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Abstract: In this study, we introduced modifications to a prior existing enthalpic lattice Boltzmann
method (LBM) tailored for simulating the conjugate heat transfer phenomena in non-homogeneous
media with time-dependent thermal properties. Our approach is based upon the incorporation of
the remaining terms of a conservative energy equation, excluding only the terms regarding flow
compressibility and viscous dissipation, thereby accounting for the local and transient variations in
the thermophysical properties. The solutions of verification tests, comprising assessments of both
transient and steady-state solutions, validated the accuracy of the proposed model, further bolstering
its reliability for analyzing heat transfer processes. The modified model was then used to perform
an analysis on structured cavities under free convection, revealing compelling insights, particularly
regarding transient regimes, demonstrating that the structured cavities exhibit a beneficial impact on
enhancing the heat transfer processes, hence providing insights for potential design enhancements in
heat exchangers. These results demonstrate the potential of our modified enthalpic LBM approach for
simulating complex heat transfer phenomena in non-homogeneous media and structured geometries,
offering valuable results for heat exchanger engineering and optimization.

Keywords: thermal lattice Boltzmann method; Neumann boundary condition; Dirichlet boundary
condition; natural convection; conjugate heat transfer; structured cavities

1. Introduction

Natural convection processes have demonstrated numerous applications in refriger-
ating electronic devices and technology, including the cooling of printed circuit boards,
memory devices, processors, and more [1,2]. This heat transfer phenomenon has also been
utilized in the cooling mechanisms for buildings, electric motors, air conditioning and
refrigeration systems, nuclear reactors, among others [3,4]. Typically, in these applications,
the cooling process by natural convection is facilitated through heat exchangers, which
come in various geometrical configurations and types. Given its widespread use and low
operational cost, enhancing this heat transfer mechanism is of significant interest.

Various methods employed for this purpose involve surface modifications, such as adding
fins or utilizing small cavities or grooves. Several studies found in the literature [5–9] investigate
the impact of surface modifications on enhancing free convection heat transfer processes.
Generally, these studies examine surface modifications with configurations resembling waves,
employing sinusoidal functions [10,11] or evenly spaced geometries like triangular [8,12]
or square [9,13] patterns. These works are often categorized based on the modifications
made to horizontal [11,12], vertical [6,9,10], or inclined surfaces [7,13], typically employing
experimental and Computational Fluid Dynamics (CFD) techniques to analyze the problem.
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By its nature, the free-convection process occurs under conjugate heat transfer condi-
tions, initially defined by [14]. Consequently, the numerical simulation of such a problem
proves to be challenging, with many works resorting to directly imposing the boundary
conditions at the fluid nodes [6,8]. Traditionally, computational procedures primarily rely
on finite differences, finite volume, or finite element methods [15–18]. These methods
typically involve creating coupling schemes at the solid–fluid interface, where Dirichlet and
Neumann boundary conditions are imposed on different sides and the energy conservation
equation is solved separately. Despite their applicability, implementing these methods on
more complex interfaces can become challenging, particularly in ensuring the continuity at
the interface.

On the other hand, the lattice Boltzmann method (LBM) is a mesoscopic simulation
technique that solves the Boltzmann transport equation on a discrete lattice [19], offering
advantages over the traditional methods. Specifically regarding the LBM models for
conjugate heat transfer, the two most accurate LBM models are [20] the direct interface
treatment, originally proposed by Li et al. [21], and the “enthalpy like” models, such as the
one developed in Karani and Huber [22], Rihab et al. [23], Chen et al. [24].

In general, the models based on the direct interface treatment have good precision
for any boundary position in relation to the boundary lattices. However, in the presence
of structured surfaces or complicated geometries, the implementation of these interface
conditions becomes considerably difficult. Alternatively, the “enthalpy-like” models work
through the addition of specific source terms, tailored to correctly represent the target
energy equation, thus not requiring special treatment for the interfaces. In this line, several
works have been proposed [22,24–27].

Chen et al. [24] incorporated through a source term the effects of the local variation
regarding the thermophysical properties. Additionally, the authors suggested the use
of the forward Euler time discretization scheme to include the time dependence of the
thermophysical properties. On the other hand, Hosseini et al. [25] proposed a method
with an iterative scheme for dealing with the temperature-dependent heat capacity, which
resorts to the use of a root-finding algorithm to correctly account for its variations. More
recently, Kiani-Oshtorjani et al. [27], by working with a simplified conservative form of the
energy equation and disregarding the flow compressibility, viscous dissipation, and time
dependence of the thermophysical properties, introduced a new source term based on the
variation in the thermal conductivity between the different media.

As observed in our literature review, several works employed the use of a simplified
conservative energy equation [24,26,27], often disregarding the time dependence of the
thermophysical properties, like the system capacitance (ρcp). To address this issue, the au-
thors of this paper proposed the derivation of a new source term, considering its derivation
from the conservative form of the energy conservation equation [28] for a system without a
volumetric heat source, written in terms of temperature, T, and constant-pressure specific
heat, cP. Based on the work of Chen et al. [24], we derived a simple source term, which
naturally accounts for the time and temperature dependence of the system’s thermophysi-
cal properties. It should be noted that the reference temperature employed for computing
the body force by the Boussinesq approximation is also changed with time. In fact, this is
the temperature employed for calculating the thermophysical properties. The proposal of
these modifications is the main novelty of this paper.

The paper is structured into three main sections. The first section (Section 2) outlines
the employed methodology, which includes the presentation of the momentum and thermal
LBM models, as well as the derivation and integration of a source term to address the
conjugate heat transfer. Following this, the second section (Section 3.1) presents the results
obtained from the benchmark tests. These tests involve comparisons with analytical
solutions for pure diffusion problems, both transient and stationary, as well as convection
diffusion problems. Additionally, a mesh refinement study is conducted using natural
convection results sourced from the existing literature. The final section (Section 3.2)
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examines the effects of the structural geometries on the natural convection problem. Finally,
the principal conclusions drawn from the study are presented in the conclusion (Section 4).

2. Materials and Methods

In this section, the mathematical models employed for performing the simulations of this
paper are presented. We consider the dimensional approach proposed by Martins et al. [29]
given its ability to deal directly with real fluid properties.

2.1. Lattice Boltzmann Method for Fluid Flow

For the fluid flow modeling, the traditional LBE with the Bhatnagar–Gross–Krook
(BGK) collision operator was used [30], which considers only a single relaxation time, τ.
Given time and space discrete intervals ∆t and ∆x, the LBE for the fluid flow is provided
by Equation (1) [31]. In this equation, fi is the density distribution function, f eq

i represents
the equilibrium distribution function, and S fi

is the forcing term, which depends on the
forcing scheme chosen. The sub-index i represents each discrete velocity direction, while ci
is the particle velocity vector, according to the selected velocity scheme [32].

fi(x + ci∆t, t + ∆t)− fi(x, t) = −∆t
τ

[
fi(x, t)− f eq

i (x, t)
]
+ S fi

(x, t)∆t . (1)

The equilibrium distribution functions for the fluid flow LBE are calculated by
Equation (2) [33], where u and ρ are the macroscopic velocity and density, respectively, cs
is the sound speed, and wi indicates the weights related to each velocity direction i, both
depending on the velocity scheme considered.

f eq
i (x, t) = wiρ(x, t)

[
1 +

ci · u
c2

s
+

(ci · u)2

2c4
s

− u · u
2c2

s

]
(x,t)

. (2)

In the simulations performed here, we used a two-dimensional approach with the
D2Q9 velocity scheme [32]. Thus, according to [32], the particle velocity vectors and the
respective weights are provided by Equations (3) and (4), being c = ∆x/∆t and cs = c/

√
3.

ci = c


(0, 0), i = 0,
(1, 0), (0, 1), (−1, 0), (0,−1), i = 1, ..., 4,
(1, 1), (−1, 1), (−1,−1), (1,−1), i = 5, ..., 8.

(3)

wi =


4/9, i = 0,
1/9, i = 1, ..., 4,
1/36, i = 5, ..., 8.

(4)

For the source term in Equation (1), the forcing scheme proposed by Guo et al. [34]
was used. Then, the source term is defined by Equation (5), where F is the total specific
force acting over the domain.

S fi
=

(
1 − ∆t

2τ

)
wi

[
ci − u

c2
s

+
(ci · u)ci

c4
s

]
(x,t)

· F(x, t) (5)

Additionally, the macroscopic fields can be obtained from the distribution functions
as depicted in Equations (6) and (7), q being the number of discrete velocity directions (for
example, q = 9 for the D2Q9 scheme).

ρ(x, t) =
q−1

∑
i=0

fi(x, t) (6)

ρ(x, t)u(x, t) =
q−1

∑
i=0

fi(x, t)ci +
∆t
2

F(x, t) (7)
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Through the Chapman–Enskog analysis [35], it is possible to recover the Navier–Stokes
equation, Equation (8), from the LBE. This process results in a relationship between the
relaxation time, τ, and the kinematic viscosity, ν, which is provided by ν = (τ − 0.5∆t)c2

s .

∂ρu
∂t

+∇ · (ρuu) = −∇p +∇ ·
[
νρ
(
∇u +∇uT

)]
+ F. (8)

Regarding boundary conditions (BC), the bounce-back (BB) rule was implemented
for both static walls and fluid inlet BCs, provided by Equation (9), where i indicates the
opposite direction of i, xb indicates the boundary nodes, and the variables with sub-index
w stand for the values defined at the boundary. The more complexes geometries, such
as the cavities for the natural convection, were also implemented using the BB rule.

fi(xb, t + ∆t) = f ∗i (xb, t)− 2wiρw
ci · uw

c2
s

(9)

The periodic kind of BC was simply implemented considering that the populations
leaving one side are the same that enter at the opposite side of the domain. This relation
can be expressed by the following expression: fi(xb, t + ∆t) = f ∗i (xb + L − ci∆t, t), where
L is the size of the domain pointing at the normal direction of the boundary.

2.2. Boussinesq Approach for Natural Convection

In natural convection, the local temperature variations cause small local density
changes, which create mass fluxes through the domain because of the gravitational field
influence. These fluxes are commonly denominated “convection currents”, which help to
transfer the heat in the entire domain.

A practical way to include the effects of density fluctuations in the LB simulations
is by using the Boussinesq approach. Instead of considering a temperature-dependent
density, ρ(T), it is assumed that the fluid remains at a mean density, ρ, measured at the
reference temperature of T. Then, the thermal expansion coefficient can be expressed
according to Equation (10), and the buoyancy force that is provided by Equation (11) is
added to the momentum LBE (Equations (1) and (5)) for taking into consideration the
density fluctuations. In this equation, g is the gravitational acceleration.

βexp = −1
ρ

∂ρ

∂T
≈ − [1 − ρ/ρ(x, t)]

T(x, t)− T
(10)

F(x, t) = Fb(x, t) = −βexpgρ
[
T(x, t)− T

]
(11)

In this paper, we are simulating transient conjugate heat transfer problems, including
transient natural convection problems, which can be driven by a constant heat flux or
surface temperature. For all cases, the determination of the reference temperature (T)
becomes a challenge and a necessity. This is because, even if the fluid is initially at a
uniform temperature, the local temperature values increase non-equally over time. Then,
the mean temperature of the domain changes every time and it is needed to determine T
for each time-step.

Consequently, in this work, all the fluid properties that are independent of the dis-
tribution functions are re-calculated for each new T value. These properties include the
dynamic viscosity, specific heat capacity, conductivity, and thermal expansion coefficient.
For this task, we propose to use polynomial approaches for determining the variation in
these properties with the temperature. Here, these polynomials were obtained with the
help of EES software [36]. Hence, the employed LBM model has the capability of dealing
with local and temporal thermophysical property changes. The new T values are calculated
explicitly, i.e., considering the average mean temperature of the fluid domain from the
previous time step.
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2.3. Lattice Boltzmann Method for Conjugate Heat-Transfer

As noted before, the main advantage of the “enthalpy-like” models is that no special
treatment for the interfaces is needed due to the effects being naturally incorporated into
the LBE through a source. Furthermore, for the link-wise approach [20], both methods
have second-order accuracy when using the link-wise approach for the boundary nodes.
Thus, in this paper, we propose a modification of the Chen et al. [24] model for accounting
the temporal and local variations in the medium (solid and fluid) properties, considering
conjugate heat transfer problems. The procedure for re-calculating the thermophysical
properties as a function of the temperature was explained in the previous Section 2.2.

The conservative form of the energy conservation equation [28] for a system without
volumetric heat source, written in terms of temperature, T, and constant-pressure specific
heat, cP, for a generic system is provided by Equation (12). In this equation, the term(

∂ ln V–
∂ ln T

)
DP
dt stands for the energy transfer due to compressible effects, while τ : ∇u refers

to the viscous dissipation.

∂t(ρcpT) +∇ · (ρcpTu) = ∇(k∇T) +
(

∂ ln V–
∂ ln T

)
DP
Dt

+ τ : ∇u + T
DρcP

Dt
(12)

Now, the left-hand side of Equation (12) can be re-written as follows:

∂t(ρcpT) +∇ · (ρcpTu) = ρcP[∂tT +∇ · (Tu)] + T
DρcP

Dt
. (13)

Substituting Equation (13) into Equation (12), blue we have

ρcP[∂tT +∇ · (Tu)] = ∇(k∇T) +
(

∂ ln V–
∂ ln T

)
DP
Dt

+ τ : ∇u (14)

Neglecting the viscous heat dissipation, the energy conservation equation is provided
by Equation (15). It is important to note that this equation is generic enough to be valid for
a non-homogeneous domain.

ρcP[∂tT +∇ · (Tu)] = ∇(k∇T) (15)

Similarly to the model developed by Chen et al. [24], a new variable h0 = (ρcP)0T is
defined, (ρcP)0 being a constant reference heat capacitance. Substituting T = h0/(ρcP)0 into
Equation (15) and defining σ = ρcp/(ρcP)0, we obtain Equation (16), where α = k/(ρcp) is
the local thermal diffusivity.

∂th0 +∇ · (uh0) = ∇(α∇h0)−
k

(ρcP)0
∇h0∇

(
1
σ

)
(16)

Defining a new distribution function gi related to h0, and using the source term
proposed by Seta [37], the LBE with the dimensional approach for the energy conservation
equation is described by Equation (17). In this equation, Ωgi(x, t) is the collision operator.

Considering the traditional BGK approach, it is defined as ΩBGK
i = −

[
gi − geq

i

]
/τT . Also,

geq
i is the equilibrium distribution function, provided by Equation (18).

gi(x + ci∆t, t + ∆t)− gi(x, t) = Ωi(x, t)∆t + ∆twi

(
1 − ∆t

2τT

)
Sg(x, t) (17)

geq
i = wih0(x, t)

[
1 +

ci · u
c2

s
+

(ci · u)2

2c4
s

− u · u
2c2

s

]
(x,t)

(18)

By Chapman–Enskog analysis, it is possible to recover Equation (16) from the thermal
LBE (Equation (17)), resulting that the relaxation time for the BGK collision operator is
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related to the thermal diffusivity of the domain as α = k/(ρcp) by the following expression:
α = (τT − 0.5∆t)c2

s . The procedure for this analysis is provided in Appendix A. Additionally,
it is possible to note that, by this expansion, the LBE only recovers the the first term on the
right-hand side of Equation (16). Consequently, the other terms must be included in the
LBE via the source term, which is defined by Equation (19).

Sg(x, t) = − k
(ρcP)0

∇h0∇
(

1
σ

)
(19)

The additional terms that must be added via source term to the LBE are not easy to
calculate as it involves gradient of quantities depending on the distribution functions gi.
Thus, it is interesting to conduct some manipulations using the definition of heat flux from
Karani and Huber [22], resulting in the following representation:

− k
(ρcp)0

∇h0 = −σ
k

ρcp
∇h0 = σ

(
1 − ∆t

2τT

)
∑

i

[
gi − geq

i

]
ci. (20)

Also, the spatial derivative of 1/σ can be evaluated by an isotropic scheme as
∇χ(x, t) = (c2

s ∆t)−1 ∑i wiχ(x + ci∆t, t + ∆t)ci [19]. Then, for the BGK collision opera-
tor, the source term can be re-defined by Equation (21).

SBGK
g (x, t) = σ

(
1 − ∆t

2τT

)[
∑

i

(
gi − geq

i

)
ci

]
·
[

1
c2

s ∆t ∑
i

wi
1

σ(x + ci∆t, t + ∆t)
ci

]
(21)

The local temperature values in each lattice can be calculated from the distribution
functions as follows:

T(x, t) =
1

(ρcp)0

[
q−1

∑
i=0

gi(x, t) +
∆t
2

SBGK
g (x, t)

]
(22)

There are cases where the BGK collision operator can suffer from instabilities. Then,
the multiple-relaxation-time (MRT) collision operator can be used to prevent these issues.
This operator is defined by ΩMRT

i = −
[
M−1ΛM

]
ij(gj − geq

j ), where [M] is the transforma-
tion matrix, responsible for transforming the distribution functions to the moment space
and vice-versa. [Λ] is the collision matrix, which is usually a diagonal matrix containing the
relaxation rates related to each moment of the distribution function.

Considering the D2Q9 velocity scheme, the transformation matrix [M] for the di-
mensional LBM is defined in Martins et al. [29], and the collision matrix here is de-
fined as [Λ] = diag(ω0, ω1, . . . , ω8). The relaxation frequencies can be provided by
ω−1

3 = ω−1
5 = α/c2

s + ∆t/2 [38], while the other frequencies can be arbitrarily chosen
in such a way that guarantees the stability of the method, usually assuming values close
to ∆t−1.

Additionally, it is very common to perform the collision process with the MRT collision
operator directly in the moment space for facility. Thus Equation (17) is transformed to the
moment space multiplying the equation by [M]. Defining the moments of the distribution
functions by m = [M]g, the collision process in the moment space can be represented by
Equation (23). Then, the post-collision distribution functions can be recovered applying the
inverse of the transformation matrix: g∗ = [M]−1m∗.

m∗(x, t)− m(x, t) = −∆t[Λ][m(x, t)− meq(x, t)] + ∆tw
{
[I]− ∆t

2
[Λ]

}
SMRT

g (x, t) (23)
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It is important to note that the spatial derivative of h0 was previously defined for
the BGK collision operator. Then, it needs to be adapted for the MRT collision operator,
resulting in Equation (24).

− k
(ρcp)0

∇h0 = −σ
k

ρcp
∇h0 = σ ∑

i

[
[M]−1

(
[I]− ∆t

2
[Λ]

)
(g − geq)

]
i
ci, (24)

Thus, we have that the source term for the MRT collision operator will be provided by
Equation (25).

SMRT
g (x, t) = σ ∑

i

[
[M]−1

(
[I]− ∆t

2
[Λ]

)
(g − geq)

]
i
ci ·
[

1
c2

s ∆t ∑
i

wi
1

σ(x + ci∆t, t + ∆t)
ci

]
(25)

Here, we proposed a model based on the Chen et al. [24] enthalpy-based LBM. Our
method was deduced from the conservative energy conservation equation. Through this
formulation, no hypotheses regarding homogeneous media, or time and local indepen-
dence of thermal properties, were composed, and, as such, both the local and temporal
variations in the thermodynamics properties are allowed. The spatial variations enter
through the source term in the thermal LBE (Equation (17)); meanwhile, the temporal
variations are naturally accounted through our formulation, granting the correct capture of
the transient phenomena.

For the thermal boundary conditions, the BB rule for adiabatic walls was considered
as provided by Equation (26). Additionally, for the Dirichlet type of boundary condition,
the anti-BB rule was considered; see Equation (27). In this relation, Tw corresponds to the
imposed temperature at the boundary. For the Neumann type of boundary condition, we
considered the scheme proposed in Martins et al. [39]. Please consult the cited references
for all the needed details.

gi(xb, t + ∆t) = g∗i (xb, t) (26)

gi(xb, t + ∆t) = 2wiTw

[
1 +

(ci · uw)
2

2c4
s

− uw · uw

c2
s

]
− g∗i (xb, t) (27)

The periodic kind of BC was simply implemented considering that the populations
leaving one side are the same that enter at the opposite side of the domain, as occurred for
the fluid flow: gi(xb, t + ∆t) = g∗i (xb + L − ci∆t, t).

3. Results and Discussion
3.1. Benchmark Tests

Before exploring the natural convection in an enclosure of a heat exchanger structured
with cavities and under conjugate heat transfer conditions, three benchmark tests are ex-
plored for validating the proposed methodology. These include a 1D conduction between
three different solids, a forced convection between two fluids, and the natural convection
in a partially heated enclosure considering the conjugate heat transfer conditions. The nu-
merical results were compared against reference solutions, analytical for the first two and
numerical for the third, for validation purposes. These comparisons were quantitatively
evaluated using the global relative error, defined by Equation (28).

ER = 100%

√√√√∑ (Tanalytical − TLBM)2

∑ T2
analytical

 (28)

3.1.1. Heat Diffusion between Three Solids

The first benchmark problem solved is the transient one-dimensional conduction
between three different solids. A square domain with side L = 0.60 m is considered, the
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first layer being composed of copper (starting from the left of the domain), the second
silicon, and the third aluminum. Each layer has a length of d = 0.20 m, and then the
interfaces are located at x1 = 0.20 m and x2 = 0.40 m. Both the left and right walls are set
with constant temperatures (Dirichlet’s boundary conditions) about Twalll = 313.15K and
Twallr = 293.15 K, respectively.

Here, all the solid’s properties are assumed to be constants, calculated at a temperature
of 293.15K. k is the thermal conductivity; the properties are for copper
kCu = 401.2 Wm−1K−1, cpCu = 384.5 Jkg−1K−1, and ρCu = 8934.0 kgm−3; for silicon
kSi = 149.6 Wm−1K−1, cpSi = 709.1 Jkg−1K−1, and ρSi = 2330.0 kgm−3; and, for aluminum,
kAl = 237.0 Wm−1K−1, cpAl = 905.0 Jkg−1K−1, and ρAl = 2707.0 kgm−3. The simulation
was performed using the D1Q3 velocity scheme. The space and time were discretized
considering intervals of ∆x = 1.2 · 10−3 m and ∆t = 2.5 · 10−3 s, respectively. The analytical
solution for this problem is depicted in Appendix B [40].

The results for several time steps are depicted in Figure 1; as expected, the major
divergences between both the analytical and the numerical solutions occur at the interfaces.
Despite that, the methods are shown to capture the overall dynamics of the problem over
the transient regime and also correctly predict the stationary regime.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
L [m]

292.5

295.0

297.5

300.0

302.5

305.0

307.5

310.0

312.5

T 
[K

]

Temperature Distribution

Analytical Solution -- t = 100s
Analytical Solution -- t = 200s
Analytical Solution -- t = 800s
Analytical Solution -- t = 1600s
Analytical Solution -- t = 2500s
Analytical Solution -- t = 3000s
Analytical Solution -- Steady State

Dimensional LBM -- t = 100s
Dimensional LBM -- t = 200s
Dimensional LBM -- t = 800s
Dimensional LBM -- t = 1600s
Dimensional LBM -- t = 2500s
Dimensional LBM -- t = 3000s
Dimensional LBM -- Steady State

Figure 1. Transient solid heat diffusion: temperature distribution along the x-direction for vari-
ous times.

Additionally, the global errors between the numerical and the analytical solution,
estimated through Equation (28), are provided in Table 1. From a quantitative point of
view, both solutions present good agreement, resulting in relatively small errors (below
0.05 · 10−2%) for all the time steps, thus further corroborating the results shown in Figure 1.

Analyzing both results (Figure 1 and Table 1), it can be affirmed that the employed
model is shown to capture both the transient and stationary regimes referring to the heat
diffusion between different media with relatively good accuracy, returning low global
errors between the analytical and numerical solutions.

Table 1. Total errors for the convection–diffusion problem at different times.

t [s] Global Errors ·102 [%] t [s] Global Errors ·102 [%]

100.0 0.0152 900.0 0.0435
200.0 0.0337 1000.0 0.0424
300.0 0.0434 1100.0 0.0414
400.0 0.0472 1200.0 0.0407
500.0 0.0481 1300.0 0.0401
600.0 0.0474 1400.0 0.0396
700.0 0.0462 1500.0 0.0393
800.0 0.0448 1600.0 0.0391
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3.1.2. Convection–Diffusion with a Flat Interface

Next, a transient convection–diffusion problem with a thin flat interface is studied.
The solution for this problem is provided in Li et al. [21]. This problem consists of a channel
with fixed height H and length L, separated in two subdomains: the bottom half, with water
flowing, and the top half, with carbon dioxide flowing. A periodic boundary condition
is imposed on the left and right boundaries, while a Dirichlet boundary condition in the
form of Equation (29) is imposed on both the top and bottom boundaries. Both fluids are
assumed to have a constant uniform velocity u = Peαw

H in the x-direction, and ∆T is set to
20 K. The analytical solution for this problem is provided in Appendix C.

T(x, 0, t) = T(x, L, t) = T0 + ∆T cos
(

2π

L
x +

2πStk2αw

H2 t
)
= T0 + ∆T cos(Kx + ωt) (29)

where Pe refers to the Péclet number and Stk to the Stokes number, and they were
set as 20 and 1, respectively. The properties were assumed as ρw = 978.16114 kg m−3,
cPw = 4188.10655 J Kg−1K−1, and αw = 1.61 · 10−7 m2s−1 for the water, evaluated at
Pw = 101,325 Pa and Tre f = 343.15 K; and ρCO2 = 177.45 kg m−3, cPCO2

= 1688.66 J

Kg−1K−1, and αCO2 = 9.76 · 10−8 m2s−1 for CO2, evaluated at PCO2 = 8,115,030 Pa and
Tre f = 343.15 K. The simulation is performed using a two-dimensional velocity scheme,
the D2Q9. For numerical simulation, the space and time were discretized with ∆x = 1 · 10−4

m and ∆t = 1 · 10−4 s.
To facilitate the comparisons, the results are shown for various time fractions related

to one period, Γ = 1/ω, considering that the solution is periodic in time. Figure 2 shows
both the two-dimensional temperature distribution obtained with the LBM (Figure 2a)
and the numerical and analytical temperature profiles along different cuts in the x-axis
(Figure 2b) for a fixed time fraction t = 0.75Γ. Although Figure 2 represents only a single
time, we can still drawn some important conclusions about it. First, from Figure 2b, we
can see that both the temperature profiles present good agreement. The numerical results
(hollow circles) almost entirely coincide with the analytical solution (solid lines). Next, we
can also observe that, yet again, the major divergences between the solutions will occur at
the interface, as expected.
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Figure 2. Transient results for heat convection–diffusion at t = 0.75Γ: (a) temperature distribution;
(b) temperature profiles along different x-axis cuts.

Additionally, to better study the performance of our proposed model, we also esti-
mated the global errors (Equation (28)) between the numerical and analytical solutions.
The results are provided in Table 2. Overall, the results are shown to be in good agreement,
with error values below 3 · 10−2%. It is interesting to observe that, for the initial moments,
the output errors were larger, about 2 · 10−2%. These results can be associated with diffi-
culty in precisely matching the initial conditions for both solutions. Finally, we can also see
that, once the initial times have passed, the errors will both diminish and stabilize, resulting
in an almost constant error for the remaining studied times.
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Table 2. Global errors for the convection–diffusion problem at different times.

t/Γ Global Errors ·102 [%] t/Γ Global Errors ·102 [%]

0.125 2.1 0.625 1.65
0.250 1.58 0.750 1.65
0.375 1.65 0.875 1.65
0.500 1.66 1.000 1.65

3.1.3. Natural Convection with a Fixed Heat Flux

In this case, a natural convection problem consisting of a closed square cavity with
a partially heated bottom was tested. The problem configuration, along with its main
dimensions, are presented in Figure 3; the problem was presented and simulated in
Cheikh et al. [41]. It is important to note that some modification were made to the original
problem: instead of imposing heat directly on the fluid, the heat flux was applied to a
thin layer of copper, with a thickness equal to one dx, thus also serving to evaluate the
conjugate model.

𝑐𝑝𝑓 , 𝑘𝑓, 𝜌𝑓

Fluid Domain

𝐿

𝐻

𝜖𝐿

Solid Domain
𝑐𝑝𝑠 , 𝑘𝑠, 𝜌𝑠𝑞"

𝑇𝐶 𝑇𝐶

Figure 3. Natural convection benchmark problem considering conjugate heat transfer.

In the simulations, the Rayleigh number was maintained at Ra = 104 and the dimen-
sionless length of the heat source was set as ϵ = 0.8. Moreover, serving the purpose of
validating the employed model, this test was performed with the intent of choosing a
reasonable mesh size to correctly predict the natural convection phenomenon that will be
studied in the proceeding chapters of this paper. For the boundary conditions, the adiabatic
wall (black lines in Figure 3) and the no-slip boundary conditions were implemented via
a bounce-back scheme, while the Dirichlet boundary conditions were implemented via
an anti-bounce-back scheme. Lastly, for the Neumann boundary conditions, the scheme
proposed in Martins et al. [39] was used.

First, the results were organized with reference to the mesh size in Table 3 to facilitate
the comparison between different meshes. The Nusselt number was calculated using the
procedure presented in Appendix D. As we expect, a clear reduction in the relative errors
can be observed with the mesh refinement. The model is shown to correctly predict the
Nusselt number for all the meshes with relative errors below 3%, even with the larger
meshes, thus advocating for its accuracy. Additionally, Figure 4 presents both the temper-
ature distributions and the streamlines for the finest mesh tested here. We can observe
that, as expected, the fluid presents higher temperatures above the heating section, where
the heat flux is applied. This temperature difference leads to two recirculating vortexes,
with the fluid rising in the central region of the enclosure.

Table 3. Nusselt number errors for a natural convection problem.

Reference Nusselt Number: Nu = 3.80

∆x · 105 [m] Nu Errors Nu [%]

2.500 3.72 2.17
1.250 3.75 1.39
0.625 3.80 0.07
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Figure 4. Results for the natural convection benchmark test (∆x = 6.25 · 106): (a) temperature
distribution; (b) streamlines.

From the results of Table 3, we can assert that the mesh with ∆x = 6.25 · 10−6 m
produced better results, consequently presenting a better estimation of the resulting Nusselt
number, with errors less than 0.1%. Thus, it is the most reasonable choice for the simulations
presented in the following Section 3.2.

3.2. Results for Natural Convection with Structured Cavities

The study examines the natural convection under conjugate heat transfer conditions
on structured cavities, analyzing the transient and steady-state operations. Both Dirichlet
and Neumann boundary conditions at the enclosure’s bottom are considered to assess how
cavities affect heat transfer, determining their impact on the intensifying heat transfer rates
at the solid surface. We conducted natural convection simulations using the structured
cavities outlined in Moreira et al. [42]. Figure 5 provides a schematic representation of the
tested geometries, Geometry 1 with θ = 30◦, Geometry 2 with θ = 45◦, and Geometry 3
with θ = 60◦. Through these simulations, we aim to accomplish two primary objectives:
firstly, to exhibit the method’s proficiency in handling complex problems, and, secondly,
to investigate the influence of structured cavities on the natural convection phenomenon
inside a heat exchanger under conjugate heat transfer conditions.

The structured cavities examined in this study have demonstrated the ability to
enhance the flow boiling phenomenon, as shown in Moreira et al. [42]. Consequently,
we aim here to investigate whether natural convection can be enhanced by the same
surface structures. In fact, free convection is the first step in the nucleating boiling process.
Our simulations employ water at P = 1atm and a solid copper base characterized by
the following thermal properties: kCu = 401.2 Wm−1K−1, cpCu = 384.5 Jkg−1K−1, and
ρCu = 8934.0 kgm−3.

The simulations are categorized as follows: firstly, simulations with a fixed heat
flux at the base are conducted to explore the transient regime. Subsequently, simulations
with a fixed base temperature are performed to investigate both transient and steady-
state regimes. In all cases the Nusselt number was calculated using the procedure presented
in Appendix D.

For the hydrodynamic LBE, a non-slip boundary condition is adopted for all the
boundaries, implemented via the bounce-back scheme. Regarding the energy LBE, an adia-
batic condition is assumed for both lateral boundaries, again via the bounce-back scheme.
For the bottom and top boundaries, Dirichlet boundary conditions are implemented via the
anti-bounce-back scheme, while, for the Neumann boundary condition, the boundary con-
dition proposed in Martins et al. [39] is utilized. Finally, considering the results presented
in Section 3.1.3, the simulations in this section are performed with ∆x = 6.25 × 10−6 m and
∆t = 6.50 × 10−6 s.
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Figure 5. Geometry scheme and dimensions.

3.2.1. Geometry Impact on Natural Convection with Imposed Heat Flux

In this section, the results for the simulations where a heat flux, Q̇wall, was imposed
at the base will be presented for each geometry configuration and for a flat surface. Two
different heat fluxes were tested: Q̇wall = 1 × 105 Wm−2 and Q̇wall = 1 × 106 Wm−2,
resulting in Rayleigh numbers of Ra = 3.8 × 104 and Ra = 3.8 × 105, respectively. Unlike
the previous works [5–9], we specifically address the transient regime, which can be most
relevant for heat exchangers operating under real cooling conditions. For example, an
electronic device can be refrigerated by a tested surface in a submerged application.

For a more comprehensive understanding of the simulation results, it is interesting
to analyze the temporal evolution of the variables of interest. Therefore, Figures 6 and 7
present spatially averaged values for the Nusselt number (NuLeq ), for the heat flux trans-

ferred across the base interface (Q̇base), and for the temperature difference (Tavg,base − Tc). It
is important to note that all the averaged values presented were estimated considering the
actual cavity length. As time evolves, both the heat flux and the temperature differences
increase. However, in contrast, the predicted Nusselt number experiences a significant
decline from the values observed at the outset. This effect can be associated with the
tendency of heat transfer to approach a steady-state condition, reaching heat transfer rate
values close to the imposed heat flux, while the temperature difference demonstrates an
almost linear growth pattern.

From Figures 6 and 7, it is evident that the structured cavities have a positive impact
on the heat transfer process, leading to an increase in the Nusselt number compared to
the plane surface. Among the studied geometries, Geometry 3 (with θ = 60◦) exhibits
a more significant influence on the process. This enhanced heat transfer efficiency is
further illustrated by the base temperature differences, as shown in Figures 6c and 7c.
Initially, the temperature differences for the geometries are lower than those observed for
the plane surface, suggesting the more efficient heat transfer from the structured surfaces
(resulting in higher heat fluxes). However, as the estimated heat transfer rate for the plane
interface surpasses that of the structured geometries, these geometries begin to exhibit
higher temperature differences than the plane surface.

The enhancement in the heat transfer process observed in Figures 6 and 7 can be further
investigated by analyzing both the temperature profiles and fluid motion. To perform such
an analysis, we plotted both the two-dimensional temperature profiles and the streamlines
for each geometry at a given instant. Figure 8 shows the plotted results for Qwall = 1 × 105

at t = 0.25 s, which is associated with a period of time in which the structured surface is
shown to enhance the heat transfer process.

Starting with the temperature distributions, we observed a concentration of isothermal
lines at the interface between the fluid and the solid wall, indicating higher heat transfer
in those regions, particularly at the upper parts of the structured cavities (middle of
the cavity). Additionally, from left to right, the isotherms appear more closely packed,
indicating enhanced heat transfer. These observations confirm the performance shown in
Figures 6 and 7.
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Figure 6. Q̇wall = 1 · 105 [W/m2]: (a) NuLeq ; (b) Q̇base; (c) Tavg,base − Tc.
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Figure 7. Q̇wall = 1 · 106 [W/m2]: (a) NuLeq ; (b) Q̇base; (c) Tavg,base − Tc.

Now, considering the resultant fluid flow as shown in Figure 8b, we observe the
fluid flow in and out of the cavities created by the geometries, thus avoiding stagnation.
Upon closer observation, we note that the fluid still exhibits relatively low speed in relation
to the surfaces, especially for the sharper geometry (θ = 30◦). The higher velocities and
the circulating fluid can be associated with the observed results in two aspects. Firstly, this
observed circulation avoids the creation of stagnation zones, where the fluid would almost
be stationary, effectively reducing the thermal resistance zones. Secondly, the moving fluid
advects energy from the surface, thus increasing the heat transferred between the solid and
the fluid.

In addition to the streamlines and temperature plots, we also estimated the vorticity
at different times for the Qwall = 1 × 105 condition. The selected times shown in Figure 9
correspond to regions where the geometries exhibit better performance (t = 0.25 s), a region
where the geometries and the surfaces have similar performance (t = 1.00 s), and, finally,
regions where the plane surface surpasses the cavities (t = 2.50 s). By comparing the
results in Figure 9a with Figures 6 and 8, it is evident that the higher performance of
the cavities is associated with the observed vorticity, where higher levels of vorticity
indicate better performance. Still considering Figure 9a, it can be seen that the smoother
geometries (greater θ) favor the formation of vortices near the surfaces, thereby aiding
energy advection.
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Figure 8. Results for Qwall = 1 · 105 at t = 0.25 s: (a) temperature distribution; (b) streamlines. The
number index refers to the geometry angles. The caption numbers are a reference to the geometries.

Considering the different times plotted in Figure 9, it is observable that all the configu-
rations favor the formation of counter-rotating symmetrical vortices. Overall, the vorticity
is shown to increase, indicating a higher circulation of the fluid within the domain and con-
sequently the overall fluid rotation speed. Given the present configurations, the smoother
geometries are shown to maintain the inner vortices for longer times. By comparing the
results from Figure 9 with those of Figure 6, we can see that the presence of these vortices
is fundamental for the better performance of the cavities. These vortices ensure that the
“extra” length provided by the surface modifications remains in contact with the moving
fluid, thus avoiding the creation of stagnation zones and favoring the heat transfer process.

Alternatively, the impact of structured cavities can be assessed through their effective-
ness or enhancement factor, ε f , defined as the ratio between the heat transferred through
the structured geometry and the plane geometry, respectively [43,44]. Figure 10 shows the
evolution of the effectiveness of the geometries over time, confirming the previous results.
Geometry 3 with θ = 60◦ presents the best performance, especially in the initial moments.
One interesting observation concerns the evolution of effectiveness. Since the maximum
heat flux is limited, it is expected that, as time advances, the effectiveness reaches a value
of about 100% due to energy conservation. In a steady-state condition, the heat flux at the
solid–fluid interface should be the same as that imposed at the base. Thus, the steady-state
effectiveness may not be the best parameter to evaluate the structured cavities.

Nonetheless, a transient analysis of ε f can provide interesting results. By analyzing
the results displayed in Figure 10a, it is observable that the effectiveness of Geometry 3
takes longer to decay, followed by Geometry 2 and then by Geometry 1. This indicates that
the heat fluxes at the solid–fluid interface of structured cavities grow faster than those for
the plane interface.

Additionally, a time constant for each geometry can be estimated, providing a way
to evaluate the transient performance of each geometry. Since we are measuring the time



Inventions 2024, 9, 57 15 of 24

needed for ε f to reach a value of 100%, a higher time constant means that the heat flux for
the cavities reaches the value of the stationary heat flux imposed at the base faster than the
plane surface. Estimated time constants are presented in Table 4 for two heat fluxes and the
three cavities As expected, Geometry 3 presented a higher estimated time constant, which
again serves as an indication of its better performance.
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Figure 9. Vorticity for Qwall = 1 · 105: (a) t = 0.25 s; (b) t = 1.00 s; (c) t = 2.50 s. The caption numbers
are a reference to the geometries.
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Figure 10. Surface effectiveness evolution: (a) Q̇wall = 1 · 105 [W/m2]; (b) Q̇wall = 1 · 106 [W/m2].



Inventions 2024, 9, 57 16 of 24

Table 4. Time constant estimation.

Qwall [W/m2] 1 · 105 1 · 106

θ ◦ 30 45 60 30 45 60

tau [s] 0.22 0.34 0.48 0.06 0.10 0.18

The higher effectiveness exhibited by the geometries in Figure 10, for both heat flux
values, can also be observed in the evolution of the fluid temperatures, or, alternatively,
of the temperature differences shown in Figures 6c and 7c. Since the structured cavities
demonstrate effectiveness over 100%, it is expected that these geometries transfer heat more
efficiently than the plane surface, resulting in higher temperature differences for the more
“efficient” geometries. This observation further confirms the obtained results.

3.2.2. Natural Convection with Fixed Base Temperature

In addition to the previous results, we also conducted simulations of the natural
convection process for five different base temperatures, Twall , effectively resulting in Ra
values ranging between 1.5 × 103 and 2.6 × 104, considering each geometry configuration
and a flat surface. The results primarily concern the average Nusselt number, Nu, and the
average heat flux at the solid–fluid interface, Q̇, throughout the transient regime.

Figure 11 illustrates the evolution of the average heat transfer rate at the solid–fluid inter-
face. The behavior observed differs drastically betweeen each condition. For Twall ≤ 40 ◦C,
all the structured cavities are shown to have a negative impact on the heat transfer process.
Conversely, when considering higher wall temperatures (Twall ≥ 60 ◦C), the enclosures begin
to exhibit regions (typically at the beginning of the simulations) where an enhancement of
the free-convection process through the addition of structured surfaces is noticeable. In other
words, these are regions where an intensification of the heat transfer process occurs. This
simulated behavior should be a direct consequence of the Ra values. For small Ra values, the
cavities increase the solid–fluid thermal resistance due to the low flow vorticity, leading to
low heat transfer rates. This behavior will be discussed further in this section.
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Figure 11. Average heat transfer rate time evolution: (a) Twall = 30 ◦C; (b) Twall = 40 ◦C;
(c) Twall = 60 ◦C; (d) Twall = 80 ◦C; (e) Twall = 90 ◦C.

Figures 12 and 13 depict both the temperature distributions and the streamlines for
Twall = 80 ◦C at t = 2.50 s (transient) and the steady-state regimes, respectively. Similar
to the tests considering an imposed heat flux, the conditions of the problem favor the
formation of counter-rotating symmetrical vortices. However, at the evaluated time steps,
the vortices exhibit an opposite rotation compared to what was observed in the previous
section, with the fluid descending at the middle section.

Despite their similarities, Figures 12 and 13 show some major differences, which may
help to explain the behaviors observed during the transient regime. Looking solely at the
temperature distributions, a clear difference is observed in the distribution of the isothermal
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lines. Figure 12 presents more closely packed lines, especially near the corners of the solid–
fluid interface, indicating the presence of sharper temperature gradients. Physically, this
behavior translates to higher heat transfer rates. From a hydrodynamic perspective, both
conditions exhibit similar behaviors, with the exception of the observed absolute fluid
velocity (|u|), which is higher when evaluated at t = 2.50 s compared to the stationary
regime. This indicates the capability to advect more energy during the transient regime.
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Figure 12. Simulation results for Twall = 80 ◦C at t = 2.50 s (transient regime): (a) temperature field
distribution; (b) streamlines. The caption numbers are a reference to the geometries.
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Figure 13. Simulation results for Twall = 80 ◦C and the stationary regime: (a) temperature field
distribution; (b) streamlines. The caption numbers are a reference to the geometries.
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When evaluating the impact of structured cavities on the steady-state geometry per-
formance, we observed a negative impact compared to a plane surface, as shown in Table 5,
which leads to a decrease in the Nusselt number, in accordance with previous studies such
as [5,10]. These results can be associated with the stagnation of the fluid within the cavities,
as can be seen in Figure 13, where the fluid reaches temperatures as close to the solid as
possible, creating regions with high thermal resistance.

Table 5. Geometry comparison.

Twall = 30 ◦C RaL = 1.5 · 103 Twall = 40 ◦C RaL = 4.1 · 103 Twall = 60 ◦C RaL = 1.2 · 104 Twall = 80 ◦C RaL = 2.4 · 104 Twall = 90 ◦C RaL = 2.6 · 104

θ ◦ 0 30 45 60 0 30 45 60 0 30 45 60 0 30 45 60 0 30 45 60

NuLeq 1.03 0.94 0.84 0.8 1.03 0.94 0.84 0.8 1.86 1.74 1.55 1.43 2.75 2.56 2.28 2.1 3.04 2.84 2.52 2.32
Q [kWm−2] 3.14 3.01 2.89 2.63 6.36 6.1 5.86 5.33 23.29 23.0 21.97 19.41 52.46 51.86 49.4 43.75 68.25 67.46 64.25 56.83

To better understand the negative impact of the structured cavities at a stationary state,
we also plotted the local heat transfer rates at the solid–fluid interface; see Figure 14. Due
to the symmetry of the problem, the results are only shown for half of the domain (from
the middle section to the wall). Two distinct regions can be identified: outside and within
the cavities. In the first region, the solid is in contact with fluid that exhibits relative motion
to it. This motion increases the heat transferred from the solid to the fluid. In the second
region, the fluid tends to stagnate, and its temperature approaches that of the solid regions.
As a result, the heat transferred in this region is reduced. This behavior is observed for both
regimes (transient and steady), but it is more pronounced for the steady state, resulting in
a negative effect of the structured cavities. In the transient regime, the cavities produce a
positive effect, enhancing the heat transfer rate from the heated surface to the fluid.
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Figure 14. Heat transfer rate at the fluid–solid interface: (a) Twall = 30 ◦C; (b) Twall = 40 ◦C;
(c) Twall = 60 ◦C; (d) Twall = 80 ◦C; (e) Twall = 90 ◦C.

4. Conclusions

In this paper, we introduced modifications to an existing thermal LBM model for
simulating conjugate heat transfer processes [24], aimed at accounting for the local and
temporal variations in the thermophysical properties. By working with the conservative
form of the energy conservation equation written on the basis of the temperature and
constant-pressure specific heat, we derived a source term that encompasses both the time
and spatial variations in the domain properties. We also proposed the calculation of
the reference temperature for each time step. These modifications are the main novelty
of the paper and enabled the numerical simulation of the natural convection process in
an enclosure with structured cavities as a function of time. The following are the main
conclusions of the paper.
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1. The proposed LBM model was validated through the solution of three benchmark
problems, including purely diffusion, advection–diffusion, and free-convection problems.
Overall, the proposed modified model presented consistently low relative errors compared
to the reference analytical and numerical solutions.

2. Furthermore, the proposed LBM model was employed to investigate the natural
convection phenomenon within an enclosure with structured cavities. Two principal
simulations were undertaken: first, cases involving the imposition of a uniform heat flux
at the domain base (solid medium); second, in a more traditional way, the imposition of a
uniform base temperature was also studied.

3. Alternatively to previous works, we focused our analysis on the transient regime,
which revealed interesting results. In both simulations, an enhancement of the free-
convection process was perceived for the structured surfaces, mainly for higher Ra. As dis-
cussed before, these results are associated with higher vorticities, which favors the fluid
circulation within the domain, thus preventing its stagnation inside the cavities. This kind
of result is very scarce in the open literature.

4. Additionally, we also examined the stationary regimes (only for the second sim-
ulation case). In these circumstances, the base problem (an enclosure with a plane inter-
face) was shown to generate higher heat transfer rates, and consequently higher Nusselt
numbers, when compared to the structured surfaces, supporting the findings from prior
research [5,10]. Contrary to the transient cases, in these circumstances, some portion of
the fluid stagnates inside the cavities, essentially creating additional thermal resistances,
ultimately reducing the heat transfer rates.

In summary, the natural convection simulation within an enclosure with a structured
surface provided interesting insights regarding this heat transfer process. First, in accor-
dance with the previous works [5,10], the presence of a structured surface was shown to
have a negative impact on the stationary heat transfer process, favoring the stagnation of
the fluid between the cavities. On the other hand, when considering transient regimes,
where most of the practical application occurs, the structured surfaces were shown to
present a positive impact, in particular for what concerns higher Ra, since in this condition
no fluid stagnation within the cavities was perceived.
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Appendix A. Chapman–Enskog Analysis

The Chapman–Enskog analysis for the proposed LBE with the source term is performed
in this section. First, we start by considering that the source term Sgi =

(
1− ∆t

2τT

)
wiSg;

consequently, h0 = (∑i gi + 0.5δtSg).
For the sake of clarity, the index notation will be used here, α, β, and γ being the

Cartesian coordinates, as well as the short notation of derivatives (∂t, ∂α, ∂αβ, etc.). Starting
from the thermal lattice Boltzmann equation for discrete velocity directions, considering
the BGK collision operator and the source term,
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gi(xα + ciαδt, t + δt)− gi(xα, t) = − δt
τT

[
gi(xα, t)− geq

i (xα, t)
]
+ δtSgi . (A1)

Expanding gi(xα + ciαδt, t + δt) in Taylor series considering only the second-order
terms, the LBE becomes

δt(∂tgi + ciα∂αgi) +
δt2

2

(
∂ttgi + 2ciα∂tαgi + c2

iα∂ααgi

)
+ O(δt)3 = − δt

τT

[
gi − geq

i

]
+ δtSgi , (A2)

Next, the temporal and spatial derivatives and the distribution functions are expanded
in terms of the Knudsen number Kn. Defining ϵ to indicate the Knudsen order terms (for
example, ϵn ∼ Knn) and expanding gi as a perturbation series around geq

i :[(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)
+ ciα

(
ϵ∂

(1)
α

)](
g(0)i + ϵg(1) + ϵ2g(2)i

)
+ ...

δt
2

[(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)2
+ 2ciα

(
ϵ∂

(1)
α

)(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)
+ c2

iα

(
ϵ∂

(1)
α

)2
](

g(0)i + ϵg(1) + ϵ2g(2)i

)
+ ...

O(δt)3 = − 1
τT

[(
g(0)i + ϵg(1) + ϵ2g(2)i

)
− geq

i

]
+ ϵ(1)S(1)

gi

(A3)

Neglecting terms with order greater than ϵ3, the final expression becomes

ϵ0
[

1
τT

(
g(0)i − geq

i

)]
+ ϵ1

(
∂
(1)
t g(0)i + ciα∂

(1)
α g(0)i +

g(1)i
τT

− S(1)
gi

)
+ ...

ϵ2

[
∂
(1)
t g(1)i + ∂

(2)
t g(0)i + ciα∂

(1)
α g(1)i +

δt
2

(
∂

2(1)
t g(0)i + 2ciα∂

(1)
tα g(0)i + c2

iα∂
2(1)
α g(0)i

)
+

g(2)i
τT

]
= 0

(A4)

Splitting in relation to the order of ϵ and re-ordering the expressions, we have

ϵ0 : g(0)i = geq
i (A5)

ϵ1 :
(

∂
(1)
t + ciα∂

(1)
α

)
g(0)i = −

g(1)i
τT

+ S(1)
gi (A6)

ϵ2 : ∂
(2)
t g(0)i +

(
∂
(1)
t + ciα∂

(1)
α

)
g(1)i +

∆t
2

(
∂
(1)
t + ciα∂

(1)
α

)2
g(0)i = −

g(2)i
τT

(A7)

Taking the zeroth and first moments of Equation (A6) and substituting the source term,{
0th : ∂

(1)
t h0 + ∂

(1)
α (uαh0) = S(1)

g

1st : ∂
(1)
t (uαh0) + c2

s ∂
(1)
α h0 = − 1

τT
∑ g(1)i ciα

(A8)

Substituting Equation (A6) in Equation (A7), taking the zeroth moment of the resultant
equation, and re-ordering,

∂
(2)
α h0 + ∂

(1)
α

(
∆t
2

− τT

)
c2

s ∂
(1)
α h0 +

[
∂
(1)
α

(
∆t
2

− τT

)
∂
(1)
t (uαh0)

]
=

[
1
4

(
1 − ∆t

2τT

)]
∆t∂(1)t S(1)

g (A9)

Summing Equation (A9) with the 0th moment in Equation (A8) in the respective
ϵ order,(

ϵ∂
(1)
t + ϵ2∂

(2)
t

)
h0 +

(
ϵ∂

(1)
α

)
(h0uα) +

(
ϵ∂

(1)
α

)(∆t
2

− τT

)
c2

s

(
ϵ∂

(1)
α

)
h0 + E = ...

ϵ2
[

1
4

(
1 − ∆t

2τT

)]
∆t∂(1)t S(1)

g +
(

ϵS(1)
g

) (A10)
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where E = ∂
(1)
α

(
∆t
2 − τT

)
∂
(1)
t (uαh0) is the error term in the analysis. Recuperating the

derivatives and macroscopic quantities from the expansion in ϵ,

∂th0 +∇ · (uh0) = ∇(α∇h0) + Sg = ∇(α∇h0)−
k

(ρcP)0
∇h0∇

(
1
σ

)
(A11)

Thus, we can see that the proposed method indeed recovers Equation (16).

Appendix B. Analytical Solution Heat Diffusion between Three Solids

The analytical solution for this problem is provided in the form of Equation (A12),
where Θ = (T − Tw2)/(Tw1 − Tw2), ξ1 = x/x1, ξ2 = (x − d1)/x2, ξ3 = [x − (d1 + d2)]/x3,
τ = t/t0, δ1 = αCut0/(d2

1), δ2 = αSit0/(d2
2), δ3 = αAlt0/(d2

3), κ1 = KCu/d1, κ2 = KSi/d1,
and κ3 = KAl/d1, with t0 being a reference time set as the total studied time and di the
length of each layer.

Θ(ξi, τ) = Φ(ξi)− ϕ(ξi, τ) (A12)

The term Φ(ζi) refers to the steady-state solution for the problem and is provided by
Equation (A13).

Φ(ξ1) = 1 − (∆Θ)1ξ1, if 0 < ξ1 ≤ 1;
Φ(ξ2) = 1 − (∆Θ)1 − (∆Θ)2ξ2, if 0 < ξ2 ≤ 1;
Φ(ξ3) = 1 − (∆Θ)1 − (∆Θ)2 − (∆Θ)3ξ3, if 0 < ξ3 ≤ 1;

(A13)

where
(∆Θ)i = (1/κi)/(1/κ1 + 1/κ2 + 1/κ3)

The term ϕ(ξi, τ) is the unsteady solution for the problem that satisfies the boundary
conditions and is provided by Equation (A14).

ϕ(ξ1, τ) = ∑∞
n=0 Ane−λ2

nδ1τ sin(λnξ1), if 0 < ξ1 ≤ 1;

ϕ(ξ2, τ) = ∆1 ∑∞
n=0 Ane−λ2

nδ2τ
[
αn sin

(√
δ1
δ2

λnξ2

)
+ βn cos

(√
δ1
δ2

λnξ2

)]
, if 0 < ξ2 ≤ 1;

ϕ(ξ3, τ) = ∆2 ∑∞
n=0 Ane−λ2

nδ3τ
[
αn sin

(√
δ1
δ3

λnξ3

)
+ βn cos

(√
δ1
δ3

λnξ3

)]
, if 0 < ξ3 ≤ 1;

(A14)

where

∆i =
κ1

κi+1

√
δi+1

δ1
;

αn = cos(λn); βn = sin(λn)/∆1;

αn = cos(λn) cos

(√
δ1

δ2
λn

)
− sin(λn) sin

(√
δ1

δ2
λn

)
/∆1;

βn = cos(λn) sin

(√
δ1

δ2
λn

)
∆1

∆2
− sin(λn) cos

(√
δ1

δ2
λn

)
/∆2;

Mn =
κ1κ2

2
+

κ1κ3
[
cos2(λn) + sin2(λn)/∆2

1
]

2
+

κ1κ2(α
2
n + β

2
n)

2

An =
κ2κ3

λn Mn
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Finally, λn indicates the eigenvalues that satisfy the relation shown in Equation (A15)

tan(λn) = −
∆1 tan

(√
δ1
δ2

λn

)
+ ∆2 tan

(√
δ1
δ3

λn

)
1 − ∆2

∆1
tan
(√

δ1
δ2

λn

)
tan
(√

δ1
δ3

λn

) (A15)

Appendix C. Analytical Solution Convection–Diffusion with a Flat Interface

The solution for this problem is provided by Equation (A16), 1 being the lower fluid
(water in the case treated) and 2 the upper one (ethanol).T(x, y, t) = T0 + ∆T · Re

{
ej(Kx+ωt)[γ1e−λ1y + (1 − γ1)e−λ1y]}, if 0 ≤ y ≤ h;

T(x, y, t) = T0 + ∆T · Re
{

ej(Kx+ωt)
[
γ2e−λ2y +

(
1 − γ2e−λ2 H)e−λ2(H−y)

]}
, if h < y ≤ H;

(A16)

With Re referring to the real part of the solution, and with the following coefficients:

σ =
(ρcp)2

(ρcp)1
; κ =

α2

α1
; λ1 = K

√
1 + j

(
ω + U0K

K2α1

)
; λ2 = K

√
1 + j

(
ω + U0K

K2α2

)

a1 = e−λ1h; a2 = e−λ2h; a3 = e−λ2 H

γ1 =
λ1(a2

3 − a2
2) + κσλ2(2a1a2a3 − a2

2 − a2
3)

(λ1 + κσλ2)(a2
1a2

3 − a2
2)− (λ1 − κσλ2)(a2

1a2
2 − a2

3)

γ2 =
λ1(a2

1a3 + a3 − 2a1a2) + κσλ2(a2
1 − 1)a3

(λ1 + κσλ2)(a2
1a2

3 − a2
2)− (λ1 − κσλ2)(a2

1a2
2 − a2

3)

Appendix D. Nusselt Number Calculation

Two primary approaches for evaluating the Nusselt number can be employed. The first
method estimates Nu based on the projected length of the geometries, resulting in NuL.
The second approach calculates Nu using the actual length of the cavity, leading to NuLeq.
Both methods yield similar outcomes in identifying the “better” surface. However, calcu-
lations based on the projected area consistently produce much lower values compared to
those observed for the plane interface. Conversely, when considering the real interface
length, the Nu values are found to be closer to those of the plane interface. Nonetheless,
the average Nusselt number can be estimated by integrating the non-dimensional tempera-
ture, Equation (A17), along the solid–fluid interface, resulting in Equation (A18), with both
approaches differing with regard to the integration domain.

Θ(x) =
Ts(x)− Tcold

∆T
; ∆T =

Qwall ∗ L
k f

(A17)

Nu =
∫ L

0

1
Θ(x)

dx (A18)
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