediatric patients
prevents drawing correlations between RGC quantification, which can only be performed ex
vivo, with measurable parameters in patients such as tumor size, type, position, and degree
of associated visual impairments. Currently, image analysis and machine learning [37]
are being applied to MRIs of optic pathway gliomas to build predictive models that
may one day compliment ex vivo methodologies for tumor classification [38,39] or RGC
quantification [40,41]. This comprehensive review focuses on neuronal tissues and explores
the ocular symptoms associated with NF1, linking current research with advances in
diagnostic and therapeutic strategies.

2. Phenotypic Manifestations of NF1 Affecting Vision

NF1 ocular manifestations exhibit significant clinical heterogeneity during childhood
and adolescence. From overt signs such us Lisch nodules (LNs) to complex ophthalmo-
logical complications (such as optic gliomas, plexiform neurofibromas, and congenital
glaucoma), there is a full spectrum of pathologies that can influence visual acuity and
perceived visual field [42]. LNs, benign tumors with a yellowish-brown dome shape that
grow over the iris surface, tend to increase in size and number with age [43,44]. Vision
impairment in NF1 patients may stem from various factors, including anatomical causes
like proptosis or strabismus originating from intraorbital and periorbital (eye lid and face)
plexiform neurofibromas (PLXNs) [17] that may obstruct vision, displace the location of
the eye, and interfere with ocular motility; sphenoid wing dysplasia; and the presence of
tumors along the optic nerve, OPGs [45–47].

OPGs are predominantly asymptomatic low-grade gliomas (LGGs), primarily affecting
the anterior visual pathway, with 75% occurring in the optic nerve (ON) and optic chiasm.
However, they can often involve both ONs, posterior visual pathway segments (optic
tract and radiations), and the hypothalamus [48,49]. While mainly pilocytic astrocytomas
(grade I), OPGs can also be pilomyxoid astrocytomas and diffuse fibrillary astrocytomas
(grade II) [50,51], exhibiting clinical variability. Depending on their behavior, OPGs can be
aggressive, leading to visual loss [49,52,53], or regress spontaneously [54]. Symptomatic
gliomas typically manifest before age 6, with an average onset of 4.5 years [55]. The loca-
tion, type, size, and number of OPGs can cause various neurological symptoms affecting
visual function and resulting in a range of visual deficits (Figure 2) [56,57]. OPGs may
occur unilaterally or bilaterally, be situated anterior to, posterior to, or at the chiasm, cen-
tered or asymmetric. The optic tract and even the hypothalamus can also be involved
(Figure 2) [53,58]. In extreme cases OPGs can also reach the lateral geniculate nuclei and
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temporal lobes [59]. Larger tumors and those located closer to the optic nerve are usu-
ally associated with more severe visual impairment. Interestingly, patients with gliomas
isolated to the optic nerve have better long-term visual outcomes than those with postchi-
asmatic involvement [60,61]. Additionally, LGGs can affect other brain areas, known as
non-OPGs [62]. Although non-OPGs are less frequent than OPGs, they are more frequent
in older children/young adults [51] and they can also cause a wide range of neurologi-
cal symptoms depending on their location, size, and number. These symptoms include
headaches, seizures, changes in behavior, cognitive problems, or visual deficits if higher
areas of visual processing are involved [63].

Beyond the visual pathway, advancements in multimodal imaging in ophthalmology
have revealed microvascular abnormalities in the retinas of NF1 patients [64,65], poten-
tially causing progressive insults of ischemic injury that affect RGC function and viability.
Additionally, choroidal abnormalities and hyperpigmented spots have also been observed
during ophthalmologic examinations [66]. Although the effects of these choroidal abnor-
malities on vision are not established yet, the choroid plays a crucial role in maintaining
the retinal pigmented epithelium (RPE) and the photoreceptors. Given that photoreceptors
are highly metabolically active with high oxygen consumption, choroidal abnormalities
impacting oxygen delivery may adversely affect their survival and function and have a
profound effect on the patient’s vision. Thus, the diverse ocular manifestations in NF1
individuals highlight the significance of early diagnosis in improving clinical management
and enhancing patient outcomes.
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Figure 2. Visual field defects based on the location and size of the axonal damage in the optic pathway.
(A) Schematic representation of the retinal ganglion cell (RGC) axon projection to superior brain areas
for visual processing in the brain. Ipsilaterally (blue) or contralaterally (black and red) projecting
RGCs within the optic nerves. (B) Depiction of individualized visual field deficits in patients with
axonal damage in the optic pathway corresponding to their respective scheme in which red marks
represent OPG size and location. Drawings based on concepts presented in [56,57,67].

Although OPGs are a classic characteristic of NF1 pathology, sporadic OPGs (not
associated with NF1) can also form exhibiting distinct genetic hallmarks. In sporadic OPGs,
the most common genetic alteration is a duplication of the kinase domain of a gene called
B-Raf (BRAF) that leads to MAPK pathway activation, promoting cell survival, growth,
and proliferation [68–70]. However, other genetic mutations in sporadic OPGs can occur in
KRAS, RAF1, FGFR1, PTPN11, and NTRK2 genes [71–74]. Although NF1 associated OPGs
are predominantly found in females, sporadic OPGs occur in both genders with similar
frequency [50,75]. Like NF1, sporadic OPGs have a similar age of presentation (4.5 and 5.1,
respectively). However, sporadic OPGs are often symptomatic and clinically more severe,
with aggressive tumor growth and rapid visual decline compared to OPGs associated with
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NF1 [75–79]. Notably, studies have determined that sporadic OPGs are predominantly
located at the optic chiasm, while OPGs associated with NF1 are generated at the chiasm
as well as the optic nerve [76,80–82]. Despite their location, sporadic OPGs can lead to a
large variety of symptoms such as proptosis, nystagmus, hypothalamic-related endocrine
alterations, hydrocephalus, raised intracranial pressure, and vision loss [81,83]. In fact,
sporadic OPGs carry a higher risk of vision loss (66–74% in comparison with a 50% risk
in NF1-associated OPGs), with visual deficiencies that can appear bilaterally in 25% of
cases, and progressive visual loss in 74% of patients regardless of therapy [77,84]. Similar
to NF1 OPGs, treatment is necessary only if accompanied by visual impairment. The main
treatment is chemotherapy which will be discussed in further detail below.

3. Diagnosis and Monitoring Methodologies

The diagnosis of NF1 primarily relies on clinical criteria established by the National
Institutes of Health (NIH) in 1987 [85]. These criteria are based on characteristic features
such as café au lait spots and neurofibromas. Thus, children meeting clinical criteria for NF1
are expected to undergo regular eye exams to detect asymptomatic OPGs. In fact, several
studies have reported a high prevalence of brain tumors in asymptomatic children [44].
Similarly, children presenting with unexplained vision loss, monocular or asymmetric
nystagmus, or optic atrophy should be considered for NF1 clinical diagnosis [86]. However,
numerous children present significant vision loss prior to receiving treatment, emphasizing
the importance of early detection and intervention [87]. Therefore, conducting annual
screenings and longitudinal monitoring for signs and symptoms related to OPG throughout
childhood is essential for timely clinical decision-making and treatment [88].

In terms of vision, Lisch nodules (LNs) serve as pathognomonic markers of NF1,
indicating a potential vision-threatening condition [55]. They appear as small dome-shaped
lesions on the iris of the eye and although LNs do not cause visual disturbances, their
presence is rare in individuals without NF1. Detecting LNs through a slit lamp examination
is a straightforward, noninvasive, and cost-effective method for accurately diagnosing
NF1. However, the absence of LNs at earlier stages does not exclude NF1 diagnosis [44].
Importantly, there is no established association between LN presence and the overall clinical
severity of NF1 pathology in patients [89,90].

Traditionally, biopsies have been the standard investigation method to confirm NF1
tumor diagnosis. However, they are no longer used routinely, but only exceptionally,
to confirm the presence of OPGs [91]. Several imaging techniques offer non-invasive
examination of OPGs. Advanced imaging techniques, such as computed tomography
(CT) and magnetic resonance imaging (MRI), are ideal to visualize the entire optic nerve
or the optic pathway. However, MRI is the preferred method because of superior soft
tissue resolution [92–94], since OPGs cannot be easily detected on CT scans. Non-contrast
MRI provides accurate measurements of tumor size, and contrast-enhanced MRI precisely
delineates involvement of other adjacent areas, such as the hypothalamus [94]. MRI can
be used to monitor tumor progression in NF1 patients using different approaches, such as
volumetric analysis or linear measurements [95]. However, radiographic results to date
have provided poor correlation with functional outcomes of patients (visual acuity) in
numerous studies [92,93,96].

Interestingly, machine learning algorithms can aid in analyzing the large amount of
data generated by these techniques, facilitating initial screening for doctors [97]. Notably, a
study reported a correlation between the OPG volume and RGC axon loss [98]. However,
systematic MRI screening in children with NF1 has not shown clear benefits yet [99], as
early OPG diagnosis and treatment did not improve visual outcomes. Without follow-up
examinations, continued optic glioma growth cannot be excluded [8,100]; thus, annual
ophthalmologic assessment for changes in the patient’s vision is always recommended.

Optical coherence tomography (OCT) uses reflected near infrared light to produce
cross sectional images of retinal tissue structure with a depth of several hundred microns
and can help in the diagnosis and evaluation of OPG-associated pathology. In NF1 patients,
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RGC degeneration can be evaluated by measuring the thickness of the different retinal
layers [101]. The ganglion cell complex (GGC) and retinal nerve fiber layer (RNFL [102,103])
thickness provide a quantitative measure of RGC viability. The GCC, comprising the
ganglion cell layer and inner plexiform layer, reflects the status of the RGC somas and
dendrites, excluding their axons. The RNFL, on the other hand, is primarily composed of
RGC axons that converge at the optic nerve head to form the optic nerve. Importantly, the
RNFL also includes processes from glial cells (astrocytes, microglia, and Müller cells) that
form an intricate interlocking pattern with RGC axons in primate retinas [104,105]. Thus,
reactive and infiltrating glial cells in pathological conditions may impact measurements of
RNFL thickness, complicating interpretation. Unfortunately, the use of different imaging
instrumentation and proprietary software have made it difficult to make direct comparisons
among studies [106,107]. In addition, studies in rodents suggest a potential mismatch
between RGC loss and RNFL thinning, further complicating interpretation [104,108]. These
experiments indicate RGC death precedes axonal atrophy and removal; however, the
experimental insult of axotomizing the RGC axons may not recapitulate OPG damage.
Despite these caveats, significant thinning of the RNFL or the GCC implies RGC loss, and
patients may show substantial visual impairment. Thus, although measurements of RNFL
or GCC thickness do not provide a causative link to visual outcomes, they can identify
associated anatomical changes to the retina.

Near-infrared imaging (NIR) of the fundus (rear of the eye) generates a 2D image from
the amount of reflected light. NIR is able to detect choroidal nodules in NF-1 patients, which
appear bright (hyperreflective) and patchy [109]. Although these choroidal nodules do not
affect RGCs and their axons directly, they may affect epithelial transport functions of the
RPE between the choroid and retina, potentially affecting photoreceptor viability and visual
function. Nonetheless, evaluating visual acuity may not identify minor photoreceptor loss,
as numerous studies have indicated that a 40–60% loss of cone photoreceptors in the fovea
does not have an impact on visual acuity [110–112].

Functional tests, particularly visual evoked potentials (VEPs), might play a crucial
role in diagnosing and monitoring progression. In response to visual stimulation, VEPs
record the generation of electrical impulses from the visual cortex in the brain through elec-
trodes placed in the scalp [31,113]. Reduced amplitudes or delayed responses indicate the
magnitude of visual deficits; however, they cannot reveal the nature of the vision loss, and
some reports question the correlation between VEP evaluations and vision loss [114–116].

A potential future ideal would be molecular and genetic testing to predict the likely
phenotype and complications for a person with a specific Nf1 germline mutation. However,
genetic testing is rarely performed due to the extensive heterogeneity in the mutations
of the neurofibromin gene and the potential influence of stochastic factors. To date, over
3000 pathological genetic variants of the Nf1 gene have been identified [117], with less than
20% reported as recurrent [118,119]. Despite the majority of investigations not establishing
genotype–phenotype correlations or providing inconclusive results [53], recent studies
employing novel screening techniques are beginning to establish correlations [25,120–129].
The integration of genetic testing in future studies could play a pivotal role in confirming
NF1 diagnoses and uncovering genetic variations that may influence ocular phenotypes.
Thus, compiling a library of cases has the potential to diagnose and classify new patients
earlier, facilitating treatment decision making.

Currently, NF1 gene mutation testing is performed primarily to help confirm or reduce
the likelihood of an NF1 diagnosis in cases of clinical uncertainty [86], though genetic
testing can also be expanded to include family testing in relatives with uncertain clinical
signs or for prenatal testing [6].

Early diagnosis of NF1 patients could be challenging but it is crucial for successful
intervention [55,63]. The abovementioned examinations require patient cooperation that
can be complicated in preverbal children, especially if they are cognitively compromised.
In addition, the natural history of OPGs in NF1 is highly variable; some tumors remain
stable, others can regress over time, while others progress, causing significant vision
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loss. However, these techniques provide crucial information to guide treatment decision,
although decisions remain complex [91,130]. Thus, monitoring is an integral part of
the management of NF1-associated vision impairment, and examples such as positron
emission tomography have proven useful for monitoring OPG progression and response to
treatments [131].

4. Therapeutic Strategies

Treatment strategies for children with NF1-related visual complications attempt to
halt progressive vision loss and promote healthy development. OPG treatment approaches
vary depending on specific symptoms, tumor location and size, and extent of visual
impairment, and may involve observation, surgical procedures, radiation, chemotherapy,
or targeted therapies.

The presence of LNs rarely interfere with vision and typically do not require treat-
ment [44]. However, when OPGs result in the compression of the optic nerve, surgery
can reduce symptoms. Surgical procedures are seldom performed to remove pediatric
LGGs because they are benign and the likelihood of progression to the chiasm or potential
damage to the fibers crossing from the contralateral eye is low [35,36]. Intraorbital and
especially intracranial procedures are invasive and carry the risk of vision loss and they
can be potentially life-threatening [132], due to bleeding complications [133,134]. Thus,
surgical procedures are warranted based on anatomical location and accessibility [135].
Surgery is primarily recommended in cases involving pain, disfiguring proptosis, and/or
compression of the surrounding tissues [136]. Although surgery is unlikely to improve
vision in patients with orbital OPGs, it may be undertaken for cosmetic purposes [57] or
for biopsy if the eye is blind.

Radiotherapy offers an effective treatment for OPGs, but its use is mainly limited to
teenagers and those without targeted treatment options due to potential adverse effects,
especially in young patients with developing brains [136]. These adverse effects include
reduced visual function [137,138], neurocognitive deficits [138–140], cerebrovascular ab-
normalities [141,142], and alterations in endocrine function [143,144] that can persist into
adulthood. Novel options include 3D conformal radiation therapy where radiation beams
are matched to the volumetric shape of the cancer [145], stereotactic radiosurgery (gamma
knife) that focuses the beam to treat smaller targets [146,147], and fractionated stereotactic
radiation [148,149] and proton beam radiation [59,150] which minimize damage to healthy
surrounding tissue.

Currently, OPGs displaying substantial progression are treated with chemother-
apy [47,136,151]. Vincristine and carboplatin are often prescribed as the first line of treat-
ment and have shown reasonable progression-free survival rates at earlier stages [152].
However, carboplatin doses can lead to hypersensitivity and frequency-based adverse
effects in some individuals [153]. Alternative combinations, such as cisplatin and etopo-
side [154] or thioguanine, procarbazine, and lomustine appear to improve event-free
survival [155]. However, caution on the use of these alternative drugs in treating NF1 is
advised due to the risk of developing secondary leukemia attributed to etoposide [156],
and to procarbazine and lomustine [154,157]. Monotherapies with vinblastine [158,159],
vinorelbine [160], trametinib [135,161] or temozolomide [162] have also shown efficacy
in NF1 patients with low toxicity, except there have been reported cases of secondary
leukemia following temozolomide and radiotherapy [163]. Notably, pre-chiasmatic OPGs
appear to be more responsive to chemotherapy than gliomas located elsewhere in the optic
pathway [164]. However, while chemotherapy often limits tumor growth effectively, very
few individuals show visual improvement following treatment [96], particularly patients
with late-progressive OPGs [165].

Another set of treatments are targeted therapies. Bevacizumab is an anti-vascular
endothelial growth factor (VEGF) monoclonal antibody [166] that reduces vascular per-
meability and tumor growth. It improves visual symptoms in most cases [167,168] when
administrated alone or in combination with irinotecan, a DNA topoisomerase I inhibitor
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that interrupts DNA replication and cancer growth [169–172]. However, bevacizumab
causes reversible side effects (hypertension, fatigue, joint pain, bleeding, and proteinuria)
that can persist after treatment ending, and tumor progression is common after treatment
discontinuation [167,171,173].

Novel agents focus on inhibiting the mitogen-activated protein kinase (MAPK) path-
ways. Selumetinib, a selective MEK1/2 inhibitor, has been shown to maintain or improve
visual acuity after oral administration in patients with OPGs [174]. Recent studies show
MEK inhibitors such as refametinib, trametinib, and cobimetinib can shrink the volume
of most inoperable benign LGGs and malignant plexiform neurofibromas, improving
neurocognitive function in NF1 patients [175,176]. In fact, MEK inhibitors have also demon-
strated tumor suppression in preclinical mouse models [177]. However, it is important
to note that the response of LGGs to MEK inhibition is often variable, and regrowth is
frequently observed after discontinuation of therapy [177]. Other promising treatment
options include small competitive molecules (vemurafenib and dabrafenib) that prevent
bRAF from binding MEK and activating the MAPK pathway [178]. Rapamycin and its
derivates, such as everolimus, are selective mTOR blockers. A recent study demonstrated
oral administration of everolimus stabilized visual acuity in children with NF1-OPGs with
low levels of toxicity [179,180].

In addition, administration of pro-survival factors can preserve RGC survival or
stimulate axonal regrowth, as demonstrated by a clinical study in which NF1 patients were
given eye drops with murine nerve growth factor for 10 days, and a third of the treated
group showed significant improvement in the size of their visual field [181].

Overall, the management of NF1-associated vision impairment requires a multidis-
ciplinary approach, involving close collaboration between ophthalmologists, oncologists,
neurologists, geneticists, neurosurgeons, endocrinologists, and pathologists. Early diagno-
sis is crucial to initiate treatment promptly and prevent irreversible visual decline, while
regular monitoring (tumor size, visual function) is essential to ensure optimal outcomes in
patients with NF1 and OPGs.

5. The Role of Animal Models to Uncover Underlying Mechanisms of NF1 and to
Develop Novel Therapies

The scarcity of surgical resection or biopsies from OPGs in NF1 patients underscores
the utility of preclinical animal models in providing knowledge about these tumors.

Genetically engineered rodents, particularly mice, are the most widely used and best
characterized models of NF1-OPG. Generation of Nf1 knockout mice from the germline
(Nf1−/−) was unsuccessful as they were lethal and their heterozygous littermates (Nf1+/−)
did not develop astrocytomas despite increased astrocyte proliferation [182,183]. Subse-
quent studies focused on germline mutations in Nf1 resulting in varying levels of neu-
rofibromin expression and the development of optic gliomas [184]. Currently, the most
successful mouse models are the conditional knockout lines, which allow for inactivation
of Nf1 in specific cell lineages. Utilizing the Cre-lox system enables the generation of
NF1-associated tumors in animals without being lethal. In this context, specific deletion
of the Nf1 gene in astrocytes (GFAP-Cre; Nf1flox/mut) successfully induced formation of
OPGs [185,186]. Additional mouse lines have been developed that more closely resemble
NF1 human pathology by introducing human GFAP (hGFAP-Cre; Nf1flox/mut) [187]. This line
exhibited complete penetrance of glial hyperplasia and enlarged optic nerves with lesions
that in some cases progressed to form optic pathway gliomas [188]. Other mouse models
achieve OPG formation by activating the KRAS oncogene in astrocytes of heterozygous Nf1
mice [189], or inhibiting Nf1 in neuroglial progenitors (such as BLBP and Oligo2 [190,191])
thereby increasing proliferation of cells with glial lineage and inducing abnormal neu-
ronal differentiation. However, a recent report suggests that in Nf1-deficient neuroglial
progenitor cells, CNS injury could be sufficient to induce glioma formation, indicating
that independent injuries can promote tumor development in susceptible animals [192].
Mouse models have contributed to our understanding of OPG formation and have high-
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lighted mechanisms for mTOR-dependent glioma formation [193], implicating microglia
in glioma formation [194–197], and the presence of glioma-specific stem cells [198,199].
In addition, mouse models are a valuable tool to design novel therapeutic strategies or
redefine existing treatments. Animal studies have helped define the therapeutic window to
rescue neural progenitors by administration of MEK/ERK inhibitors during early postnatal
stages [200]. Interestingly, Jecrois and colleagues reported that either the simultaneous
removal of three out of the four alleles from the Mek1 and Mek2 genes (as complete elimina-
tion of the two alleles of Mek1 and the two alleles of Mek2 proved lethal) or administration
of a low-dose MEK inhibitor (PD0325901) through the lactating mother’s milk prevented
NF1-OPG formation [201]. A recent report attributed the predominance of OPG forma-
tion in girls to higher levels of glial interleukin-1β, which can be suppressed by IL-1β
neutralization and leuprolide-mediated estrogen suppression [192,202]. However, it is
important to note that the formation of the optic chiasm in mice differs from humans [181]
and these tissue-restrictive tumors in mice do not fully replicate the complex pathology
of NF1 patients [203]. Additionally, humans have a different proportion of ipsilateral and
contralateral projecting RGCs, with ~50% of RGC axons decussating to the contralateral
optic tract, while in rodents, only a few RGCs contribute to binocular vision (with ~95–97%
of RGCs projecting contralaterally [204–206]).

Large animal models of NF1 offer a better anatomical comparison to understand the
NF1 pathology in humans. Genetically engineered porcine models, such as the Nf1+/R1947X

minipigs, share major clinical NF1 features. Electron microscopic evaluation of the optic
nerves demonstrated significant demyelination and OPG formation that was confirmed
by MRI and CT scans [207,208]. Additionally, their comparable eye and optic nerve size to
humans can facilitate the development of new imaging approaches for diagnosis and the
testing of novel surgical modalities. Their body size, metabolism and lifespan make them
an ideal preclinical model for longitudinal studies, pharmacological tests, and drug dose
optimization studies [203]. Large animal models may facilitate translational studies, acting
as an intermediate between small rodents and humans [180]. Similarly, cases of spontaneous
NF-like manifestations in large animals, such us cattle and dogs [203,209,210], are highly
valuable because they can provide insights into the natural malignant transformation of
some tumors, contrasting with genetically engineered models [211].

From a different perspective, the zebrafish model can facilitate large-scale experiments
for treatment screening, as generating transgenic lines is cost-effective since they are easy
to handle and have a high fertility rate [212,213]. The drosophila model can also contribute
to large-scale testing; however, these studies typically focus on peripheral nerves, social
abilities, and development [214,215]. In addition to animal models, cell culture methods
also enable high-throughput screening, which could be particularly valuable when using
cells developed from patients to generate compact LGGs [216].

An integrative approach requires collaboration between clinicians and researchers.
This collaboration not only enriches our understanding of the disease but also bridges the
gap between clinical observations and laboratory advancements. Furthermore, neuroscien-
tists are exploring novel strategies to promote RGC survival and regeneration, including
neuroprotective drugs [217], gene therapy [218], or stem cell transplantation [219,220].
These approaches hold promise for improving the vision of NF1 patients; however, most
are still in the experimental stage, requiring further research to determine their safety
and efficacy.

6. Concluding Remarks

The study and treatment of NF1 pose significant challenges owing to its variable
clinical presentation and biological complexity. Clinically, NF1 exhibits remarkable hetero-
geneity, manifesting diverse symptoms and complications, with variability in penetrance
and unpredictable progression of associated OPGs and retinal abnormalities. The major
challenge in understanding NF1 pathophysiology arises from the extensive genetic and
phenotypic variability, coupled with the absence of clear associations with visual deficits.



Vision 2024, 8, 31 10 of 19

Further complicating NF1-related retinal research is the lack of well-defined biomark-
ers that can differentiate between asymptomatic and symptomatic OPGs that lead to vision
loss. Unlike systemic aspects of NF1 that are accessible and more easily monitored, the
intricate structure and function of the retina and brain demand sophisticated imaging tech-
niques and functional assessment, which may not translate readily into easily measurable
biomarkers. Despite these challenges, progress in genetic research, development of new
imaging technologies, and collaborative efforts are gradually enhancing our understanding
of NF1.

Ethical considerations introduce additional complexity, particularly in dealing with pe-
diatric populations who cannot consent to clinical investigations for themselves. The heredi-
tary nature of NF1 requires careful navigation of informed consent from parents/guardians
and privacy concerns. This highlights the need for an ethical framework that respects the
rights and well-being of patients, making the assembly of large patient cohorts difficult,
and limiting robust data analysis. This emphasizes the importance of collaborative efforts
across research centers to consolidate data and share insights.

While animal models have been developed to better understand the mechanism of
NF1 pathology and to design new therapeutic approaches, replicating the full spectrum of
abnormalities to the retina, optic nerve, and visual pathways observed in humans remains
a significant challenge. While mouse lines can mimic certain features of the NF1 pathology,
species-specific differences in ocular/brain anatomy and physiology may limit translation
to the human condition. Large animal models such as minipigs exhibit a closer resemblance
to human anatomy and physiology. Newer models are being developed to better replicate
human NF1 pathology, and to shed light on NF1-related visual impairment.

Integration of clinical observations, advanced imaging technologies, and molecular
analyses requires collaboration among diverse fields, including ophthalmology, genetics,
neurology, and basic science research. Moreover, understanding the interplay between ge-
netic and environmental factors in the development and progression of retinal abnormalities
associated with NF1 is crucial. Untangling these interactions is essential to understanding
the underlying causes of many of the NF1-related retinal manifestations. Through this
integrative review, we summarize the ocular facets of this inherited disorder and encourage
synergistic collaboration to discover therapeutic interventions to mitigate visual loss in
NF1-affected individuals.
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