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Abstract: Mild cognitive impairment (MCI) may progress to severe forms of dementia, so therapy 

is needed to maintain cognitive abilities. The neural circuitry for oculomotor control is closely linked 

to that which controls cognitive behavior. In this study, we tested whether training the oculomotor 

system with gaze-controlled video games could improve cognitive behavior in MCI patients. Pa-

tients played a simple game for 2–3 weeks while a control group played the same game using a 

mouse. Cognitive improvement was assessed using the MoCA screening test and CANTAB. We also 

measured eye pupil and vergence responses in an oddball paradigm. The results showed an in-

creased score on the MoCA test specifically for the visuospatial domain and on the Rapid Visual 

Information Processing test of the CANTAB battery. Pupil responses also increased to target stimuli. 

Patients in the control group did not show significant improvements. This pilot study provides ev-

idence for the potential cognitive benefits of gaze-controlled gaming in MCI patients. 
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1. Introduction 

Mild cognitive impairment (MCI) is a condition that affects cognitive function, in-

cluding attention, memory, and executive function. While MCI does not typically interfere 

significantly with daily activities, it may progress to more severe forms of cognitive de-

cline, such as dementia [1–6]. As such, there is a need for therapy or treatment for patients 

with MCI to maintain their mental abilities and potentially delay the onset of more severe 

cognitive impairment. 

Cognitive improvement may involve various approaches, such as cognitive training, 

physical exercise, and diet modifications, and there is growing interest in the use of com-

puterized tasks and video games as a potential intervention to improve cognitive func-

tions. Research has suggested that video gaming and computerized task can improve at-

tention, working memory, executive function, and visuospatial abilities [7–14]. Enhance-

ments have been observed not only in healthy individuals, but also in patient populations 

with attention problems [15], including MCI patients [16–18]. However, meta-analysis 

studies revealed small to moderately positive treatment effects in MCI patients [13,19–22], 

and some studies found no positive effects of computerized training tasks in healthy par-

ticipants or in MCI patients [19,23,24]. Thus, although video games are a promising tech-

nology, they need to be further developed to become a tool for intervention. 
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Patients with cognitive disorders typically demonstrate altered pupil responses 

[25,26] and oculomotor deficits [26–31]. Ample evidence shows that modulation in pupil 

size manifest cognitive processing and likely reflects the functioning of the locus coeruleus 

[32–34], which is a key structure in attentional processing. In addition to pupil responses, 

eye movements play a role in perception and attention. [35–40]. It is thus plausible that 

the oculomotor system can be used as a means of cognitive intervention. Indeed, recent 

evidence shows that training the oculomotor system with gaze-controlled video games 

can be effective in improving attention in ADHD patients [41]. The goal of this study is to 

determine whether gaze-controlled games can improve cognitive behavior in patients 

with MCI. 

2. Materials and Methods 

2.1. Participants 

A total of 50 patients with MCI were recruited by the coordinators from three differ-

ent private day care centers in Barcelona, Spain. As our primary aim was to see whether a 

gaze-controlled game improves attention processing, we first recruited patients with MCI 

to assess cognitive improvement. The recruitment of the control participants was per-

formed after testing the patients. Unfortunately, as we needed to finish the study, the con-

trol group was not as large as the experimental group. Thirteen patients withdrew from 

the study before completion because of personal reasons, and following the protocol their 

data were excluded from the analysis. Therefore, no intent-to-treat analysis could be per-

formed. Of the remaining 37 patients, 29 (19 female) participated in the experimental 

group and 8 (5 female) were in the control group. Participants were 63–86 years old (mean 

± SD: 77.91 ± 6.85). All participants had a history of cognitive decline, confirmed by their 

Montreal Cognitive Assessment (MoCA) scores (see Results). The exclusion criteria were 

as follows: (1) history of neurological disease with clinically relevant impact on cognition 

(e.g., cerebrovascular disease); (2) severe psychiatric disorder; (3) presence of relevant vis-

ual problems; and (4) problems for understanding spoken or written Spanish language. 

2.2. Ethics Statement 

Participants and their relatives received detailed instructions for the experiments. 

Prior to enrollment, patients or their relatives signed a written informed consent for their 

participation, in accordance with the tenets of the Declaration of Helsinki. The ethics com-

mittees of the University of Barcelona approved the study. 

2.3. Video Game 

The video game (Figure 1) consisted of a stationary or moving (left to right or vice 

versa) target (dartboard-like picture) and a distractor (picture of an owl). Participants had 

to look at or follow the moving target with their eyes for 1 s and avoid looking at the 

(moving) distractor. If successful, the target would “explode” and the participant received 

points, or the owl would disappear. If unsuccessful, the target would disappear or the owl 

would “explode”, and the participant would lose points. Only one target or distractor was 

presented at a time. Eye position was recorded with a remote eye tracker (5L, Tobii, Dan-

deryd, Sweden) and fed back to the presentation software to control the game. The actual 

eye position was indicated by a pointer on the screen. In the control group, participants 

played the same game but used a mouse cursor as a controller instead of eye gaze. Partic-

ipants played 3 sessions per week for approximately 15 min each over a period of one 

month. 
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Figure 1. Illustration of the video game. Note that in the actual game, only 1 target (dartboard) or 

distractor (owl) was presented. The pointer indicated the position of the eye gaze or mouse cursor 

in real time. 

2.4. Neuropsychological Pre and Post Assessment Instruments 

Global cognitive performance of participants was assessed using the Montreal Cog-

nitive Assessment (MoCA) and the Cambridge Neuropsychological Test Automated Bat-

tery (CANTAB®; Cambridge Cognition Ltd., Cambridge, UK). In addition, a visual odd-

ball paradigm was applied to assess pupil and vergence responses [26]. 

2.4.1. MoCA 

MoCA is a widely used cognitive screening tool that assesses various aspects of cog-

nitive function, including attention, memory, language, visuospatial abilities, and execu-

tive function [15]. It was designed to detect MCI and early dementia in adults. The maxi-

mum score on the test was 30, with a score of 26 or above considered normal. 

2.4.2. CANTAB 

CANTAB is a computerized cognitive assessment battery. The CANTAB battery con-

sists of a series of tests that assess various cognitive domains, including attention, 

memory, executive function, and visuospatial abilities. The battery has been extensively 

validated and is widely used in both research and clinical settings to assess cognitive func-

tion in a range of populations including MCI [42]. 

For this study we used the following tests: 

• Rapid visual information processing (RVP) is a measure of sustained attention. 

• Paired associates learning (PAL) assesses visual memory and new learning. 

• The motor screening task (MST) provides a general assessment of sensorimotor def-

icits. 

• Pattern recognition memory (PRM) is a test of visual pattern recognition memory in 

a 2-choice forced discrimination paradigm. 

• Reaction time (RT) provides assessments of motor and mental response speeds, as 

well as measures of movement time, reaction time, response accuracy, and impul-

sivity. 

• Spatial working memory (SWM) requires the retention and manipulation of 

visuospatial information. 

• Delayed matching to sample (DMS) assesses both simultaneous visual matching abil-

ity and short-term visual recognition memory. 

2.4.3. Visual Oddball Paradigm 

To assess possible changes in pupil and eye vergence responses, patients performed 

a visual oddball task before and after the gaming sessions [26]. The task was a sequence 
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of 100 trials. Each trial started with a grey screen (Mask) for 2000 ms, followed by the 

stimulus screen for 2000 ms. The central stimulus consisted of a series of randomly se-

lected letters forming a string of 11 characters in upper or lower case. Letter strings did 

not represent acronyms or meaningful words. In the distractor condition, the color of all 

characters of the string was blue (80% of trials), whereas in the target condition, the color 

of the characters was red (20% of trials). Target and distractor stimuli were randomly pre-

sented. Participants were instructed to press a response button when the characters of a 

string appeared in red. The total duration of the task was about 6 min. 

The BGaze (Braingaze SL, Mataró, Spain) system was used to present the visual odd-

ball task. Eye position data were recorded with an X2-30 (30 Hz) remote eye tracker (Tobii 

Technology AB, Danderyd, Sweden) mounted below the screen. The screen resolution was 

1024 × 768 pixels. Patients were seated 50–60 cm from the stimulus screen. Patients could 

wear corrective lenses. Before starting the recording, the eye tracker was calibrated (5 

points, binocular) for each participant. No chinrest was used during the task. 

The eye data obtained during the visual oddball task were used to calculate pupil 

and vergence responses. In order to calculate vergence changes, we transformed the coor-

dinates of the left and right eye, supplied by the eye tracker, into angular magnitudes 

(degrees). The subtraction of initial values from every response, which was applied both 

to vergence and to pupil data, served the purpose of obtaining relative changes. Only cor-

rect trials were analyzed. 

2.5. Statistical Analysis 

One-tailed t-tests were used to evaluate improvements in MoCA scores. Raw scores 

of CANTAB test measures were selected for statistical evaluation. For comparisons be-

tween baseline and post-game CANTAB scores, the one-tailed Wilcoxon signed rank and 

Kruskal–Wallis ANOVA tests were used. In addition, we used analyses of variance 

(ANOVA) with repeated measures. For the analyses of pupil and vergence responses, two 

sided paired t-tests (Welch) were applied. The significance level was set at p < 0.05. 

MATLAB (MathWorks) was used for data and statistical analysis. 

3. Results 

3.1. Video Gaming 

On average, 11.7 ± 2.20 (mean ± SD; min: 9; max: 16) sessions were completed. The 

mean session duration was 16.12 ± 3.22 min (mean ± SD). The mean proportion of correctly 

identified targets was 55.25%. Participants did not improve over the course of therapy, as 

there was no significant (p > 0.05) correlation (Spearman rank) between the number of 

sessions played and the number of correct responses (R2 = 0.21). 

3.2. MoCA 

The total MoCA score improved from 14.64 ± 4.28 (mean ± SD) at baseline to 15.52 ± 

4.76 after gaming (p < 0.03). When comparing the scores for the different items, we ob-

served that the improvement was significant in the visuospatial domain (p < 0.002) and 

remained significant after Bonferroni correction for multiple comparison. The results of 

the MoCA assessment per cognitive function tested are shown in Figure 2. The effect sizes 

are small for total MoCA scores (Hedges’ g factor: 0.20) and moderate for the visuospatial 

domain (Hedges’ g factor: 0.52). Of the participants, 55% improved and 10% worsened in 

this domain (Figure 3). None of the other domains showed significant improvement. 
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Figure 2. MoCA scores obtained before (pre) and after (post) the gaming sessions. 

There was no significant correlation (Spearman rank) between the number of video 

game sessions played and improvement in either the overall MoCA score (R2 = 0.067) or 

the visuospatial domain score of the MoCA (R2 = 0.155). Neither there was a significant 

correlation (R2 = 0.001) between the improvement in the overall MoCA score and the pre–

post training difference in detection performance of the video game. We repeated the cal-

culation using the MoCA scores in the visual domain; neither found a significant correla-

tion (R2 = 0.012). 

 

Figure 3. Scores of the MoCA in the visuospatial obtained before and after the gaming sessions. 

Each dot represents the score of one participant. 

3.3. CANTAB 

Of the various CANTAB tests used, only rapid visual information processing (RVP) 

showed significant improvements after the end of the game session (Table 1). The most 

significant improvement was observed in participant’s sensitivity (RVPA), which is a 

measure of how well the participant is able to detect target sequences (Figure 4). The effect 

size for RVPA was 0.67 (Hedges’ g-factor). Except for a few scores, all other tests (paired 

associates learning, motor screening task, pattern recognition memory, reaction time, spa-

tial working memory, and delayed matching to sample) showed no statistically significant 

improvement after the gaming sessions (Tables S1–S5 in Supplementary Materials). 
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Table 1. Measures obtained from the rapid visual information processing (RVP) test, presented as 

the mean ± SD of the raw score. After Bonferroni correction for multiple comparison, the results of 

the RVPA remained significant. 

Type 
Pre-Treatment 

Mean (SD) 

Post-Treatment 

Mean (SD) 

Participants 

N 

Test Statistics 

Ties Z p 

RVPML 887.00(340.36) 787.89(205.26) 29 0 1.6866 0.0458 

RVPLSD 409.24(138.68) 337.10(145.22) 29 0 2.1842 0.0145 

RVPA 0.75(0.07) 0.79(0.05) 27 2 −3.4476 <0.001 

RVPTH 16.59(10.29) 22.89(15.58) 27 2 −2.1403 0.0162 

RVPTFA 35.81(36.73) 65.30(99.65) 25 3 −0.4858 0.3136 

RVPPH 0.31(0.19) 0.42(0.29) 27 2 −1.9646 0.0247 

RVPTM 34.83(13.84) 30.59(15.63) 27 2 1.5505 0.0605 

 

Figure 4. Rapid visual information processing (RVPA) scores of the CANTAB obtained before and 

after the gaming sessions. Each dot represents the score of one participant. 

3.4. Control Group 

To assess whether the improvements observed on the MoCA test and the RVP task 

of the CANTAB battery were specific to the gaze-controlled game, we tested a small group 

of MCI patients who played the same game but controlled it with a mouse instead of their 

eyes. 

Overall MoCA scores did not improve significantly between baseline (mean ± SD: 

22.50 ± 6.82) and post-game (23.00 ± 6.93; p = 0.37). No significant changes were observed 

in any of the individual domains of the MoCA, including the visuospatial domain (mean 

± SD: baseline: 4.13 ± 0.83; post-gaming: 4.13 ± 0.64; p = 0.5). Of the participants, 12.5% 

improved and 25% worsened in this domain (Figure 5). Note that in the control group, the 

overall MoCA scores were higher than in the experimental group. A Wilcoxon rank sum 

test showed significant differences in the MoCA scores before (p < 0.0002) and after (p = 

0.0003) gaming sessions between the experimental and control group. The RVP task of the 

CANTAB battery also showed no significant differences in any of the measures. For ex-

ample, sensitivity (RVPA) at baseline was 0.84 ± 0.07 and 0.81 ± 0.10 (mean ± SD) after the 

game (p = 0.8309). On the other administered CANTAB tasks, no significant improvements 

were observed. 
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Figure 5. Scores of the MoCA in the visuospatial domain obtained before and after the gaming ses-

sions. Each dot represents the score of one participant. 

Since the pre-test scores were higher in the control group than in the experimental 

group, a ceiling effect may have influenced the results. Therefore, we divided the MoCA 

scores in the visuospatial domain of the experimental group into ‘low’, ‘mid’, and ‘high’, 

depending on their score. Then, ANOVA was applied to the factor ‘group’ (‘low’, ‘mid’, 

‘high’, and ‘control’), in addition to the factor ‘session’ (‘pre’, ‘post’). The marginal means 

for the ‘group’ factor were 1.44 ± 0.86, 1.67 ± 1.03, 3.67 ± 1.08, and 4.12 ± 0.72 for ‘low’, 

‘mid’, ‘high’, and ‘control’, respectively. Significant differences were present (F(3,62) = 

38.7, p = 3,2 10-14), and the Tukey–Kramer procedure indicated that ‘low’–‘high’, ‘mid’–

‘high’, ‘low’–‘control’, and ‘mid’–‘control’ differences were significant. The session factor 

involved significant differences as well (F(1,62) = 5.23, p = 0.026). After restricting session 

comparisons to each of the three patient groups, we observed that the significant differ-

ence between ‘pre’ and ‘post’ sessions came from the ‘low’ patient group (‘pre’: 1.00 ± 0.00, 

‘post’: 1.89 ± 1.05, F(1,16) = 6.4, p = 0.022) and not from ‘mid’ (‘pre’: 1.33 ± 0.50, ‘post’: 2.00 

± 1.32, F(1,16) = 2.0, p = 0.18) or ‘high’ (‘pre’: 3.44 ± 0.88, ‘post’: 3.89 ± 1.27, F(1,16) = 0.74, p 

= 0.40) patient groups. 

3.5. Visual Oddball Paradigms and Pupil and Vergence Responses 

We first looked at the behavioral performance of both groups in the oddball task. The 

overall performance was 96% and 94% correct in the control and patient group, respec-

tively. No significant differences were observed between groups and pre–post sessions. 

We next evaluated whether pupil size and vergence responses had changed after the gam-

ing sessions. We observed modulatory pupil responses where responses were stronger to 

targets than to distractors (Figure 6). After gaming, there was a significant increase in the 

late period (average window of 1500–2000 ms) of the pupil responses to targets (mean ± 

SD: pre: −0.012 ± 0.24; post: 0.032 ± 0.17; t = −2.41, p = 0.016). Responses to distractor stimuli 

did not change after gaming (mean ± SD: pre: −0.034 ± 0.168; post: −0.039 ± 0.155; t = −0.064, 

p = 0.94). 
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Figure 6. Pupil responses before (pre) and after (post) the gaming sessions to targets (targ) and dis-

tractors (distr). 

Vergence responses to target stimuli were not significantly (t = −0.51, p= 0.61) different 

after gaming (mean ± SD: 0.186 ± 2.34) compared to baseline responses (mean ± SD: 0.062 

± 3.33). Neither distractor responses showed significant changes (mean ± SD: pre: −0.034 ± 

2.77; post: 0.15 ± 2.35; t = −1.9, p = 0.057). The control group showed comparable pupil 

responses to distractors (mean ± SD: pre: −0.050 ± 0.16; post: −0.069 ± 0.16; t = 0.838, p = 

0.109) and targets (mean ± SD: pre: 0.032 ± 0.18; post: 0.014 ± 0.18; t = 0.87, p = 0.39) after 

gaming. Moreover, vergence responses were similar before and after the gaming sessions 

(target, mean ± SD: pre: 0.16 ± 2.6; post: 0.075 ± 1.74; t = 0.35, p = 0.73; distractor: mean ± 

SD: pre: 0.12 ± 2.32; post: 0.18 ± 1.89; t = −0.50, p = 0.61). 

ANOVA showed that for pupil responses and distractors, the difference caused by 

the interaction between group (experimental, control) and session (pre-, post-gaming) was 

not significant (p = 0.102). However, in the case of target stimuli, it was significant (p = 

0.049). The ‘group’–‘session’ interaction for vergence responses did not produce any sig-

nificant difference (distractors: p = 0.496, targets: p = 0.624). We performed a Kruskal–Wal-

lis ANOVA to compare the effect of gaming on MoCA performance in gaze and mouse 

controlled condition, and found a significant effect of gaming (F(3,82) = 26,51,p = 7 × 10−6). 

4. Discussion 

In the current study, we tested a gaze-controlled video game as a potential interven-

tion tool to improve cognitive function in MCI patients. The gaze-directed game required 

participants to repeatedly maintain focus on a target for short periods of time, thus train-

ing sustained attention. The results show an increased score on the MoCA test specifically 

for the visuospatial domain after playing the game. This may indicate that the improve-

ment with the gaze-controlled game is task-specific, possibly due to the visual and spatial 

demands of the video game. Of the CANTAB battery, the rapid visual information pro-

cessing test was the only test to show improvement. Again, the improvement may be task-

specific. The rapid visual information processing test primarily assesses the ability to fo-

cus and maintain attention on a task over time. The other CANTAB test we used primarily 

tested short-term memory, which was not trained by the game. The results of the current 

report support our previous findings of cognitive improvement with gaze-controlled 

games [41], and are consistent with previous studies [16–18] showing that video games 

can have a positive effect on cognitive function. 

Practice effects cannot be ruled out, as the MoCA test may be susceptible to practice 

effects in healthy older adults ([43], but see [44]) and MCI patients [45]. The CANTAB 

battery tests also show practice effects in patients with cognitive decline. In particular, the 

paired associates learning, spatial working memory, and motor screening tests are associ-

ated with large practice effects [46,47]. This is in contrast to our observations, which show 
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no practice effects on these tasks. The rapid visual information processing and reaction 

time tests show no or weak practice effects in MCI patients [46]. 

Thus, our findings suggest that the improvements observed in the current study are 

a true effect of playing a gaze-controlled game. This assumption is supported by the out-

comes of the control group, in which participants showed no practice effects on the rapid 

visual information processing tests, nor on any of the tests administered. However, the 

size of the control group was small, and their pre-test scores were relatively high com-

pared to the experimental group, which may have introduced a ceiling effect, making it 

more challenging to observe improvements. 

4.1. Pupil and Vergence Responses 

Both pupil and vergence responses are manifestations of cognitive processing. Pupil 

dilation reflects the allocation of top-down attentional resources [48] and has been linked 

to various cognitive processes, including perception [49], cognitive effort [50], memory 

[51,52], prediction error [53], and decision-making [33,54,55]. Similarly, vergence re-

sponses are associated with attention and memory [40,56,57], and may trigger pupil re-

sponses [49]. Our results on pupil responses are consistent with previous findings that 

show greater pupil dilation for target stimuli compared to distractor stimuli [26,33,58]. 

This suggests that the larger pupil responses to targets in the experimental group may 

indicate a higher level of attention or extra cognitive effort to achieve performance [59,60]. 

4.2. Neurobiological Relevance 

One way in which training with gaze control tasks may impact cognitive functioning 

is through its impact on the locus coeruleus. The locus coeruleus is a small nucleus located 

in the pons of the brainstem and forms part of the reticular activating system. It is the 

main site for the synthesis of norepinephrine, and via its widespread connections through-

out the brain, the locus coeruleus influences many brain functions. As the main source of 

norepinephrine to the pre-frontal cortex, the locus coeruleus also has an impact on cogni-

tive processes that sub-serve executive functions. Within the brainstem, the locus co-

eruleus connects to the Edinger–Westphal nucleus. In the Edinger–Westphal nucleus, pre-

ganglionic neurons project to postganglionic neurons in the ciliary ganglion, which, in 

turn, innervate smooth muscle fibers in the sphincter muscle of the iris to control pupil 

size. The Edinger–Westphal preganglionic neurons receive input from the olivary pre-

tectal area conveying pupillary light reflex input, and from neurons of the central mesen-

cephalic reticular formation that have a role in vergence eye movements [61]). Addition-

ally, the superior colliculus is reciprocally connected to the Edinger–Westphal [62,63]). 

The Edinger–Westphal cells further receive monosynaptic excitatory input from ventral 

hippocampal cells, which are critical for attention [64]. These hippocampal cells innervate 

the medial prefrontal cortex. This area is known to control attention processing [64] and 

eye vergence (e.g., [65]). Input to the locus coeruleus originates from structures involved 

in horizontal eye movement control, such as the medial prefrontal cortex [65,66] and the 

nucleus prepositus [67]. Consequently, vergence eye movements and pupil responses may 

influence the functioning of the locus coeruleus. Future work utilizing in vivo imaging of 

the locus coeruleus may provide evidence for this idea [68]. Training of the oculomotor 

system, in general, may then positively affect the attention system. 

4.3. Shortcomings 

The study included a small number of participants in the control group. Thus, alt-

hough video gaming provides positive outcomes on attention, more research is needed to 

conclude whether this is due to video gaming, oculomotor training, or practice effects. 

Further studies are needed with a higher number of participants with different types of 

dementia who score low on MoCA to provide clear evidence. 
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4.4. Conclusions 

In conclusion, the present results provide evidence for the potential cognitive benefits 

of gaze-controlled gaming in MCI patients and suggest that further research in this area 

is warranted. 
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