
Citation: Wang, P.-S.; Lin, C.-H.;

Chuang, C.-T. Real-Time Object

Localization Using a Fuzzy Controller

for a Vision-Based Drone. Inventions

2024, 9, 14. https://doi.org/10.3390/

inventions9010014

Academic Editor: Anastasios

Doulamis

Received: 30 October 2023

Revised: 24 December 2023

Accepted: 2 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inventions

Article

Real-Time Object Localization Using a Fuzzy Controller for
a Vision-Based Drone
Ping-Sheng Wang, Chien-Hung Lin and Cheng-Ta Chuang *

Department of Intelligent Automation Engineering, National Taipei University of Technology,
Taipei 10608, Taiwan
* Correspondence: ctchuang@ntut.edu.tw

Abstract: This study proposes a drone system with visual identification and tracking capabilities to
address the issue of limited communication bandwidth for drones. This system can lock onto a target
during flight and transmit its simple features to the ground station, thereby reducing communication
bandwidth demands. RealFlight is used as the simulation environment to validate the proposed
drone algorithm. The core components of the system include DeepSORT and MobileNet lightweight
models for target tracking. The designed fuzzy controller enables the system to adjust the drone’s
motors, gradually moving the locked target to the center of the frame and maintaining continuous
tracking. Additionally, this study introduces channel and spatial reliability tracking (CSRT) switching
from multi-object to single-object tracking and multithreading technology to enhance the system’s
execution speed. The experimental results demonstrate that the system can accurately adjust the
target to the frame’s center within approximately 1.5 s, maintaining precision within ±0.5 degrees.
On the Jetson Xavier NX embedded platform, the average frame rate (FPS) for the multi-object tracker
was only 1.37, with a standard deviation of 1.05. In contrast, the single-object tracker CSRT exhibited
a significant improvement, achieving an average FPS of 9.77 with a standard deviation of 1.86. This
study provides an effective solution for visual tracking in drone systems that is efficient and conserves
communication bandwidth. The validation of the embedded platform highlighted its practicality
and performance.

Keywords: fuzzy control; DeepSORT; MobileNet; CSRT tracker

1. Introduction

Recent developments in software technology, including artificial intelligence (AI) and
image processing, along with hardware technology improvements like advanced flight
control platforms and embedded systems, have significantly accelerated the evolution
of drone applications. Recently, drones have been widely used in military applications
for reconnaissance and civilian applications for bridge inspections and tower cleaning.
Reducing battery consumption is critical because drones are independent carriers. Ref. [1]
introduced the development and hardware implementation of an autonomous battery
maintenance mechatronic system. This system can significantly extend the runtimes
of small battery-powered drones. Ref. [2] developed an automatic battery replacement
mechanism that allows drones to fly continuously without manual battery replacement.
Ref. [3] presented a novel design of a robotic docking station for automatic battery exchange
and charging. Furthermore, it lessens the computational burden on the drone’s embedded
system, consequently reducing power consumption.

This is a common application for drones in the outdoor tracking of targets. Ref. [4]
proposed an UAVMOT network specialized in multitarget tracking from an unmanned
aerial vehicle (UAV) perspective and introduced an ID feature update module to enhance
the feature association of an object. Ref. [5] employed the YOLOv4-Tiny algorithm for
semantic object detection, which was then combined with a 3D object pose estimation

Inventions 2024, 9, 14. https://doi.org/10.3390/inventions9010014 https://www.mdpi.com/journal/inventions

https://doi.org/10.3390/inventions9010014
https://doi.org/10.3390/inventions9010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inventions
https://www.mdpi.com
https://doi.org/10.3390/inventions9010014
https://www.mdpi.com/journal/inventions
https://www.mdpi.com/article/10.3390/inventions9010014?type=check_update&version=1

Inventions 2024, 9, 14 2 of 16

method and a Karman filter to enhance perceptual performance. Ref. [6] proposed an
online multi-object tracking (MOT) approach for UAV systems to address small object
detection and class imbalance challenges, which integrates the benefits of deep high-
resolution representation networks and data association methods in a unified framework.
However, most studies did not mention the bottleneck in the communication between
UAVs and ground stations.

This study proposes a drone with visual recognition tracking capabilities that uses
deep learning to perform image recognition and real-time algorithm validation in the
RealFlight simulator. Most embedded systems in drones have limited computational
resources; therefore, we used a lightweight target-detection model. Consequently, this
study achieves the functionality of the drone tracking a selected target and enhances the
efficiency of information transmission between the drone and the ground station. When
the onboard visual recognition system detects a single or several targets to be observed,
the UAV immediately notifies the ground station and displays a real-time image of what it
has seen.

After the ground station crew selects the primary target to be tracked, the live image
is turned off, and the onboard image tracking system locks on to the selected target,
simplifying the computation process by converting it to a single-object tracker. The fuzzy
controller [7] outputs a corresponding motor control angle for inputs with horizontal or
vertical errors, gradually moves the selected tracking target to the center of the image, and
continues tracking until the ground station completes the next step of the decision-making
process. Because the drone has limited communication bandwidth resources, it only returns
simple information regarding the target to the ground station, such as the coordinates,
color, and type of the target. This reduces the pressure on the communication bandwidth.

Therefore, our main contribution was creating a drone algorithm validation system
using RealFlight as a simulation environment, which can be used as a development and
validation environment before the actual flight to simplify the cost of developing algo-
rithms and improve development efficiency. In this system, DeepSORT and MobileNet
were selected as lightweight models suitable for developing the system, considering the
executability of the actual flight, which is suitable for realizing an embedded platform for
the drone. This study also verified the feasibility of the algorithm on Jetson Xavier NX.
This study also used CSRT switching from multi-object to single-object tracking with a
multithreading technique to enhance the execution speed.

The remainder of this paper is organized as follows. Section 2 explains the methodol-
ogy, and Section 3 presents the experimental results and discussion. Section 4 concludes
this study.

2. Methods

The architecture of the overarching system is shown in Figure 1 and involves several
stages. During the initial preprocessing phase, we executed image normalization and
resizing procedures on the image obtained using RealFlight. When no target was selected
by the user, we employed the single-shot multibox detector (SSD) MobileNet V2 model [8]
for object detection and the DeepSORT [9] model for multi-object tracking (MOT) to
generate the candidate box. We chose the SSD MobileNet V2 model because it consistently
outperformed other lightweight models in terms of accuracy and efficiency.

When a ground station user selects a specific target, the proposed system seamlessly
transitions from SSD MobileNet V2 and DeepSORT to the single-object tracker CSRT [10],
thereby ensuring real-time pinpoint-accurate tracking.

To regulate the drone movement, we integrated a fuzzy control mechanism that
governs navigation based on the tracking results from the previous step. This control
mechanism interfaces with ArduPilot, enabling precise and responsive drone control in
a RealFlight simulation environment. This integration ensures that the drone responds
accurately and promptly to the tracking results, thereby optimizing its movement in
relation to the designated target. ArduPilot then controls the drone within the RealFlight

Inventions 2024, 9, 14 3 of 16

environment using FlightAxis. In this integration, RealFlight handled the physical and
graphical simulations, whereas ArduPilot was responsible for converting the output of the
fuzzy control into motor signals, which were then transmitted to RealFlight.

Inventions 2024, 9, x FOR PEER REVIEW 3 of 17

Flight simulation environment. This integration ensures that the drone responds accu-
rately and promptly to the tracking results, thereby optimizing its movement in relation
to the designated target. ArduPilot then controls the drone within the RealFlight environ-
ment using FlightAxis. In this integration, RealFlight handled the physical and graphical
simulations, whereas ArduPilot was responsible for converting the output of the fuzzy
control into motor signals, which were then transmitted to RealFlight.

Finally, feedback was obtained from the tracking methods using RealFlight imagery.

Figure 1. System block diagram.

The following sections describe in detail the function of each of the sections in Figure
1, including design ideas and data handling.

2.1. SSD MobileNet V2
SSD MobileNet V2 is a single-stage object detection model with a streamlined net-

work architecture and an innovative depth-wise [11] separable convolution technique. It
is widely deployed in low-resource devices such as mobile devices and is highly accurate.
The SSD [12] is an object detection model based on a single-stage detector. It uses convo-
lutional neural networks (CNNs) [13] to identify and locate objects in an image directly.
An SSD has a faster processing speed than a region-based CNN (R-CNN) [14] because it
performs object detection in one step without generating candidate regions. By contrast,
MobileNet is a specially designed network architecture that reduces the computational
complexity and parameter count of the model while maintaining its high accuracy. It re-
places the traditional standard convolution with a depth-wise separable convolution to
lower computational costs while preserving good performance.

Therefore, SSD MobileNet V2 combines the single-stage object detection framework
of SSD with the lightweight design of MobileNet, thereby making it efficient and accurate
for low-resource devices. This model is suitable for object detection tasks in resource-con-
strained environments, such as mobile devices. Figure 2 presents a performance compar-
ison for the models [15].

Figure 2. Models’ performance comparison.

To process the dataset, we resized and applied the histogram equalization technique
[16] on over 100 images. These steps ensured that the images complied with the input
requirements of the model and that their contrasts were adjusted.

Figure 1. System block diagram.

Finally, feedback was obtained from the tracking methods using RealFlight imagery.
The following sections describe in detail the function of each of the sections in Figure 1,

including design ideas and data handling.

2.1. SSD MobileNet V2

SSD MobileNet V2 is a single-stage object detection model with a streamlined network
architecture and an innovative depth-wise [11] separable convolution technique. It is
widely deployed in low-resource devices such as mobile devices and is highly accurate. The
SSD [12] is an object detection model based on a single-stage detector. It uses convolutional
neural networks (CNNs) [13] to identify and locate objects in an image directly. An SSD
has a faster processing speed than a region-based CNN (R-CNN) [14] because it performs
object detection in one step without generating candidate regions. By contrast, MobileNet
is a specially designed network architecture that reduces the computational complexity and
parameter count of the model while maintaining its high accuracy. It replaces the traditional
standard convolution with a depth-wise separable convolution to lower computational
costs while preserving good performance.

Therefore, SSD MobileNet V2 combines the single-stage object detection framework of
SSD with the lightweight design of MobileNet, thereby making it efficient and accurate
for low-resource devices. This model is suitable for object detection tasks in resource-
constrained environments, such as mobile devices. Figure 2 presents a performance com-
parison for the models [15].

Inventions 2024, 9, x FOR PEER REVIEW 3 of 17

Flight simulation environment. This integration ensures that the drone responds accu-
rately and promptly to the tracking results, thereby optimizing its movement in relation
to the designated target. ArduPilot then controls the drone within the RealFlight environ-
ment using FlightAxis. In this integration, RealFlight handled the physical and graphical
simulations, whereas ArduPilot was responsible for converting the output of the fuzzy
control into motor signals, which were then transmitted to RealFlight.

Finally, feedback was obtained from the tracking methods using RealFlight imagery.

Figure 1. System block diagram.

The following sections describe in detail the function of each of the sections in Figure
1, including design ideas and data handling.

2.1. SSD MobileNet V2
SSD MobileNet V2 is a single-stage object detection model with a streamlined net-

work architecture and an innovative depth-wise [11] separable convolution technique. It
is widely deployed in low-resource devices such as mobile devices and is highly accurate.
The SSD [12] is an object detection model based on a single-stage detector. It uses convo-
lutional neural networks (CNNs) [13] to identify and locate objects in an image directly.
An SSD has a faster processing speed than a region-based CNN (R-CNN) [14] because it
performs object detection in one step without generating candidate regions. By contrast,
MobileNet is a specially designed network architecture that reduces the computational
complexity and parameter count of the model while maintaining its high accuracy. It re-
places the traditional standard convolution with a depth-wise separable convolution to
lower computational costs while preserving good performance.

Therefore, SSD MobileNet V2 combines the single-stage object detection framework
of SSD with the lightweight design of MobileNet, thereby making it efficient and accurate
for low-resource devices. This model is suitable for object detection tasks in resource-con-
strained environments, such as mobile devices. Figure 2 presents a performance compar-
ison for the models [15].

Figure 2. Models’ performance comparison.

To process the dataset, we resized and applied the histogram equalization technique
[16] on over 100 images. These steps ensured that the images complied with the input
requirements of the model and that their contrasts were adjusted.

Figure 2. Models’ performance comparison.

Inventions 2024, 9, 14 4 of 16

To process the dataset, we resized and applied the histogram equalization tech-
nique [16] on over 100 images. These steps ensured that the images complied with the
input requirements of the model and that their contrasts were adjusted.

First, we resized each image to a consistent size of 320 × 320 × 3, meeting the input
size requirements of the SSD MobileNet V2 model and ensuring that the model consistently
processed different features when handling these images.

Second, we applied the histogram equalization technique, which is a popular image
preprocessing technique. This adjusts the contrast of an image, meaning that the features
of an image with bright and dark backgrounds and foregrounds can be extracted. This
enhances the model’s ability to recognize image features during both the training and
testing phases. In summary, these preprocessing steps ensured that the dataset images
conformed to the input requirements of the model, improving its performance and accuracy.

2.2. DeepSORT

DeepSORT is a tracking algorithm that was first introduced in 2017 and has been ex-
tensively used in addressing the MOT problem [17]. Compared with the original SORT
algorithm [18], DeepSORT excels while consuming similar levels of computational resources.

In this study, we adopted the DeepSORT algorithm as the central component of the
tracking system. By leveraging DeepSORT, unique identifiers can be assigned to objects
detected in previous frames, allowing us to continuously track these objects and provide
positional information of the target object selected by the user. Subsequently, this tracked
information is relayed to the subsequent stages of the tracking system for further analysis
and application. This process enables the real-time and accurate tracking of multiple targets
while delivering pertinent information for subsequent tasks.

2.3. CSRT

CSRT is a popular object-tracking algorithm. This tracker trains related filters with
compressed features, such as HOG [19] and color names. These filters were employed
to locate regions around the object’s last known position in successive frames. Spatial
reliability maps were utilized during this process to modify the filter’s support region
and choose the tracking area. This approach ensures precise scaling and positioning of
the selected region and improves tracking performance for non-rectangular regions or
objects. After using MOT and determining the specific target to be tracked, we switched
from DeepSORT to CSRT. This is because the continuous use of MOT burdens the entire
system, which reduces the speed. Transitioning to a CSRT tracker can effectively resolve
this problem. Furthermore, compared to other single-target trackers, CSRT is more accurate.

2.4. Fuzzy Controller

A fuzzy controller was employed to control the drone’s direction based on the position
of a desired object. We opted for the fuzzy controller because, unlike other controllers such
as PID and linear controllers, it does not require knowledge of the system model. The
construction of a fuzzy controller can be easily achieved by leveraging human knowledge.
The motor can be easily directed toward an object using fuzzy logic [20] by defining simple
rules and incorporating variables from the preceding stages of the pipeline. While fuzzy
logic might show a less optimal performance compared to a neural network controller,
its advantage is its minimal resource consumption in drone control. This characteristic is
indispensable for embedded systems with limited computational resources. Figure 3 shows
the fuzzy control system block. Initially, the system takes the error between the detected
target and the center point as the input. Subsequently, the fuzzy system calculates the angle
at which the motor rotates. Subsequently, the system recalculates the error based on the
camera on the drone and returns it as feedback. This loop continues until the drone enters
the target.

Inventions 2024, 9, 14 5 of 16
Inventions 2024, 9, x FOR PEER REVIEW 5 of 17

Figure 3. Fuzzy control system’s block diagram.

2.4.1. Fuzzy Sets and Membership Functions
Fuzzy sets and membership functions are the fundamental concepts in fuzzy logic.

Fuzzy sets are used to represent the degree of affiliation of the elements, whereas mem-
bership functions define the degree of the membership function. Smoothness is not a cru-
cial requirement for motor direction control, and our data did not follow a normal distri-
bution. Hence, we opted for triangular membership functions [21] because of their sim-
plicity and robustness. Additionally, the triangular shape facilitated a straightforward as-
sociation with linguistic terms such as ‘low’, ‘medium’, and ‘high’. Figure 4 shows the
membership functions of the fuzzy variables. Equation (2) shows the fuzzy variables in
Equation (1).

(a) (b)

Figure 4. Fuzzy membership functions charts for (a) horizontal error and (b) horizontal motors.

Figure 3. Fuzzy control system’s block diagram.

2.4.1. Fuzzy Sets and Membership Functions

Fuzzy sets and membership functions are the fundamental concepts in fuzzy logic.
Fuzzy sets are used to represent the degree of affiliation of the elements, whereas member-
ship functions define the degree of the membership function. Smoothness is not a crucial
requirement for motor direction control, and our data did not follow a normal distribution.
Hence, we opted for triangular membership functions [21] because of their simplicity and
robustness. Additionally, the triangular shape facilitated a straightforward association
with linguistic terms such as ‘low’, ‘medium’, and ‘high’. Figure 4 shows the membership
functions of the fuzzy variables. Equation (2) shows the fuzzy variables in Equation (1).

Negative : VerticalErrornegative(x) =


1 i f x < 0

x−10
0−10 i f 0 ≤ x < 10

0 otherwise

Zero : VerticalErrorzero(x) =


0 i f x < −1 or x > 1

x+1
0+1 i f − 1 ≤ x ≤ 0
1−x
1−0 i f 0 ≤ x ≤ 1

0 otherwise

Positive : VerticalErrorpositive(x) =


0 i f x < 0
x

10 i f 0 ≤ x < 10

1 otherwise

(1)

Inventions 2024, 9, x FOR PEER REVIEW 5 of 17

Figure 3. Fuzzy control system’s block diagram.

2.4.1. Fuzzy Sets and Membership Functions
Fuzzy sets and membership functions are the fundamental concepts in fuzzy logic.

Fuzzy sets are used to represent the degree of affiliation of the elements, whereas mem-
bership functions define the degree of the membership function. Smoothness is not a cru-
cial requirement for motor direction control, and our data did not follow a normal distri-
bution. Hence, we opted for triangular membership functions [21] because of their sim-
plicity and robustness. Additionally, the triangular shape facilitated a straightforward as-
sociation with linguistic terms such as ‘low’, ‘medium’, and ‘high’. Figure 4 shows the
membership functions of the fuzzy variables. Equation (2) shows the fuzzy variables in
Equation (1).

(a) (b)

Figure 4. Fuzzy membership functions charts for (a) horizontal error and (b) horizontal motors. Figure 4. Fuzzy membership functions charts for (a) horizontal error and (b) horizontal motors.

Inventions 2024, 9, 14 6 of 16

2.4.2. Fuzzy Rules

Fuzzy rules are a fundamental component of fuzzy logic used to describe and control
system behavior, particularly in handling uncertainty and fuzziness. Each fuzzy rule
typically consists of two parts: an antecedent which describes the input conditions and
a consequent which defines the actions to be performed. These rules enable systems to
make appropriate decisions in complex scenarios. The fuzzy control parameters are listed
in Table 1.

Table 1. Fuzzy control table.

Horizontal Error

Vertical error

Positive Zero Negative

Positive (Negative, Positive) (Negative, Zero) (Negative, Positive)
Zero (Zero, Negative) (Zero, Zero) (Zero, Positive)

Negative (Positive, Negative) (Positive, Zero) (Positive, Positive)

2.4.3. Defuzzification

Defuzzification is a crucial step in fuzzy control and is used to convert fuzzy outputs
into clear and definite numerical values. In our scenario, we employed the center of
gravity (CoG) method for defuzzification because of its sensitivity to the distribution of
membership values across the entire range. This method is considered reasonable because
it considers the full distribution of the membership values. It assigns more weight to the
center of mass or the peak of the membership functions, reflecting the overall trend or
concentration of values within the fuzzy set.

For example, when the vertical error is 0.5, based on the fuzzy sets and fuzzy logic
defined earlier, we obtain a fuzzy decision, as illustrated in Figure 5. Subsequently, by
employing the CoG method from Equation (2), we derive the following integral Equation (3).
Solving this equation yields x as −2.06137703781. This implies that the fuzzy controller
will adjust the drone’s camera downward by −2.06137703781 degrees.

Center o f Gravity =

∫ b
a x · A(x) dx∫ b

a A(x) dx
(2)

∫ −0.95
−10 −0.05xdx+

∫ −0.5
−0.95 (x + 1)xdx +

∫ 0.5
−0.5 0.5xdx +

∫ 1
0.5 (−x + 1) xdx)∫ −0.95

−10 −0.05dx+
∫ −0.5
−0.95 (x + 1)dx +

∫ 0.5
−0.5 0.5dx +

∫ 1
0.5 (−x + 1)dx)

(3)
Inventions 2024, 9, x FOR PEER REVIEW 7 of 17

Figure 5. Result of fuzzy decision.

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓𝐺𝑟𝑎𝑣𝑖𝑡𝑦 = ׬ 𝑥௕௔ ⋅ 𝐴ሺ𝑥ሻ 𝑑𝑥׬ 𝐴ሺ𝑥ሻ௕௔  𝑑𝑥 (2)

׬ −0.05𝑥𝑑𝑥 ൅ି଴.ଽହିଵ଴ ׬ ሺ𝑥 ൅ 1ሻ𝑥𝑑𝑥 ൅ ׬ 0.5𝑥𝑑𝑥 ൅ ׬ ሺ−𝑥 ൅ 1ሻ𝑥𝑑𝑥ሻଵ଴.ହ଴.ହି଴.ହି଴.ହି଴.ଽହ׬ −0.05𝑑𝑥 ൅ି଴.ଽହିଵ଴ ׬ ሺ𝑥 ൅ 1ሻ𝑑𝑥 ൅ ׬ 0.5𝑑𝑥 ൅ ׬ ሺ−𝑥 ൅ 1ሻ𝑑𝑥ሻଵ଴.ହ଴.ହି଴.ହି଴.ହି଴.ଽହ (3)

We used the “scikit-fuzzy” Python library [22] to implement fuzzy control effectively
within the Python environment. This package provides a comprehensive toolkit for de-
veloping and applying fuzzy-logic systems. In our setting, if the drone needs to turn up
or right, the fuzzy logic outputs positive values; otherwise, it outputs negative values.
Based on these two variables, we designed a set of nine fuzzy rules to infer the appropriate
output variables. These output variables serve as signals for the vertical and horizontal
motors, calculate the error at the center point of the camera, and provide these motor sig-
nals to the loop (SITL), enabling it to adjust the drone’s direction toward the designated
target accurately. For instance, as illustrated in Table 1, when errors occurred in the posi-
tive direction for both axes, we provided a negative output to both the horizontal and
vertical motors to rectify the direction. Similarly, when the vertical and horizontal errors
were negative and positive, respectively, we outputted a positive signal to the vertical
motor and a negative signal to the horizontal motor.

2.5. ArduPilot
ArduPilot:Copter-4.4 [23] is a notable open-source autopilot software suite for vari-

ous autonomous crewless vehicles like rovers, copters, and boats. It includes powerful
tools such as the SITL flight simulator, specifically designed for aircraft, helicopters,
drones, and other flying vehicles, enabling simulation without hardware. SITL also inter-
faces with specific virtual environments, enabling more realistic simulations. This ap-
proach uses RealFlight Evolution as the virtual environment, and ArduPilot to receive the
output from a fuzzy controller. Our control over the SITL was facilitated by Mavlink’s [24]
message transmission, which is a communication protocol commonly employed in crew-
less vehicles. All drone statuses and sensor data were accessible throughout the process
using the widely used MissionPlanner-1.3.81 provided by Ardupilot. This software al-
lowed us to monitor and analyze the drone’s performance and sensor readings and launch
the SITL effectively.

Figure 5. Result of fuzzy decision.

Inventions 2024, 9, 14 7 of 16

We used the “scikit-fuzzy” Python library [22] to implement fuzzy control effectively
within the Python environment. This package provides a comprehensive toolkit for devel-
oping and applying fuzzy-logic systems. In our setting, if the drone needs to turn up or
right, the fuzzy logic outputs positive values; otherwise, it outputs negative values. Based
on these two variables, we designed a set of nine fuzzy rules to infer the appropriate output
variables. These output variables serve as signals for the vertical and horizontal motors,
calculate the error at the center point of the camera, and provide these motor signals to
the loop (SITL), enabling it to adjust the drone’s direction toward the designated target
accurately. For instance, as illustrated in Table 1, when errors occurred in the positive
direction for both axes, we provided a negative output to both the horizontal and vertical
motors to rectify the direction. Similarly, when the vertical and horizontal errors were
negative and positive, respectively, we outputted a positive signal to the vertical motor and
a negative signal to the horizontal motor.

2.5. ArduPilot

ArduPilot:Copter-4.4 [23] is a notable open-source autopilot software suite for various
autonomous crewless vehicles like rovers, copters, and boats. It includes powerful tools
such as the SITL flight simulator, specifically designed for aircraft, helicopters, drones, and
other flying vehicles, enabling simulation without hardware. SITL also interfaces with
specific virtual environments, enabling more realistic simulations. This approach uses
RealFlight Evolution as the virtual environment, and ArduPilot to receive the output from
a fuzzy controller. Our control over the SITL was facilitated by Mavlink’s [24] message
transmission, which is a communication protocol commonly employed in crewless vehicles.
All drone statuses and sensor data were accessible throughout the process using the widely
used MissionPlanner-1.3.81 provided by Ardupilot. This software allowed us to monitor
and analyze the drone’s performance and sensor readings and launch the SITL effectively.

2.6. RealFlight

RealFlight Evolution v10.00.059 is a cutting-edge simulation software explicitly de-
signed for planes and copters that enables users to experience their flights within a virtual
environment. Notably, it extends its support to SITL users, facilitating a seamless integra-
tion between RealFlight and SITL simulations.

By utilizing the FlightAxis I/O interface, RealFlight can establish a seamless connection
with SITL, enabling the visualization and precise simulation of physical models within
the RealFlight environment. This integration creates a feedback loop in which RealFlight
transmits essential flight parameters, including the vehicle’s attitude, velocity, and position,
to SITL. Subsequently, SITL processes the data and returns the corresponding control
signals to RealFlight, thereby completing the closed-loop simulation.

Algorithm 1 lists the pseudocodes corresponding to the system blocks. At the outset,
if the user has not chosen a specific target, the trackedObjectCoordinate will default to false.
Subsequently, the primary loop commences, capturing the droneImage from the camera
and subjecting it to image preprocessing. The subsequent steps depend on the tracke-
dObjectCoordinate variable, which signifies whether a specific target has been selected
for tracking.

When a target is not selected by the user, a multi-object tracker, combining SSDMo-
bileNetV2 and DeepSORT, is activated. This persists until the user designates one of the
targets from the DeepSort output. Upon selection, the trackedObjectCoordinate is updated
with the coordinates of the chosen object, triggering a switch to the CSRT object tracker in
line 5.

When the CSRT tracker is engaged, it pinpoints the selected target within the current
preprocessed image, utilizing the tracked object identified in line 15. Following this, the
verticalError and horizontalError are calculated, representing the deviation between the
camera’s center and the chosen target. Subsequently, employing the fuzzy controller, the
control signals are computed. These signals were then transmitted to ArduPilot to direct the

Inventions 2024, 9, 14 8 of 16

movement of the drone and align it with the target. This alignment persisted until the user
intervened to halt the process. Upon interruption by the user, trackedObjectCoordinate
reverts to None, prompting the reactivation of the MOT within the pipeline.

Algorithm 1 Pseudo code of the system block

1 trackedObjectCoordinate = None;
2 while true do
3 droneImage = CaptureDroneImage();
4 preprocessedImage = PreprocessImage(droneImage);
5 if trackedObjectCoordinate ! = None then

6
trackedObjectCoordinate = CSRTObjectTracker(preprocessedImage,

trackedObjectCoordinate);
7 verticalError, horizontalError = computeErrors(trackedObjectCoordinate)
8 controlSignals = FuzzyControl(verticalError, horizontalError);
9 TransmitToArdupilot(controlSignals);
10 if UserInterrupt() then
11 trackedObjectCoordinate = None;
11 else
12 detectedObjects = SSDMobilenetV2(preprocessedImage);
13 trackedObjectsCoordinate = DeepSORT(detectedObjects);
14 if UserSelectTarget() then
15 trackedObjectCoordinate = trackedObjectsCoordinate[SelectedId()];

2.7. Multithreading

In our experiment, we encountered a challenge involving the simultaneous control of
a drone while performing object detection and tracking. However, because of the inherent
nature of Python’s line-by-line execution, significant latency issues arise when the system
attempts to execute both tasks concurrently.

This delay may stem from the code’s execution time, particularly in scenarios where
real-time control of the drone and implementation of object detection and tracking are re-
quired. Given Python’s interpretive nature, it may struggle to deliver sufficient performance
to satisfy these demands.

To overcome this issue, we adopted a multithreading approach [25]. This enables
the system to execute different tasks simultaneously, thereby reducing the latency. Multi-
threading offers several advantages in program development. First, it allows the execution
of multiple tasks simultaneously, enhancing the program performance, particularly in sce-
narios which require the simultaneous handling of multiple tasks. Second, multithreading
enables the sharing of the same memory space, facilitating more efficient resource utiliza-
tion. Third, it prevents system blockage caused by a single thread, which could impede the
execution of other threads, thus enhancing the program’s flexibility and responsiveness.
In addition, multithreading simplifies the program design and makes it easier to handle
errors in each thread. Finally, multithreading enhances performance when dealing with
IO-intensive tasks, as other threads can continue execution while one thread waits for IO
operations to complete, thereby reducing the overall execution time.

3. Experiment

The subsequent section describes the experimental results of the system, including the
initial assumptions, database, training conditions, simulation results, and performance analysis.

3.1. Assumption

In our simulation, we assumed that an unmanned aerial vehicle (UAV) initiates the
tracking of a target from 600 m away. The UAV’s tracking pursuit persists until the target
tracking algorithm ceases to locate the object or until the user opts to cease tracking.
It is imperative that the boat maintains a moderate speed to ensure optimal tracking
performance. The fuzzy input error and output angle is −10 to 10. Additionally, within the

Inventions 2024, 9, 14 9 of 16

realistic simulation, we considered daytime conditions to be essential; without adequate
lighting, the camera would fail to capture images effectively.

3.2. Dataset

We employed a pretrained model trained on the PASCAL Visual Object Classes
(VOC) [26] dataset to facilitate the training of SSD MobileNet V2 for ship detection within
frames. The PASCAL VOC dataset is a well-known resource in computer vision and com-
prises images of 20 distinct object classes along with their associated bounding boxes. It is
widely used for various tasks, including object detection and image segmentation.

However, given that our specific target for object tracking was ships and considering
the limited representation of ship images within the PASCAL VOC dataset, we recognized
the need to augment our training data. To address this issue, we created an extensive set of
over 100 ship images, capturing various angles and perspectives in a virtual environment.
This strategy allowed us to complement the PASCAL VOC dataset with a more diverse
and relevant collection of ship images, thereby better aligning our model training with the
intricacies of real-world ship detection.

By leveraging comprehensive object class information from the PASCAL VOC dataset
and fine-tuning our model with our augmented ship dataset, we aimed to enhance its
generalization capabilities, expedite convergence during training, and mitigate the risks
associated with overfitting. This hybrid approach was designed to effectively bridge the gap
between the generic object classes in the PASCAL VOC dataset and the specific demands
for ship detection in our simulator scenario.

3.3. Hardware Setup

Hardware such as computers were crucial in our experiment. Our computer was
responsible for running the RealFlight simulator, Ardupilot SITL, and our tracking solution
simultaneously. The performance of our pipeline was significantly affected by resource-
intensive processes, such as RealFlight, which also consumed graphics processing unit
(GPU) resources for rendering scenes. Nevertheless, our setup was well-suited for simulat-
ing resource-constrained mobile environments such as drones. The hardware configuration
used in our experiment is described in detail below.

• CPU: Intel Core i5-8400
• GPU: NVIDIA GTX 1060
• RAM: 16 GB

Although our personal computer (PC) setup may not have been exceptionally pow-
erful, we took the measures in the previous section to optimize resource usage, and we
believe that our configuration was adequate to run our pipeline effectively.

3.4. Training

The feature pyramid network (FPN) SSD MobileNet V2 model is used as the base
model. This single-shot detector model can complete object detection tasks in a single
forward propagation. The model uses MobileNet V2 as the base network, which has a
higher running speed and lower computing power. In addition, the model contains a
feature pyramid network (FPN) [27] to combine high-level semantic information with low-
level detailed information to generate feature maps of different scales that can better handle
objects of different scales. Thus, the FPN SSD model handles small-object detection more
accurately than the traditional models. Integrating the FPN into our model significantly
boosted its performance in image recognition tasks, particularly in scenarios involving
targets of varying scales and complex appearances.

The eIQ toolkit [28] was used for the fine-tuning. Fine-tuning involves adjusting the
model parameters based on the data of a new task using a pretrained model.

We used fine-tuning rather than transfer learning because fine-tuning can quickly use
the knowledge learned in the pretrained model and fine-tune it according to the data of
the new task to adapt better to the new task. Although considerable computing resources

Inventions 2024, 9, 14 10 of 16

and time are required for fine-tuning, fine-tuned systems can fully utilize the knowledge
learned in the pretrained model.

Transfer learning typically requires fewer computing resources and less time because
it only needs to train the output model. However, using the knowledge learned in the
pretrained model may not be feasible; thus, optimal performance may not be achieved.
The losses for training and evaluation are shown in Figure 6. The training parameters are
as follows:

• Weight Initialization: PASCAL VOC
• Learning Rate: 0.001
• Learning Rate Decay: Disabled
• Batch Size: 10

Inventions 2024, 9, x FOR PEER REVIEW 11 of 17

Figure 6. Loss chart for training and evaluation.

The predicted results for the images in the test set are shown in Figure 7. The blue
and green rectangles represent the ground truth and decoded output of the FPN SSD Mo-
bileNet V2, respectively.

Figure 7. Testing set result of FPN SSD MobileNet V2.

3.5. Simulation
In our simulation, the drone was initially positioned on an aircraft carrier using the

aforementioned methods. It was then commanded to fly toward a specific position and
altitude. Next, the yaw was randomly adjusted to ensure that the aircraft carrier appeared
in the field of view (FOV).

Object tracking was initiated once this setup was complete, allowing the user to select
a desired target for the drone to focus on, based on the unique ID provided by DeepSORT.
Upon selecting the desired target, the MOT (SSD MobileNet V2 + DeepSORT) was deac-
tivated, and the single-object tracker CSRT seamlessly replaced it. Concurrently, the fuzzy
controller was activated, and the pitch and yaw of the drone were adjusted accordingly to
orient it toward the target. When the user opted to stop the tracking process, the drone
immediately halted its movement and presented windows to select a new tracking target.
A drone that uses SITL with RealFlight is shown in Figure 8.

Figure 6. Loss chart for training and evaluation.

The predicted results for the images in the test set are shown in Figure 7. The blue and
green rectangles represent the ground truth and decoded output of the FPN SSD MobileNet
V2, respectively.

Inventions 2024, 9, x FOR PEER REVIEW 11 of 17

Figure 6. Loss chart for training and evaluation.

The predicted results for the images in the test set are shown in Figure 7. The blue
and green rectangles represent the ground truth and decoded output of the FPN SSD Mo-
bileNet V2, respectively.

Figure 7. Testing set result of FPN SSD MobileNet V2.

3.5. Simulation
In our simulation, the drone was initially positioned on an aircraft carrier using the

aforementioned methods. It was then commanded to fly toward a specific position and
altitude. Next, the yaw was randomly adjusted to ensure that the aircraft carrier appeared
in the field of view (FOV).

Object tracking was initiated once this setup was complete, allowing the user to select
a desired target for the drone to focus on, based on the unique ID provided by DeepSORT.
Upon selecting the desired target, the MOT (SSD MobileNet V2 + DeepSORT) was deac-
tivated, and the single-object tracker CSRT seamlessly replaced it. Concurrently, the fuzzy
controller was activated, and the pitch and yaw of the drone were adjusted accordingly to
orient it toward the target. When the user opted to stop the tracking process, the drone
immediately halted its movement and presented windows to select a new tracking target.
A drone that uses SITL with RealFlight is shown in Figure 8.

Figure 7. Testing set result of FPN SSD MobileNet V2.

3.5. Simulation

In our simulation, the drone was initially positioned on an aircraft carrier using the
aforementioned methods. It was then commanded to fly toward a specific position and
altitude. Next, the yaw was randomly adjusted to ensure that the aircraft carrier appeared
in the field of view (FOV).

Object tracking was initiated once this setup was complete, allowing the user to
select a desired target for the drone to focus on, based on the unique ID provided by
DeepSORT. Upon selecting the desired target, the MOT (SSD MobileNet V2 + DeepSORT)
was deactivated, and the single-object tracker CSRT seamlessly replaced it. Concurrently,
the fuzzy controller was activated, and the pitch and yaw of the drone were adjusted

Inventions 2024, 9, 14 11 of 16

accordingly to orient it toward the target. When the user opted to stop the tracking
process, the drone immediately halted its movement and presented windows to select a
new tracking target. A drone that uses SITL with RealFlight is shown in Figure 8.

Inventions 2024, 9, x FOR PEER REVIEW 12 of 17

Figure 8. The drone using SITL with RealFlight.

3.6. Result
We initially used the SSD MobileNet V2 to detect three aircraft carriers, each of which

was assigned a unique ID using DeepSORT, as shown in Figure 9. Upon selecting Target
ID 2 from the dialog box, we seamlessly transitioned the object-tracking method from SSD
MobileNet V2 and DeepSORT to CSRT, which is a single-object tracker. Simultaneously,
the fuzzy controller was engaged to ensure the precise navigation of the drone toward the
aircraft carrier associated with ID 2, as shown in Figure 10. As shown in Figure 11, the
entire process converges after approximately 15 iterations, and each fuzzy controller out-
put takes approximately 0.1 s. Although the drone experienced minor shaking during this
adjustment, owing to the controller’s sensitivity, it effectively completed the process
within an impressive 1.5 s. Furthermore, once the drone aligned with the target, we
promptly halted the tracking process and selected a new tracking target, demonstrating
the drone’s ability to seamlessly change targets and align with the new target within 1.5
s. These results demonstrated the practicality and effectiveness of the proposed method.

Figure 9. Drone perspective before object tracking.

Figure 10. Drone perspective after object tracking.

Figure 8. The drone using SITL with RealFlight.

3.6. Result

We initially used the SSD MobileNet V2 to detect three aircraft carriers, each of which
was assigned a unique ID using DeepSORT, as shown in Figure 9. Upon selecting Target
ID 2 from the dialog box, we seamlessly transitioned the object-tracking method from SSD
MobileNet V2 and DeepSORT to CSRT, which is a single-object tracker. Simultaneously,
the fuzzy controller was engaged to ensure the precise navigation of the drone toward the
aircraft carrier associated with ID 2, as shown in Figure 10. As shown in Figure 11, the
entire process converges after approximately 15 iterations, and each fuzzy controller output
takes approximately 0.1 s. Although the drone experienced minor shaking during this
adjustment, owing to the controller’s sensitivity, it effectively completed the process within
an impressive 1.5 s. Furthermore, once the drone aligned with the target, we promptly
halted the tracking process and selected a new tracking target, demonstrating the drone’s
ability to seamlessly change targets and align with the new target within 1.5 s. These results
demonstrated the practicality and effectiveness of the proposed method.

Inventions 2024, 9, x FOR PEER REVIEW 12 of 17

Figure 8. The drone using SITL with RealFlight.

3.6. Result
We initially used the SSD MobileNet V2 to detect three aircraft carriers, each of which

was assigned a unique ID using DeepSORT, as shown in Figure 9. Upon selecting Target
ID 2 from the dialog box, we seamlessly transitioned the object-tracking method from SSD
MobileNet V2 and DeepSORT to CSRT, which is a single-object tracker. Simultaneously,
the fuzzy controller was engaged to ensure the precise navigation of the drone toward the
aircraft carrier associated with ID 2, as shown in Figure 10. As shown in Figure 11, the
entire process converges after approximately 15 iterations, and each fuzzy controller out-
put takes approximately 0.1 s. Although the drone experienced minor shaking during this
adjustment, owing to the controller’s sensitivity, it effectively completed the process
within an impressive 1.5 s. Furthermore, once the drone aligned with the target, we
promptly halted the tracking process and selected a new tracking target, demonstrating
the drone’s ability to seamlessly change targets and align with the new target within 1.5
s. These results demonstrated the practicality and effectiveness of the proposed method.

Figure 9. Drone perspective before object tracking.

Figure 10. Drone perspective after object tracking.

Figure 9. Drone perspective before object tracking.

Inventions 2024, 9, x FOR PEER REVIEW 12 of 17

Figure 8. The drone using SITL with RealFlight.

3.6. Result
We initially used the SSD MobileNet V2 to detect three aircraft carriers, each of which

was assigned a unique ID using DeepSORT, as shown in Figure 9. Upon selecting Target
ID 2 from the dialog box, we seamlessly transitioned the object-tracking method from SSD
MobileNet V2 and DeepSORT to CSRT, which is a single-object tracker. Simultaneously,
the fuzzy controller was engaged to ensure the precise navigation of the drone toward the
aircraft carrier associated with ID 2, as shown in Figure 10. As shown in Figure 11, the
entire process converges after approximately 15 iterations, and each fuzzy controller out-
put takes approximately 0.1 s. Although the drone experienced minor shaking during this
adjustment, owing to the controller’s sensitivity, it effectively completed the process
within an impressive 1.5 s. Furthermore, once the drone aligned with the target, we
promptly halted the tracking process and selected a new tracking target, demonstrating
the drone’s ability to seamlessly change targets and align with the new target within 1.5
s. These results demonstrated the practicality and effectiveness of the proposed method.

Figure 9. Drone perspective before object tracking.

Figure 10. Drone perspective after object tracking. Figure 10. Drone perspective after object tracking.

Inventions 2024, 9, 14 12 of 16

Inventions 2024, 9, x FOR PEER REVIEW 13 of 17

Figure 11. Output of the fuzzy controller over time.

3.7. Performance Analysis
We further evaluated the performance enhancements achieved by transitioning from

an MOT (SSD MobileNet V2 + DeepSORT) to a single-object tracker, CSRT. A comparison
of the number of FPS is shown in Figure 12.

Figure 12. Performance comparison between utilizing MOT (SSD MobileNet V2 + DeepSORT) and
a single-object tracker (CSRT).

In summary, the average FPS for the MOT and the single-object tracker were 1.45 FPS
and 9.28 FPS, respectively. Our switch to a single-object tracker significantly improved the
performance of our pipeline, achieving a six-fold increase in FPS. Using this high-perfor-
mance tracking pipeline, our drone could effectively track the desired targets in real time.

Based on our investigation, two main factors contributed to the sluggish performance
of the proposed MOT. First, both SSD MobileNet V2 and DeepSORT require GPU re-
sources for computation, and a substantial portion of our GPU capacity is allocated to the
RealFlight simulators. Second, the current TensorFlow Lite op kernels are optimized for
ARM processors rather than for CUDA GPUs. Consequently, there was a performance
drop when running TensorFlow Lite models such as SSD MobileNet V2 on a GTX 1060
GPU.

Figure 11. Output of the fuzzy controller over time.

3.7. Performance Analysis

We further evaluated the performance enhancements achieved by transitioning from
an MOT (SSD MobileNet V2 + DeepSORT) to a single-object tracker, CSRT. A comparison
of the number of FPS is shown in Figure 12.

Inventions 2024, 9, x FOR PEER REVIEW 13 of 17

Figure 11. Output of the fuzzy controller over time.

3.7. Performance Analysis
We further evaluated the performance enhancements achieved by transitioning from

an MOT (SSD MobileNet V2 + DeepSORT) to a single-object tracker, CSRT. A comparison
of the number of FPS is shown in Figure 12.

Figure 12. Performance comparison between utilizing MOT (SSD MobileNet V2 + DeepSORT) and
a single-object tracker (CSRT).

In summary, the average FPS for the MOT and the single-object tracker were 1.45 FPS
and 9.28 FPS, respectively. Our switch to a single-object tracker significantly improved the
performance of our pipeline, achieving a six-fold increase in FPS. Using this high-perfor-
mance tracking pipeline, our drone could effectively track the desired targets in real time.

Based on our investigation, two main factors contributed to the sluggish performance
of the proposed MOT. First, both SSD MobileNet V2 and DeepSORT require GPU re-
sources for computation, and a substantial portion of our GPU capacity is allocated to the
RealFlight simulators. Second, the current TensorFlow Lite op kernels are optimized for
ARM processors rather than for CUDA GPUs. Consequently, there was a performance
drop when running TensorFlow Lite models such as SSD MobileNet V2 on a GTX 1060
GPU.

Figure 12. Performance comparison between utilizing MOT (SSD MobileNet V2 + DeepSORT) and a
single-object tracker (CSRT).

In summary, the average FPS for the MOT and the single-object tracker were 1.45 FPS
and 9.28 FPS, respectively. Our switch to a single-object tracker significantly improved
the performance of our pipeline, achieving a six-fold increase in FPS. Using this high-
performance tracking pipeline, our drone could effectively track the desired targets in
real time.

Based on our investigation, two main factors contributed to the sluggish performance
of the proposed MOT. First, both SSD MobileNet V2 and DeepSORT require GPU resources
for computation, and a substantial portion of our GPU capacity is allocated to the RealFlight
simulators. Second, the current TensorFlow Lite op kernels are optimized for ARM pro-
cessors rather than for CUDA GPUs. Consequently, there was a performance drop when
running TensorFlow Lite models such as SSD MobileNet V2 on a GTX 1060 GPU.

Inventions 2024, 9, 14 13 of 16

3.8. Implementation on Embedded System

In addition, we implemented our image recognition pipeline on an embedded sys-
tem called Jetson Xavier NX [29]. The lightweight algorithms and models central to our
approach ensured an optimal performance on this embedded platform. With our imple-
mentation, the drone’s image recognition capabilities, including the tracking of multiple
objects and dynamic centering based on user selection, were seamlessly integrated into
the Jetson Xavier NX environment. During the migration to this pipeline, the only issue
encountered was an out-of-memory error. However, we promptly addressed this challenge
by optimizing memory allocation and ensuring the correct order of package imports.

To assess the performance of Jetson Xavier NX, we analyzed the FPS for our pipeline,
as shown in Figure 13a. As depicted in the results, our approach of transitioning to a
single-object tracker once again significantly enhanced the performance. The average FPS
for the multi-object trackers on the Jetson Xavier NX was 1.37. In contrast, adopting the
single-object tracker CSRT led to a substantial improvement, achieving an average FPS of
9.77 on the Jetson Xavier NX. The standard deviation for our MOT was 1.05, whereas that
for the single-object tracker was 1.86. Figure 13b shows the FPS distributions.

Inventions 2024, 9, x FOR PEER REVIEW 14 of 17

3.8. Implementation on Embedded System
In addition, we implemented our image recognition pipeline on an embedded system

called Jetson Xavier NX [29]. The lightweight algorithms and models central to our ap-
proach ensured an optimal performance on this embedded platform. With our implemen-
tation, the drone’s image recognition capabilities, including the tracking of multiple ob-
jects and dynamic centering based on user selection, were seamlessly integrated into the
Jetson Xavier NX environment. During the migration to this pipeline, the only issue en-
countered was an out-of-memory error. However, we promptly addressed this challenge
by optimizing memory allocation and ensuring the correct order of package imports.

To assess the performance of Jetson Xavier NX, we analyzed the FPS for our pipeline,
as shown in Figure 13a. As depicted in the results, our approach of transitioning to a sin-
gle-object tracker once again significantly enhanced the performance. The average FPS for
the multi-object trackers on the Jetson Xavier NX was 1.37. In contrast, adopting the single-
object tracker CSRT led to a substantial improvement, achieving an average FPS of 9.77
on the Jetson Xavier NX. The standard deviation for our MOT was 1.05, whereas that for
the single-object tracker was 1.86. Figure 13b shows the FPS distributions.

(a) (b)

Figure 13. Performance (FPS) of our pipeline on Jetson Xavier NX, (a) Performance on Jetson Xa-
vier NX ; (b) FPS distribution

4. Discussion
This section discusses the experimental results, including the challenges encoun-

tered, a comparison of the proposed methodology with other studies, and directions for
future improvement.

4.1. Yaw-Induced Translation in Drone Control
In the initial stages of our drone control endeavors, we encountered a noteworthy

challenge associated with adjusting the yaw of an UAV. Specifically, as we attempted to
align the drone with a target, necessitating yaw adjustments, we observed an unexpected
lateral movement of the quadcopter. This prompted us to seek insights from domain ex-
perts, leading to the realization that both fixed-wing and quadcopter drones tend to expe-
rience movement or alterations in their trajectories when adjusting the yaw. This phenom-
enon is based on the principles of aerodynamics and control dynamics.

Adjusting the yaw of a drone involves changing its orientation around its vertical
axis. In quadcopters, altering the yaw induces a torque that, in turn, leads to angular ac-
celeration, causing the drone to move laterally or change its trajectory. The aerodynamic
forces produced during yaw adjustments interact with the drone’s inherent stability
mechanisms, leading to unintended translational movements. This highlights the need to
consider these dynamics in drone control systems, specifically for tasks requiring precise
positioning or target tracking.

Figure 13. Performance (FPS) of our pipeline on Jetson Xavier NX, (a) Performance on Jetson Xavier
NX; (b) FPS distribution.

4. Discussion

This section discusses the experimental results, including the challenges encountered,
a comparison of the proposed methodology with other studies, and directions for future
improvement.

4.1. Yaw-Induced Translation in Drone Control

In the initial stages of our drone control endeavors, we encountered a noteworthy
challenge associated with adjusting the yaw of an UAV. Specifically, as we attempted to
align the drone with a target, necessitating yaw adjustments, we observed an unexpected
lateral movement of the quadcopter. This prompted us to seek insights from domain
experts, leading to the realization that both fixed-wing and quadcopter drones tend to
experience movement or alterations in their trajectories when adjusting the yaw. This
phenomenon is based on the principles of aerodynamics and control dynamics.

Adjusting the yaw of a drone involves changing its orientation around its vertical axis.
In quadcopters, altering the yaw induces a torque that, in turn, leads to angular acceleration,
causing the drone to move laterally or change its trajectory. The aerodynamic forces
produced during yaw adjustments interact with the drone’s inherent stability mechanisms,
leading to unintended translational movements. This highlights the need to consider these
dynamics in drone control systems, specifically for tasks requiring precise positioning or
target tracking.

Inventions 2024, 9, 14 14 of 16

4.2. Comparative Analysis

Table 2 shows that, despite the adoption of relatively lightweight models on the Jetson
Xavier NX, the computational speed did not reach the desired level. This perspective
was further corroborated in another relevant study, which demonstrated that relying
solely on lightweight models cannot adequately address performance issues in situations
with limited hardware resources. Furthermore, it highlights the critical importance of
implementing a mechanism for switching between multi-target and single-target tracking,
particularly in scenarios in which both types of tracking are required simultaneously.

Table 2. Comparative analysis of papers.

Our Paper
Run Your 3D Object Detector on

NVIDIA Jetson Platforms: A
Benchmark Analysis [30]

Preprocessing
Method 1 Method 2 Method 1 Method 2

Yes Yes No No

Object detection SSD No CIA-SSD SE-SSD

Object tracking DeepSORT CSRT No No

FPS 1.3760 10.3923 3.12 3.17

4.3. Limitations in the Presentation of Papers

The simulation environment may not achieve convergence in response to moving
objects or faster movement than a drone, which is an important issue which must be
addressed. Furthermore, the inability to hover while tracking targets stems from the drone’s
physical mechanism limitations, representing one of the challenges faced in our study.

4.4. Future Work

The following section describes several directions for future improvements including
controller design, optimization of SSD models, and data augmentation.

4.4.1. Refine the Fuzzy Controller

In addition, we intend to refine the fuzzy controller’s performance to minimize the
drone’s shaking during adjustments. This objective can be accomplished by carefully
adjusting the controller’s sensitivity parameters and integrating supplementary feedback
mechanisms to ensure smoother and more stable movement.

4.4.2. Optimize the SSD MobileNet V2 Model

We used SSD MobileNet V2 to fine-tune target detection accuracy. Adjusting the yaw
of the drone resulted in the disappearance of the detection link to the aircraft carrier in the
middle, which also led to inconsistencies in the object IDs during tracking with DeepSORT.
Therefore, the optimization of our detection model can solve these problems.

4.4.3. Augmented Dataset

The diversity of the target objects for SSD MobileNet V2 detection can be increased by
expanding the dataset. Our dataset includes only aircraft carriers. In the future, we can
add various types of ships at sea to provide a wider selection of targets and improve the
accuracy when different types of vessels overlap in the frame.

5. Conclusions

In this study, we proposed a system with visual recognition and tracking capabilities.
Because the communication bandwidth of UAVs, including drones, is considerably valuable,
the proposed system can transmit the simple features of a target identified during flight
back to the ground station for decision-making by ground station personnel. This reduces

Inventions 2024, 9, 14 15 of 16

the requirement for communication bandwidth. We built a drone algorithm validation
system using the SITL simulator and RealFlight as the simulation environments. When a
candidate target is detected, blurring technology is used to control the flight of the drone to
lock the target in the center of the frame. The proposed fuzzy control technology allows for
the completion of the locking function within approximately 1.5 s. This study mentions
enhancing the working speed of the system using lightweight modeling, multi-objective to
single-objective tracking with CSRT switching, and multithreading. The proposed target-
tracking architecture was validated using the Jetson Xavier NX embedded platform. On
the embedded platform, the performance of the CSRT was dramatically improved, with an
average frame rate of 9.77 frames per second and a standard deviation of 1.86. In the future,
we aim to increase the number of targets that can be recognized by flight verification in
the field.

Author Contributions: Conceptualization, C.-T.C.; funding, C.-T.C.; supervision, C.-T.C.; methodology,
P.-S.W. and C.-H.L.; software, P.-S.W. and C.-H.L.; validation, P.-S.W. and C.-H.L.; writing—original
draft, P.-S.W. and C.-H.L.; writing—review and editing, P.-S.W., C.-H.L. and C.-T.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by HIDES, Inc.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The company has a problem that needs to be solved and entrusted our lab to
solve the problem. All the experimental design, execution, data collection and analysis are done by
our lab. The company agrees to publish the results of this study. There is no other potential conflict
of interest between the funder and this study. The authors declare no conflicts of interest.

References
1. Ure, N.K.; Chowdhary, G.; Toksoz, T.; How, J.P.; Vavrina, M.A.; Vian, J. An Automated Battery Management System to Enable

Persistent Missions with Multiple Aerial Vehicles. IEEE/ASME Trans. Mechatron. 2015, 20, 275–286. [CrossRef]
2. Fujii, K.; Higuchi, K.; Rekimoto, J. Endless Flyer: A Continuous Flying Drone with Automatic Battery Replacement. In Proceedings

of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International
Conference on Autonomic and Trusted Computing, Vietri sul Mare, Italy, 18–21 December 2013; pp. 216–223.

3. Wu, Y.; Teng, M.; Tsai, Y. Robot Docking Station for Automatic Battery Exchanging and Charging. In Proceedings of the IEEE
International Conference on Robotics and Biomimetics, Bangkok, Thailand, 21–26 February 2009; pp. 1043–1046.

4. Liu, S.; Li, X.; Lu, H.; He, Y. Multi-Object Tracking Meets Moving UAV. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8876–8885.

5. Lo, L.-Y.; Yiu, C.H.; Tang, Y.; Yang, A.-S.; Li, B.; Wen, C.-Y. Dynamic Object Tracking on Autonomous UAV System for Surveillance
Applications. Sensors 2021, 21, 7888. [CrossRef]

6. Huang, W.; Zhou, X.; Dong, M.; Xu, H. Multiple Objects Tracking in the UAV System Based on Hierarchical Deep High-Resolution
Network. Multimed. Tools Appl. 2021, 80, 13911–13929. [CrossRef]

7. Zadeh, L.A. Fuzzy Algorithms. Inf. Control 1968, 12, 94–102. [CrossRef]
8. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

9. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

10. Lukežic, A.; Vojír, T.; Zajc, L.C.; Matas, J.; Kristan, M. Discriminative Correlation Filter with Channel and Spatial Reliability. In Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 4847–4856.

11. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

13. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef]

https://doi.org/10.1109/TMECH.2013.2294805
https://doi.org/10.3390/s21237888
https://doi.org/10.1007/s11042-020-10427-1
https://doi.org/10.1016/S0019-9958(68)90211-8
https://doi.org/10.1186/s40537-021-00444-8

Inventions 2024, 9, 14 16 of 16

14. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

15. TensorFlow Models. Available online: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/
tf2_detection_zoo.md (accessed on 30 October 2023).

16. Han, J.-H.; Yang, S.; Lee, B.-U. A Novel 3-D Color Histogram Equalization Method with Uniform 1-D Gray Scale Histogram.
IEEE Trans. Image Process. 2011, 20, 506–512. [CrossRef]

17. Luo, W.; Xing, J.; Milan, A.; Zhang, X.; Liu, W.; Kim, T.-K. Multiple Object Tracking: A Literature Review. Artif. Intell. 2021, 293,
103448. [CrossRef]

18. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

19. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

20. Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Fuzzy Control System for Smart Energy Management in Residential Buildings
Based on Environmental Data. Energies 2021, 14, 752. [CrossRef]

21. Peckol, J.K. Introduction to Fuzzy Logic; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021.
22. Scikit-Fuzzy. Available online: https://pythonhosted.org/scikit-fuzzy/overview.html (accessed on 30 October 2023).
23. ArduPilot. Available online: https://ardupilot.org/ (accessed on 30 October 2023).
24. Koubaa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro Air Vehicle Link (MAVlink) in a Nutshell: A

Survey. IEEE Access 2019, 7, 87658–87680. [CrossRef]
25. Kwak, H.; Lee, B.; Hurson, A.R.; Yoon, S.-H.; Hahn, W.-J. Effects of Multithreading on Cache Performance. IEEE Trans. Comput.

1999, 48, 176–184. [CrossRef]
26. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int.

J. Comput. Vis. 2010, 88, 303–338. [CrossRef]
27. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
28. NXP. Available online: https://www.nxp.com/design/software/eiq-ml-development-environment:EIQ (accessed on 30 October 2023).
29. NVIDIA. Available online: https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/

(accessed on 30 October 2023).
30. Choe, C.; Choe, M.; Jung, S. Run Your 3D Object Detector on NVIDIA Jetson Platforms: A Benchmark Analysis. Sensors 2023,

23, 4005. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://doi.org/10.1109/TIP.2010.2068555
https://doi.org/10.1016/j.artint.2020.103448
https://doi.org/10.3390/en14030752
https://pythonhosted.org/scikit-fuzzy/overview.html
https://ardupilot.org/
https://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.1109/12.752659
https://doi.org/10.1007/s11263-009-0275-4
https://www.nxp.com/design/software/eiq-ml-development-environment:EIQ
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://doi.org/10.3390/s23084005
https://www.ncbi.nlm.nih.gov/pubmed/37112347

	Introduction
	Methods
	SSD MobileNet V2
	DeepSORT
	CSRT
	Fuzzy Controller
	Fuzzy Sets and Membership Functions
	Fuzzy Rules
	Defuzzification

	ArduPilot
	RealFlight
	Multithreading

	Experiment
	Assumption
	Dataset
	Hardware Setup
	Training
	Simulation
	Result
	Performance Analysis
	Implementation on Embedded System

	Discussion
	Yaw-Induced Translation in Drone Control
	Comparative Analysis
	Limitations in the Presentation of Papers
	Future Work
	Refine the Fuzzy Controller
	Optimize the SSD MobileNet V2 Model
	Augmented Dataset

	Conclusions
	References

