Experimental Methods

Stock Standards Preparation: The stock STD-AA (48.4 mg) and IS-AA (66.7 mg) standard solutions were dissolved in 10.00 mL of 50/50 ACN/H₂O with 0.1 (v)% formic acid, vortexed, and filtered with a 0.2 μ m filter. These standard solutions were clear, slightly brown in color, and stored in a -20 °C freezer. Table S1 lists the amino acid mass percentages by weight from each mixture and the stock concentrations. Results from histidine and cysteine quantification were not reproducible, they are omitted from the table.

Table S1: Amino acid content as weight mass percent and stock concentrations of STD-AA or IS-AA mixtures.

Amino Acid	STD-	IS-AA	Stock STD-AA	Stock IS-AA	
	AA	mass	ug/mL	ug/mL	
	mass %	%			
Ala - alanine	5.9	7.5	245	404	
Arg - arginine	2.8	6.6	116	355	
Asn - asparagine	5.1	4.7	212	253	
Asp – aspartic acid	8.2	7.9	341	425	
Gln - glutamine	5.1	5.4	212	291	
Glu – glutamic acid	0.7	6.9	29.1	371	
Gly - glycine	4.5	3.7	187	199	
Ile - isoleucine	1.3	6	54.0	323	
Leu - leucine	5.8	10.4	241	560	
Lys - lysine	9.8	8.2	407	441	
Met - methionine	3.6	1.5	149	80.7	
Phe - phenylalanine	5.5	7.3	228	393	
Pro - proline	4.1	1.9	170	102	
Ser - serine	2.9	2.3	120	124	
Thr - threonine	11.8	4.1	490	221	
Trp - tryptophan	3.3	3	137	161	
Tyr - tyrosine	4.9	4.5	203	242	
Val - valine	7.4	6.6	307	355	

Calibrator Preparation: Calibrator solutions (C1 -C7) of STD-AA were prepared with serial dilution (concentration for individual amino acids in Table S2). C1 was the stock STD-AA solution listed in Table S1 and C2-C4 are serial dilutions starting with C1 of 500 μ L in 1000 μ L. C5 was 100 μ L of C1 in 1000 μ L and C6-C7 are serial dilutions starting from C5 of 500 μ L in 1000 μ L. To create the calibrator standards in the plasma matrix, 40 μ L of the C1-C7 calibrator solutions was added to 600 μ L of IS-ES, and 80 μ L of plasma matrix and their final concentrations are listed in Table S2. Post preparation of the calibrator stock solutions, the extraction solution was appropriately diluted to account for the solvent introduced in the calibrator samples such that the experimental samples would have the same final concentration of internal standards.

Table S2: Final concentrations of standard amino acid (STD-AA) and isotopically labeled amino acid internal standards (IS-AA) when diluted with plasma. STD-AA concentration is for the calibration series (C1-C7) and IS-AA is for both the calibration series and the experimental samples.

Amino	STD-	IS-AA						
Acid	AA C1	AA C2	AA C3	AA C4	AA C5	AA C6	AA C7	ug/mL
	ug/mL							
Ala	13.6	6.81	3.40	1.70	1.36	0.681	0.340	2.36
Arg	6.46	3.23	1.61	0.808	0.646	0.323	0.162	2.07
Asn	11.8	5.88	2.94	1.47	1.18	0.588	0.294	1.48
Asp	18.9	9.46	4.73	2.36	1.89	0.946	0.473	2.48
Gln	11.8	5.88	2.94	1.47	1.18	0.588	0.294	1.70
Glu	1.61	0.81	0.404	0.202	0.162	0.081	0.040	2.17
Gly	10.4	5.19	2.60	1.30	1.04	0.519	0.260	1.16
Ile	3.00	1.50	0.750	0.375	0.300	0.150	0.075	1.88
Leu	13.4	6.69	3.35	1.67	1.34	0.669	0.335	3.27
Lys	22.6	11.3	5.65	2.83	2.26	1.13	0.565	2.58
Met	8.31	4.15	2.08	1.04	0.831	0.415	0.208	0.471
Phe	12.7	6.34	3.17	1.59	1.27	0.634	0.317	2.29
Pro	9.46	4.73	2.36	1.18	0.946	0.473	0.237	0.597
Ser	6.69	3.35	1.67	0.836	0.669	0.335	0.167	0.722
Thr	27.2	13.6	6.81	3.40	2.72	1.36	0.681	1.29
Trp	7.61	3.81	1.90	0.952	0.761	0.381	0.190	0.942
Tyr	11.3	5.65	2.83	1.41	1.13	0.565	0.283	1.41
Val	17.1	8.54	4.27	2.13	1.71	0.854	0.427	2.07

Detailed Data Processing: All the data for each plate was imported into Skyline at the same time, with individual plates each correlated with an individual data file. Once all compounds were checked and retention times were adjusted as needed, the plate was rescored to update peak areas for further analysis. This process was repeated until retention times no longer needed adjustment.

The calibration curve for this assay used a bilinear regression which allows for more data points at the cost of greater processing power, and the $1/x^2$ weighting is most appropriate for bioanalytical LC MS/MS [1]. The bilinear regression calculates a linear response above a turning point, a flat response below the turning point, and the turning point (TP) may be considered the limit of detection (LOD) for bilinear calibration curves. Points were removed from the calibration curve starting with the least accurate samples until the R² value per compound was 0.95 or greater, and the points remaining were within ±20% of the theoretical concentration. The

LOD was calculated as concentration of the blank plus 3 times the standard deviation of the blank external standards. The limit of quantitation (LOQ) was determined to be the lowest concentration value that fit within the parameters of the maximum bias and maximum coefficient of variation (CV). The max LOQ bias is the maximum allowed difference from the calibration curve and was set at 15%, while the max LOQ CV is the maximum allowed CV of the peak areas of the set of internal standards (IS) with a specified concentration and was set to 15%.

The LLOQ was determined to be the highest value between the Skyline determined LOD, LOQ, and TP, and is usually the LOQ. For the QC samples with known concentrations, they were divided into 4 levels, Lower limit QC (LLQC), Lower QC (LQC), Medium QC (MQC), and High QC (HQC). At least 50% of the QC's per level and 67% of the overall QCs needed to be within 15% of the theoretical concentrations. 50% of the sample pool QCs needed to be within $\pm 50\%$ of the average concentration of the sample pool QC. Each analyte per plate was analyzed separately to determine if it can be accurately quantitated on the plate, then these analyte values were averaged to determine plate data quality.

Amino Acid	<i>R</i> ²	Workin g Max (µg/mL)	Worki ng Min (µg/m	% of Known QC within 15%	# of poin ts used	LOD (µg/m L)	LOQ (µg/m L)	TP (µg/m L)
arginine	0.988	6.5	<u>L)</u>	82%	11	< 0.01	0.49	0.0002
lvsine	0.990	22.6	13	89%	12	< 0.01	1.35	0.19
glycine	0.981	10.4	2.1	49%	8	< 0.01	2.13	0.22
alanine	0.984	13.6	0.7	76%	12	< 0.01	0.73	0.26
serine	0.989	6.7	0.9	55%	8	< 0.01	0.92	-0.07
proline	0.985	9.5	1.1	73%	10	< 0.01	1.12	0.29
valine	0.991	16.5	1.4	73%	10	< 0.01	1.45	0.43
threonine	0.988	26.2	1.9	76%	12	< 0.01	1.86	0.60
isoleucine	0.990	5.4	0.4	82%	11	< 0.01	0.40	0.08
leucine	0.991	12.3	0.5	94%	13	< 0.01	0.50	0.01
asparagine	0.988	11.9	1.3	62%	10	< 0.01	1.29	0.22
glutamine	0.981	11.8	4.9	19%	6	0.44	4.93	0.51
glutamic acid	0.991	1.6	0.2	71%	11	< 0.01	0.20	0.03
aspartic acid	0.985	18.9	1.8	79%	10	0.26	1.84	0.48
methionine	0.995	8.3	0.7	79%	11	< 0.01	0.65	0.01
phenylalani ne	0.984	12.7	4.9	37%	8	< 0.01	4.89	0.27
tyrosine	0.980	11.3	2.7	35%	8	0.06	2.67	0.01
tryptophan	0.988	7.6	1.3	57%	9	< 0.01	1.31	0.18

Table S3: Average values per compound across all plates for R², Working range, QC accuracy, and other figures of merit.

1. Gu, H.; Liu, G.; Wang, J.; Aubry, A.-F.o.; Arnold, M.E. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. *Anal. Chem.* **2014**, *86*, 8959-8966.