Three Reasons for Playing the Tennis Forehand in Square Stance
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Performance Assessment
2.3. Exclusion Criteria
2.4. Statistical Analysis
3. Results
3.1. Reliability
3.2. Performance Assessment
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSS | Lateral Square Stance |
LOS | Lateral Open Stance |
DSS | Diagonal-inside Square Stance |
DOS | Diagonal-Inside Open Stance |
References
- Roetert, E.P.; Kovacs, M. Tennis Anatomy; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Whiting, W.C.; Zernicke, R.F. Biomechanics of Musculoskeletal Injury; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Elliott, B. Biomechanics and Tennis. Br. J. Sports Med. 2006, 40, 392–396. [Google Scholar] [CrossRef]
- Elliott, B.; Reid, M.; Crespo, M. Biomechanics of Advanced Tennis; International Tennis Federation: London, UK, 2003. [Google Scholar]
- Bertino, L.; Mohovich, B.; Pankhurst, A. Manuale Performance Workshop 2012; Professional Tennis Registry: Wesley Chapel, FL, USA, 2012. [Google Scholar]
- Kang, Y.-T.; Lee, K.-S.; Seo, K.-W. Analysis of Lower Limb Joint Angle and Rotation Angle of Tennis Forehand Stroke by Stance Pattern. Korean J. Sport Biomech. 2006, 16, 85–94. [Google Scholar]
- Black, S.A. A Kinematic Analysis of the Open and Closed Stance Forehand Groundstroke in Division I Collegiate-Level Tennis Players; California State University: Fresno, CA, USA, 2002. [Google Scholar]
- Martin, C.; Sorel, A.; Touzard, P.; Bideau, B.; Gaborit, R.; DeGroot, H.; Kulpa, R. Influence of the Forehand Stance on Knee Biomechanics: Implications for Potential Injury Risks in Tennis Players. J. Sports Sci. 2021, 39, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, T.A.; Golestani, F.; Abd Razak, M.R. Comparison of Open and Closed Stance Forehand Strokes among Intermediate Tennis Players. Int. J. Kinesiol. Sports Sci. 2016, 4, 26–32. [Google Scholar]
- Castellani, A.; D’Aprile, A.; Tamorri, S. Tennis Training; Società Stampa Sportiva: Rome, Italy, 2007. [Google Scholar]
- Clerici, G. Tennis: 500 Years of the Game, 1st ed.; Octopus: London, UK, 1976; ISBN 0-7064-0523-4. [Google Scholar]
- Knudson, D.; Blackwell, J. Trunk Muscle Activation in Open Stance and Square Stance Tennis Forehands. Int. J. Sports Med. 2000, 21, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, R.; Knudson, D. Kinetics of the Upper Extremity in the Open and Square Stance Tennis Forehand. J. Sci. Med. Sport 2003, 6, 88–101. [Google Scholar] [CrossRef]
- Chen, C.; Liang, Z.; Li, S. The Plantar Pressure Analysis of Open Stance Forehand in Female Tennis Players. Phys. Act. Health 2019, 3, 63–70. [Google Scholar] [CrossRef]
- Helfrich, J.S. Performance EXCELLENCE: Forehand of the Future. Strategies 1992, 6, 15–18. [Google Scholar] [CrossRef]
- Lisi, R.; Cigni, S. Presumable Role of Tennis in the Evolution of Listesic Damage: Focus on the Technical Gesture of the Forehand in Open Stance in Amateurs. ITF Coach. Sport Sci. Rev. 2024, 32, 42–45. [Google Scholar] [CrossRef]
- Alyas, F.; Turner, M.; Connell, D. MRI Findings in the Lumbar Spines of Asymptomatic, Adolescent, Elite Tennis Players. Br. J. Sports Med. 2007, 41, 836–841. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Pluim, B.; Vivier, S.; Sniteman, C. Common Injuries in Tennis Players: Exercises to Address Muscular Imbalances and Reduce Injury Risk. Strength Cond. J. 2009, 31, 50–58. [Google Scholar] [CrossRef]
- Rajeswaran, G.; Turner, M.; Gissane, C.; Healy, J. MRI Findings in the Lumbar Spines of Asymptomatic Elite Junior Tennis Players. Skelet. Radiol. 2014, 43, 925–932. [Google Scholar] [CrossRef]
- Lambrich, J.; Muehlbauer, T. The Role of Increased Post-Impact Ball Speed on Plantar Pressure during Open and Square Stance Groundstrokes in Female Tennis Players. BMC Sports Sci. Med. Rehabil. 2024, 16, 129. [Google Scholar] [CrossRef]
- Martin, C.; Sorel, A.; Touzard, P.; Bideau, B.; Gaborit, R.; DeGroot, H.; Kulpa, R. Can the Open Stance Forehand Increase the Risk of Hip Injuries in Tennis Players? Orthop. J. Sports Med. 2020, 8, 2325967120966297. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-T.; Seo, K.-E. Analysis of Ground Reaction Force by Stance Type during Tennis Forehand Stroke. Korean J. Sport Biomech. 2009, 19, 449–455. [Google Scholar]
- ATP Tour, Inc. ATP Tournaments Calendar; ATP World Tour; ATP Tour, Inc.: London, UK, 2025. [Google Scholar]
- WTA Tour, Inc. WTA Tournaments Calendar; WTA Tennis; WTA Tour, Inc.: London, UK, 2025. [Google Scholar]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion-Related Validity of Sit-and-Reach Tests for Estimating Hamstring and Lumbar Extensibility: A Meta-Analysis. J. Sports Sci. Med. 2014, 13, 1. [Google Scholar]
- Panzarino, M.; Padua, E. Flexibility Box Test 2022. Available online: https://www.iris.uniroma5.it/handle/20.500.12078/10446 (accessed on 4 June 2025).
- ITF International Tennis Federation. ITF Tennis; ITF International Tennis Federation: London, UK, 2025. [Google Scholar]
- Giles, B.; Peeling, P.; Reid, M. Quantifying Change of Direction Movement Demands in Professional Tennis Matchplay: An Analysis from the Australian Open Grand Slam. J. Strength Cond. Res. 2024, 38, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Belmonte, A.; Sánchez-Pay, A. Concurrent Validity, Inter-Unit Reliability and Biological Variability of a Low-Cost Pocket Radar for Ball Velocity Measurement in Soccer and Tennis. J. Sports Sci. 2021, 39, 1312–1319. [Google Scholar] [CrossRef]
- Schaffarczyk, M.; Rogers, B.; Reer, R.; Gronwald, T. Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors 2022, 22, 6536. [Google Scholar] [CrossRef]
- Skála, T.; Vícha, M.; Rada, M.; Vácha, J.; Flašík, J.; Táborskỳ, M. Feasibility of Evaluation of Polar H10 Chest-Belt ECG in Patients with a Broad Range of Heart Conditions. Cor Vasa 2022, 64, 411–422. [Google Scholar] [CrossRef]
- Vermunicht, M.P.; Makayed, M.K.; Meysman, M.P.; Laukens, K.; Knaepen, M.L.; Vervoort, M.Y.; De Bliek, D.E.; Hens, M.W.; Van Craenenbroeck, E.; Desteghe, M.L.; et al. Validation of Polar H10 Chest Strap and Fitbit Inspire 2 Tracker for Measuring Continuous Heart Rate in Cardiac Patients: Impact of Artefact Removal Algorithm. Europace 2023, 25, euad122-550. [Google Scholar] [CrossRef]
- Lam, E.; DuPlessis, D.; Hutchison, M.; Scratch, S.; Biddiss, E. Validation of the Polar H10 Accelerometer in a Sports-Based Environment. Eng. Proc. 2022, 27, 71. [Google Scholar]
- Field, A.P.; Miles, J.; Field, Z. Discovering Statistics Using R/Andy Field, Jeremy Miles; Zoë Field: Berkshire, UK, 2012. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.S.; McCabe, G.P.; Craig, B.A. Introduction to the Practice of Statistics; WH Freeman: New York, NY, USA, 2009; Volume 4. [Google Scholar]
- Xu, W.; Hou, Y.; Hung, Y.; Zou, Y. A Comparative Analysis of Spearman’s Rho and Kendall’s Tau in Normal and Contaminated Normal Models. Signal Process. 2013, 93, 261–276. [Google Scholar] [CrossRef]
- Ialongo, C. Understanding the Effect Size and Its Measures. Biochem. Medica 2016, 26, 150–163. [Google Scholar] [CrossRef]
- Cooper, H.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis; Russell Sage Foundation: New York, NY, USA, 2019. [Google Scholar]
- Martín, E.L.; Martinez, D.A. The Effect Size in Scientific Publication. Educ. XX1 2023, 26, 9–17. [Google Scholar]
- Moorey, R. Jpower [R]. github. 2017. Available online: https://github.com/richarddmorey/jpower (accessed on 4 June 2025).
- Passing, H.; Bablok, W. A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. Application of Linear Regression Procedures for Method Comparison Studies in Clinical Chemistry, Part I. CCLM 1983, 21, 709–720. [Google Scholar] [CrossRef]
- Hecke, T.V. Power Study of Anova versus Kruskal-Wallis Test. J. Stat. Manag. Syst. 2012, 15, 241–247. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-Wallis Test. In The Corsini Encyclopedia of Psychology; Wiley: Hoboken, NJ, USA, 2010; p. 1. [Google Scholar]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J. Jasp 0.18.3. 2024. Available online: https://jasp-stats.org/ (accessed on 4 June 2025).
- Chambers, J. R Software. 2024. Available online: https://www.r-project.org/ (accessed on 4 June 2025).
- Caprioli, L. Forehand Ball Speed, Accuracy Ratio and Maximum Heart Rate Achieved in Four Tactical Situations by Forty-Two Tennis Players; Mendeley Data: London, UK, 2025. [Google Scholar]
- Caprioli, L.; Campoli, F.; Edriss, S.; Padua, E.; Panichi, E.; Romagnoli, C.; Annino, G.; Bonaiuto, V. Video Analysis Application to Assess the Reaction Time in an ATP Tennis Tournament. In Proceedings of the icSPORTS, Rome, Italy, 16–17 November 2023; pp. 151–157. [Google Scholar]
- Gallwey, W.T. The Inner Game of Tennis: The Classic Guide to Peak Performance; Random House: New York, NY, USA, 2024. [Google Scholar]
- Lochbaum, M.; Stoner, E.; Hefner, T.; Cooper, S.; Lane, A.M.; Terry, P.C. Sport Psychology and Performance Meta-Analyses: A Systematic Review of the Literature. PLoS ONE 2022, 17, e0263408. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.H. Anxiety, Arousal, and Sport Performance: An Application of Reversal Theory. In Anxiety in Sports; Taylor & Francis: Abingdon, UK, 2021; pp. 137–151. [Google Scholar]
- Singh, B.; Olds, T.; Curtis, R.; Dumuid, D.; Virgara, R.; Watson, A.; Szeto, K.; O’Connor, E.; Ferguson, T.; Eglitis, E.; et al. Effectiveness of Physical Activity Interventions for Improving Depression, Anxiety and Distress: An Overview of Systematic Reviews. Br. J. Sports Med. 2023, 57, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Bogalho, D.; Gomes, R.; Mendes, R.; Dias, G.; Castro, M.A. Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players. Appl. Sci. 2022, 12, 5425. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Ruiz-Ariza, A.; Moreno del Castillo, R.; Latorre-Román, P. Impact of Limited Hamstring Flexibility on Vertical Jump, Kicking Speed, Sprint, and Agility in Young Football Players. J. Sports Sci. 2015, 33, 1293–1297. [Google Scholar] [CrossRef]
- Kovacs, M.S.; Ellenbecker, T.S. A Performance Evaluation of the Tennis Serve: Implications for Strength, Speed, Power, and Flexibility Training. Strength Cond. J. 2011, 33, 22–30. [Google Scholar] [CrossRef]
- Caprioli, L.; Campoli, F.; Castellani, A.; Edriss, S.; Panichi, E.; Romagnoli, C.; Annino, G.; Bonaiuto, V.; Padua, E. A Functional Recovery Program after Hip Arthroscopy for Cam-Type Femoroacetabular Impingement in a Tennis Player. In Proceedings of the Conferenza RESOD 2023, Macau, China, 13–15 January 2023; Facultad de cultura física, Universidad de Pinar del Río: Pinar del Río, Cuba, 2023. [Google Scholar]
Tactical Situation | Type of Stance | 1° Set | 2° Set |
---|---|---|---|
Lateral | Square | 10 shots | 10 shots |
Open | 10 shots | 10 shots | |
Diagonal in | Square | 10 shots | 10 shots |
Open | 10 shots | 10 shots |
Ball Speed [km/h] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Set 1 | Set 2 | ||||||||
Measure | Median | IQR | Median | IQR | ICC3,k | 95% CI | ρ | ES | SE |
LOS | 115 | 18 | 117 | 21 | 0.974 | 0.951 to 0.986 | 0.928 *** | −0.517 | 0.182 |
LSS | 120 | 18 | 122 | 17 | 0.978 | 0.958 to 0.988 | 0.957 *** | −0.454 | 0.182 |
DOS | 111 | 20 | 111 | 20 | 0.982 | 0.966 to 0.988 | 0.932 *** | −0.239 | 0.206 |
DSS | 116 | 19 | 119 | 17 | 0.970 | 0.945 to 0.984 | 0.904 *** | −0.127 | 0.200 |
Accuracy ratio [n. of valid target/totals] | |||||||||
Set 1 | Set 2 | ||||||||
Measure | Median | IQR | Median | IQR | ICC3,1 | 95% CI | ρ | ES | SE |
LOS | 0.30 | 0.13 | 0.30 | 0.20 | 0.113 | −0.195 to 0.400 | 0.084 | −0.432 | 0.200 |
LSS | 0.30 | 0.10 | 0.30 | 0.10 | 0.179 | −0.128 to 0.456 | 0.147 | 0.220 | 0.200 |
DOS | 0.40 | 0.33 | 0.40 | 0.20 | 0.000 | −0.301 to 0.301 | −0.228 | −0.232 | 0.189 |
DSS | 0.40 | 0.20 | 0.30 | 0.30 | 0.258 | −0.046 to 0.519 | 0.284 | 0.292 | 0.186 |
Max Heart Rate [bpm] | |||||||||
Set 1 | Set 2 | ||||||||
Measure | Median | IQR | Median | IQR | ICC3,k | 95% CI | ρ | ES | SE |
LOS | 170 | 14 | 173 | 18 | 0.936 | 0.883 to 0.965 | 0.917 *** | −0.758 | 0.197 |
LSS | 174 | 22 | 175 | 18 | 0.955 | 0.917 to 0.975 | 0.962 *** | −0.652 | 0.191 |
DOS | 174 | 15 | 176 | 17 | 0.818 | 0.687 to 0.898 | 0.778 *** | −0.553 | 0.221 |
DSS | 174 | 18 | 177 | 20 | 0.828 | 0.701 to 0.903 | 0.829 *** | −0.488 | 0.206 |
Ball Speed [km/h] | |||||
---|---|---|---|---|---|
Systematic Differences | Proportional Differences | Linear Model Validity | |||
Measure | Intercept A | 95% CI | Slope B | 95% CI | Cusum Test for Linearity |
LOS | −2.260 | −14.951 to 10.102 | 1.002 | 0.892 to 1.119 | p = 0.97 |
LSS | 5.577 | −9.309 to 13.953 | 0.942 | 0.871 to 1.067 | p = 0.80 |
DOS | −5.625 | −24.783 to 3.836 | 1.043 | 0.959 to 1.204 | p = 0.19 |
DSS | 1.746 | −14.053 to 22.689 | 0.988 | 0.8000 to 1.1108 | p = 0.67 |
Accuracy ratio [n. of valid target/totals] | |||||
Systematic differences | Proportional differences | Linear model validity | |||
Measure | Intercept A | 95% CI | Slope B | 95% CI | Cusum test for linearity |
LOS | −0.100 | −0.500 to 0.100 | 1.000 | 0.500 to 2.167 | p = 0.39 |
LSS | 0.000 | −0.400 to 0.200 | 1.000 | 0.500 to 2.375 | p = 0.71 |
DOS | −0.450 | −1.650 to 0.050 | 2.000 | - | p = 0.38 |
DSS | 0.075 | −0.300 to 0.233 | 0.750 | 0.500 to 2.000 | p = 0.05 |
Max Heart Rate [bpm] | |||||
Systematic differences | Proportional differences | Linear model validity | |||
Measure | Intercept A | 95% CI | Slope B | 95% CI | Cusum test for linearity |
LOS | 0.553 | −15.895 to 16.538 | 0.979 | 0.881 to 1.075 | p = 0.96 |
LSS | −30.747 | −51.283 to −8.353 | 1.163 | 1.036 to 1.280 | p = 0.46 |
DOS | −5.780 | −34.600 to 30.700 | 1.020 | 0.814 to 1.187 | p = 0.58 |
DSS | −3.000 | −28.025 to 38.921 | 1.000 | 0.769 to 1.133 | p = 0.39 |
Ball Speed | ||||||||
---|---|---|---|---|---|---|---|---|
Kruskal-Wallis Test | Dunn Post Hoc Tests | |||||||
Factor | Statistic | df | p-Value | Comparison | z | Wi | Wj | pholm |
Stance | 6.858 | 1 | 0.009 | Open–Square | −2.619 | 72.793 | 92.207 | 0.009 |
Situation | 0.363 | 1 | 0.547 | Diagonal–Lateral | −0.602 | 80.213 | 84.679 | 0.547 |
Gender | 4.789 | 1 | 0.028 | F–M | −2.190 | 72.853 | 89.333 | 0.028 |
Flexibility | 3.991 | 1 | 0.046 | Good–Low | 1.998 | 90.276 | 75.448 | 0.046 |
Accuracy Ratio | ||||||||
Kruskal-Wallis test | Dunn Post Hoc Tests | |||||||
Factor | Statistic | df | p-value | Comparison | z | Wi | Wj | pholm |
Stance | 0.314 | 1 | 0.575 | Open–Square | −0.560 | 80.439 | 84.561 | 0.575 |
Situation | 9.573 | 1 | 0.002 | Diagonal–Lateral | 3.094 | 94.162 | 71.393 | 0.002 |
Gender | 6.817 | 1 | 0.009 | F–M | 2.611 | 93.912 | 74.417 | 0.009 |
Flexibility | 11.339 | 1 | <0.001 | Good–Low | 3.367 | 95.506 | 70.703 | <0.001 |
Max Heart Rate | ||||||||
Kruskal-Wallis test | Dunn Post Hoc Tests | |||||||
Factor | Statistic | df | p-value | Comparison | z | Wi | Wj | pholm |
Stance | 6.858 | 1 | 0.467 | Open–Square | −0.728 | 73.901 | 79.099 | 0.467 |
Situation | 0.363 | 1 | 0.121 | Diagonal–Lateral | 1.552 | 82.340 | 71.244 | 0.121 |
Gender | 4.789 | 1 | 0.020 | F–M | 2.329 | 86.516 | 69.600 | 0.020 |
Flexibility | 3.991 | 1 | 0.005 | Good–Low | −2.786 | 65.736 | 85.689 | 0.005 |
Ball speed (km/h) | |||||||
Measure | n. | Median | IQR | Min–Max | Wilcoxon p-Value | Effect Size | SE |
LOS | 42 | 116 | 17 | 85–154 | p < 0.001 | −0.910 | 0.179 |
LSS | 42 | 122 | 16 | 95–157 | |||
DOS | 40 | 114 | 19 | 76–152 | p < 0.001 | −0.922 | 0.182 |
DSS | 40 | 118 | 19 | 79–157 | |||
Accuracy ratios (n. of valid targets/total) | |||||||
Measure | n. | Median | IQR | Min–Max | Wilcoxon p-value | Effect Size | SE |
LOS | 42 | 0.30 | 0.19 | 0.05–0.55 | p > 0.05 | −0.218 | 0.189 |
LSS | 42 | 0.35 | 0.10 | 0.10–0.55 | |||
DOS | 40 | 0.35 | 0.16 | 0.20–0.70 | p > 0.05 | 0.103 | 0.197 |
DSS | 40 | 0.40 | 0.15 | 0.10–0.75 | |||
Maximum heart rate (bpm) | |||||||
Measure | n. | Median | IQR | Min–Max | Wilcoxon p-value | Effect Size | SE |
LOS | 39 | 172 | 15 | 125–193 | p < 0.05 | −0.482 | 0.189 |
LSS | 39 | 174 | 18 | 124–194 | |||
DOS | 35 | 177 | 14 | 155–198 | p > 0.05 | −0.392 | 0.200 |
DSS | 35 | 176 | 16 | 154–199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caprioli, L.; Campoli, F.; Romagnoli, C.; Cariati, I.; Edriss, S.; Padua, E.; Bonaiuto, V.; Annino, G. Three Reasons for Playing the Tennis Forehand in Square Stance. J. Funct. Morphol. Kinesiol. 2025, 10, 215. https://doi.org/10.3390/jfmk10020215
Caprioli L, Campoli F, Romagnoli C, Cariati I, Edriss S, Padua E, Bonaiuto V, Annino G. Three Reasons for Playing the Tennis Forehand in Square Stance. Journal of Functional Morphology and Kinesiology. 2025; 10(2):215. https://doi.org/10.3390/jfmk10020215
Chicago/Turabian StyleCaprioli, Lucio, Francesca Campoli, Cristian Romagnoli, Ida Cariati, Saeid Edriss, Elvira Padua, Vincenzo Bonaiuto, and Giuseppe Annino. 2025. "Three Reasons for Playing the Tennis Forehand in Square Stance" Journal of Functional Morphology and Kinesiology 10, no. 2: 215. https://doi.org/10.3390/jfmk10020215
APA StyleCaprioli, L., Campoli, F., Romagnoli, C., Cariati, I., Edriss, S., Padua, E., Bonaiuto, V., & Annino, G. (2025). Three Reasons for Playing the Tennis Forehand in Square Stance. Journal of Functional Morphology and Kinesiology, 10(2), 215. https://doi.org/10.3390/jfmk10020215