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Abstract: The aim of this work is to provide some details regarding the energy potential of the
local wind and solar resources near the Galati area (south-east of Romania) by considering the
performances of a few recent technologies. Based on 22 years of ERA5 data (2001–2022), a picture
concerning the renewable energy resources in the Brates Lake area is provided. Comparing the wind
and solar resources with in situ and satellite data, a relatively good agreement was found, especially
in regards to the average values. In terms of wind speed conditions at a hub height of 100 m, we
can expect a maximum value of 19.28 m/s during the winter time, while for the solar irradiance
the energy level can reach up to 932 W/m2 during the summer season. Several generators of 2 MW
were considered for evaluation, for which a state-of-the-art system of 6.2 MW was also added. The
expected capacity factor of the turbines is in the range of (11.71–21.23)%, with better performances
being expected from the Gamesa G90 generator. As a next step, several floating solar units were
considered in order to simulate large-scale solar projects that may cover between 10 and 40% of
the Brates Lake surface. The amount of the evaporated water saved by these solar panels was also
considered, being estimated that the water demand of at least 3.42 km2 of the agricultural areas can
be covered on an annual scale.

Keywords: Romania; Brates Lake; floating solar; wind turbine; ERA5; evaporation

1. Introduction

The aim of the European Green Deal published in 2019 is to promote the use of
renewable energy (RE) sources in order to obtain a significant reduction in the carbon
footprint. To achieve such ambitious targets, the expected milestones involve a CO2
decrease by 55% in 2030 (compared to 1990), reaching zero emissions by 2050. For the first
time, in 2020, the energy generated from RE sources in Europe exceeded the fossil fuel
production, which is mainly supported by the wind and hydropower sector. In addition,
it is worth mentioning that solar technologies are considered to be the most dynamic
RE market in this region, including the development of the floating photovoltaic (FPV)
projects [1]. Over the last years, the evolution of the wind sector involved various paths,
with some studies suggesting that the North Sea could become the next hot spot in terms of
electricity production [2]. At the end of 2022, the European Union (EU-27) was defined by
an installed capacity of 204 GW, of which 92% was located onshore. From the total electricity
mix, the wind contribution is more visible in the case of Denmark with 55%, being followed
by Germany, Portugal, Spain, and Sweden with percentages close to 25%. The expected
capacity factor of the new onshore wind projects reach up to 45% in relation to a generator
of 4.1 MW (average value), compared to the offshore ones where a 50% capacity factor and
an average power of 8.0 MW are noticed [3]. The European solar industry registered an
impressive growth of 50% per year during the interval 2006–2016, decreasing to a rate of
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32% in 2017. Nevertheless, at this moment, the solar market seems to be in a saturation
stage, which indicates that if the investment level does not increase, this RE source will
have a limited influence on the energy mix in the time interval 2030–2040 [4]. However,
considering the recent technology developments, some new opportunities occurred such
as the development of the FPV projects that can be installed on different water bodies of
Europe, similar to the ones from the coastal areas, hydropower reservoirs, and even urban
lakes [5]. An FPV has the potential to reduce the algae growth and water evaporation, has
better performance than an onshore farm due to lower water temperature, and will not
compete with the land use, while the shading effect will be minimal [6,7]. At the end of
2018, almost 1.3 GWp of FPV were installed on a global scale, compared to almost 500 GWp
accounted by the onshore market [8].

As it is located in the northern hemisphere, Romania is one of the largest countries
from the south-eastern part of Europe, covering a surface of 240,000 km2. The combination
between the geographical and climatic features makes this area a suitable candidate for
the development of renewable projects, such as solar projects [9,10]. It is estimated that
the average sunshine period varies between 1600 and 3200 h/year, with more important
photovoltaic projects being developed in the low relief areas, such as the Moldavian and
Dobrogea Plateaus in the east. During the interval 2007–2013, a total of EUR 350.556 million
was allocated to the Romanian renewable sector, while after 2010 a total of 305 photovoltaic
projects (1351 MW) were developed in areas that cover a total of 3000 ha. For the interval
2010–2019, the investments in the solar sector covered almost EUR 2000 million, from
which a maximum peak was associated with the interval 2012–2014, where almost 90% of
this budget was allocated. The investment level significantly dropped at the end of 2019,
of which only 2.5 MW of solar systems are implemented, compared to a peak value of
863.43 MW indicated for the year 2013 [11]. At this point, we have to mention that there are
no FPV projects operating in this region, although at one moment, some plans to develop
a combined offshore wind and floating solar project were vehiculated [12]. Except for
the mountain areas, the most important Romanian regions for the development of wind
projects can be also found in the eastern part, more precisely near the Black Sea, Danube
Delta, Northern Dobrogea, or even the Barlad Plateau, where the annual wind speed can
reach up to 10 m/s (50 m in height). As a consequence, a significant part of the operational
wind farms is located in these areas, which is indicated by a share of 78% for Dobrogea and
the southern part of the Barlad Plateau, including the Galati/Braila counties [13]. Definitely,
the project Fantanele–Cogealac (600 MW) is one of the most representative Romanian wind
farms, being defined by a total of 240 generators that operate at a hub height of 100 m. A
total of EUR 1.1 billion was allocated to this project, which is expected to cover a share of
10% of the total Romanian RE production [14].

Galati County is located in the eastern part of Romania, being a major port at the
Danube River [15]. Although several renewable projects (for example, wind and solar) are
operational in this area, there is little information about the local energy potential that is
disseminated from an academic perspective. Thus, there is still room for development,
which in fact, is shown by the approval of a 629 MW wind project run by the Hoopeks
International Company. This will involve a total of 136 generators (of 6.2 MW), an in-
vestment cost of EUR 500 million, and a covered area of 13,000 ha. More than these two
photovoltaic project requests (of 310 MW each) were approved for development in the
middle of 2022 [16]. In addition, we need to mention that Liberty Galati, which is the largest
steel factory in Romania, is aiming to reduce the CO2 fingerprint by almost 80% using the
RE sources. More precisely, there is an increased interest to reduce electricity consumption
by developing a capacity of 20 MW wind farm and 180 MW solar farm on site, which may
be also used for the production of green hydrogen [17]. This strategy is clearly in line with
the current EU regulations, targeting the CO2 emissions, which in general, are higher in the
eastern part of Europe [18].

In conclusion, for the first time, a lake environment from Romania is evaluated from the
point of view of a source of renewable energy. This may lead to further applications, such
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as the implementation of an FPV pilot project on the Brates Lake. This approach represents
a step forward in the sustainable development of this area, where multiple projects can be
developed in order to support recreational activities or the local aquaculture industry.

The present work is structured as follows. After the Introduction, in Section 2, all the
information regarding the target area and numerical datasets are provided, including the
mathematical approach used to assess the performance of renewable systems. Then, in
Section 3, the renewable profile of the Brates Lake area is assessed by taking into account
various meteorological parameters, including the expected benefits resulting from the
implementation of different FPV scenarios. Finally, in Section 4, the importance of the
Galati County from a renewable project point of view is highlighted, including some key
findings of the present work.

2. Materials and Methods
2.1. Study Area

The target area is located in the eastern part of Romania, more precisely, north of
Galati City [19], as illustrated in Figure 1. During the 18th and 19th centuries, this lake
had a surface of about 100 km2, while at this moment, the lake has been drained due to
various human interventions, being reduced to a surface of 20 km2 and a maximum water
depth of 3 m [20]. At this point, we should also mention that the Brates Lake is in a higher
degradation state and the inefficiency of the water processing plants operating in this area
is indicated as a main factor for this degradation [21]. At one point, this lake was connected
to the Danube and Prut Rivers [22], throughout different channels, being frequently used
for fisheries, and more recently, for agricultural purposes [23]. In total, the Brates Lake
ecosystem health is uncertain since there are no monitoring stations or projects focused on
this area, while significantly more attention is being given to the Danube River [24–26].
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and site B (in the middle of Brates Lake). Information is processed from Google Earth 2023.

In this area, two specific sites denoted as A and B are considered for analysis. Site A
corresponds also to the position of a meteorological station maintained by the National
Meteorological Administration of Romania (or NMA-RO), with the associated wind mea-
surements (U10) being used to check the accuracy of the reanalysis data. Site B (Brates
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Lake) will be further considered to highlight the profiles of the renewable resources (wind
and solar), and the performances of some onshore wind turbines and floating solar panels.

2.2. Wind and Solar Datasets

Several datasets and variables were considered in the present work, as presented in
Table 1. In situ wind measurements are available only for site A, being associated with a
reference height of 10 m (U10). Twenty-two years of data (January 2001–December 2022)
were processed, with the time series involving daily values of the average and maximum
wind speed values. For the same time interval, the ERA5 wind dataset was considered
for comparison, including the hourly values (24 values per day) and u and v components.
The ERA5 dataset is a project associated with the European Centre for Medium-Range
Weather Forecasts (ECMWF) that has a spatial resolution of 30 km, being frequently used
by researchers to identify the renewable energy potential from various geographical en-
vironments [27–29]. From a meteorological point of view, the U10 parameter is more
relevant [30], but for a wind turbine, it is more important to consider the wind conditions
that are characteristic at the hub height level (for example, 100 m) [31,32].

Table 1. The main characteristics of the reference sites considered in the present work. Information is
processed from Google Earth 2023.

Location ID Data Type Parameter Latitude
(◦)

Longitude
(◦)

Galati Site A In situ, ERA5 U10 45.473 28.032
Galati Site B ERA5, SARAH U100, SSRD, Temp, Evaporation 45.483 28.070

One way to identify the solar energy potential involves the use of the surface solar ra-
diation downwards (SSRD in J/m2), that was processed from the ERA5 package (24 values
per day), which is defined as a combination of direct and diffuse solar radiation that reached
a horizontal plane from the Earth. By dividing this parameter with the accumulation period
(3600 s), a new form that is expressed in W/m2 can be obtained [33]:

Solar irradiance =
SSRD
3600

(1)

In addition, the daily temperature (temperature at 2 m height) and evaporation rate
from the ERA5 database, were considered and processed, in order to provide a more com-
plete picture of the local environmental conditions (daily values for the interval 2001–2022).
The presence of an FPV project can significantly reduce the volume of the evaporated
water [34–36]; therefore, another objective of this work is to estimate the water prevention
for the Brates Lake area.

The in situ measurements used in this work are available only for the wind conditions,
and as a consequence, the SARAH data record [37,38] will be used to check the accuracy
of some other parameters (for example, temperature and solar irradiance). These data
are available on the PVGIS website (https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1,
accessed on 7 March 2023), which is associated with site B (Brates Lake) for the interval
January 2005–December 2016.

2.3. Wind and Solar Systems

In Table 2 and Figure 2, the main features of the onshore turbines considered for
evaluation are presented. These systems are defined by a rated power of 2 MW, except
for the general electric turbine (2.5 MW), with similar generators operating in the wind
projects from this region.

https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1
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Table 2. Technical characteristics of the selected onshore wind turbines [39–41].

Turbine Rated Power
(MW)

Cut-In Speed
(m/s)

Rated Speed
(m/s)

Cut-Out Speed
(m/s)

Hub Height
(m)

General Electric 2.5xl (T1) 2.5 3.5 13.5 25 75/100
Vestas V90-2.0 (T2) 2 4 13 25 80/95/105

Enercon E82-E2 (T3) 2 2 12.5 25 78/85/98/108/138
Gamesa G90 (T4) 2 3 11 21 67/78/90/100

Vestas V162-6.2 MW 6.2 3 N/A 25 119/125/166/169
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Figure 2. Power curves representation of the considered onshore wind turbines.

By looking at the future onshore wind farms expected to be implemented in this area,
we may notice that this will include higher capacity systems that can reach up to 6.2 MW
per turbine (www.zf.ro, accessed on 20 April 2023). Moreover, by looking at the wind
turbine market, it is possible that this will involve a Vestas V162-6.2 MW system, which
will be installed in some other regions from Romania. According to the technical details
provided by the Vestas Company for this turbine, the cut-in value is set at 3 m/s, while
the cut-out value is similar to the other generators (25 m/s). Nevertheless, the rated wind
speed is not provided, which means that this will be further identified in comparison with
similar wind generators (for example, Senvion 6.2M152).

Although the profile of the 2 MW turbines may appear to look similar, the main differ-
ences occur in terms of the cut-in and rated wind speed values, with the most performant
from this point of view being turbines T3 and T4. In addition, the hub height of each
system can be adjusted, with values ranging from 67 m (T4) to a maximum of 138 m (T3).
Corresponding to this particular height, the performance of each turbine will be adjusted
by changing the U100 parameter to the value for a particular level, as follows [42]:

Uhub = U100 · ln
(

zhub
z0

)
/ ln

(
z100

z0

)
(2)

where Uhub is the wind speed associated with a particular hub height, zhub and z100 are the
reference heights (turbine and 100 m), and z0 is the roughness factor computed for site B
(water surface = 0.0002 m).

www.zf.ro
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The annual electricity production (or AEP) of a wind turbine can be estimated as [43]
follows:

AEP = 8760 ·
cut-out∫

cut-in

P(u) f (u)du (3)

where 8760 is the number of hours per year, P(u) is the wind turbine power curve, cut-
out/cut-in are the turbine operational limits. As for the Weibull probability density function
or f (u), this can be defined as follows [43]:

f (u) =
(

k
c

)(u
c

)k−1
exp

[
−
(u

c

)k
]

(4)

where u is the wind speed and k, c are the shape and scale parameters.
Since the Galati area presents suitable solar resources for the development of renewable

projects, another objective of the present work is to identify how a floating solar farm may
perform for the Brates Lake area. In total, this may be considered as an element of novelty,
taking into account that there is not yet a similar project in Romania. In Table 3, the
characteristics of the floating modules considered are presented.

Table 3. Specification of the floating solar PV modules [44–47].

Parameter Q-Power-G5 280
(P1)

GCLM6/60H-325
(P2) Trina Solar (P3) JRH 540 W (P4)

Power (W) 280 325 375 540
Efficiency (%) 17.10 20.00 19.30 21.35
Surface (m2) 1.94 1.62 1.95 2.58

We can notice that the power varies from 280 to 540 W, while the maximum efficiency
(21.35%) and surface panel (2.58 m2) are associated with the JRH 540 W system.

Based on these characteristics, the expected power output of a solar panel can be
simply estimated as follows [33]:

AEPsolar = Irradiance · As · Tirradiance · η (5)

where irradiance is solar irradiance (in W/m2), As is the solar panel area, Tirradiance denotes
the hours of solar irradiance, and η is the solar panel efficiency.

Besides the electricity output, another advantage of an FPV project is that it can save
the amount of evaporated water by blocking sunlight. For the present work, several
scenarios (10, 20, 30, and 40%) were considered, where various percentages of the lake
surface (20 km2 in total) were covered by solar panels. A 40% scenario can be considered
to be a realistic one, taking into account that there are studies where a 50% scenario was
associated with a lake area of 100 km2, this being the case of Walker Lake [35]. Table 4
presents the expected installed capacity (in MW) for each scenario, where the water surface
associated with each scenario was divided by the area covered by the total number of
solar panels. The number of panels and the capacity rapidly increase as we move to
the 40% scenario in a realistic way, with a 10% scenario being easier to implement in a
short-term period.

A similar approach (as presented in [48]) will be used to quantify the volume of the
evaporated water associated with the presence of an FPV project for the Brates Lake area.
First, the natural evaporation of the lake (no FPV) is estimated as follows:

V(m3/day) = E(m/day)× ALake(m
2) (6)

while the amount of water saved by the presence of the FPV is indicated as follows:

∆V(m3/day) = k × E(m/day)× ACA(m2) (7)
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where E is the amount of evaporation (from ERA5), ALake is the Brates Lake area (20 km2), k
is the reduction factor associated with the type and FPV platform (k = 0.6), and ACA is the
area covered by the FPV panels.

Table 4. Scenarios involving the Brates Lake area and the considered FPV systems. The installed
capacity required for each solar project is indicated in MW.

FPV System

Brates Lake—Scenarios

10%
(2 km2)

20%
(4 km2)

30%
(6 km2)

40%
(8 km2)

Q-Power-G5 280 289 577 866 1155
GCLM6/60H-325 401 802 1204 1605

Trina Solar 385 769 1154 1538
JRH 540 W 418 836 1254 1672

3. Results and Discussion

A first perspective of the Romanian electricity market is provided in Figure 3 by pro-
cessing the data provided through the national authorities (https://www.sistemulenergetic.
ro/, accessed on 20 April 2023) for the interval January 2008–December 2022. It is important
to mention that each value is indicated in MW, which is related to the electricity delivered
to the system for a particular time frame (for example, 30 March 2023 h 10:39:05). In terms
of production/consumption (Figure 3a), we can notice that for the time period 2008–2017,
electricity production was more significant, reaching a maximum of 9243 MW. After this
interval, the market started to equalize, with the intervals being more visible when the
consumption was more dominant. This is a possible explanation for the occurrence of
a dry summer season that limits the performance of the Iron Gate hydroelectric power
station. The electricity import/export evolution is provided in Figure 3b, considering only
the time interval (2020–2022). The exports are significantly lower (56%) than the imports
and the maximum peaks are below 2400 MW, with an average value of 537 MW being
expected in general. For the imports, the average value is about 652 MW, while peaks of
2600 MW are frequently noticed. The evolution of the wind and photovoltaic sector is
provided in Figure 3c, with more significant contributions being noticed from the wind
projects. Starting in 2010, the wind market became more visible, being influenced by the
presence of the winter season (more energetic) during which maximum peaks of 2000 MW
can be delivered to the national electricity network. The contribution of the solar sector
is smaller, being estimated that during the interval 2013–2022, on a sunny day during the
peak periods, almost 879 MW were generated. In Figure 3d, a normalized plot is designed
(instant value/maximum value) including the consumption and wind/solar contribution,
considering only the interval 2020–2022. The electricity consumption in Romania starts
to increase around 8:00 AM, after which the values remain constant until 09:00 PM. As
expected, the solar sector reaches peak performance during the day time (around 12:00),
compared to the wind sector where the best performances are expected during the night
time (starting at 09:00 PM). This calculation includes all the electricity consumers, and
therefore it is difficult to identify the behavior of the industrial and residential sector.

An overview of the main parameters related to the Brates Lake area is provided in
Figure 4, where the monthly boxplots of ERA5 data cover a time interval of 22 years
(2001–2022). The seasonal differences between the summer and winter seasons are visible,
indicating various patterns according to the characteristic taken into account. For example,
in the case of the U100 conditions (Figure 4a), higher values are expected during January,
where an extreme wind speed value of 19.28 m/s may occur, compared to only 13.28 m/s
expected in December. The median values range from 4.28 m/s (July) to a peak of 5.80 m/s
in March. The solar irradiance is very low during the interval September–April with median
values below 41.02 W/m2, gradually increasing to 124.30 W/m2 in July. No outliers are
visible for the interval April–September, compared to the winter season. A maximum peak

https://www.sistemulenergetic.ro/
https://www.sistemulenergetic.ro/
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of 932.90 W/m2 is expected in June, gradually decreasing to a value of 148.53 W/m2 in
December, in the case of the 95 percentile.
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the interval 2020–2022; (c) evolution of the wind/PV market for the interval 2008–2022; (d) hourly
normalized values of the consumption and wind/PV sector expected during 2020 and 2022.
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Figure 4. Monthly distribution of the main physical parameters related to the Brates Lake (site B).
Boxplots based on the ERA5 data (2001–2022), where (a) U100 in m/s; (b) solar irradiance in W/m2;
(c) temperature in ◦C; (d) evaporation (mm of water equivalent—negative values).

In the case of the temperature (Figure 4c), the values oscillate between −21.14 ◦C
and 40 ◦C, with median values of 0 ◦C being expected in January, 33.59 ◦C in May, and
12.17 ◦C in October, respectively. The evaporation rate (per day) is illustrated in Figure 4d,
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being estimated in terms of mm of water equivalent, where the positive values indicate
condensation. During June and July, the evaporation rate is much higher, reaching a
maximum value of 0.53 mm, compared to 0.14 mm in December. As it can be noticed, the
condensation presents smaller values, with a more important contribution being expected
during the interval January–February.

The ERA5 project represents the main source of data for the present work, and as a
consequence, the accuracy of these values needs to be checked. As a first step, Figure 5
provides a first analysis of the ERA5 data, where the monthly wind measurements from
site A (U10) are compared with the ones from the meteorological station that operates in
this location. As it can be noticed, ERA5 overestimates the average wind speed, while a
reverse pattern is expected in the case of the maximum values. For example, ERA5 presents
average values in the range of [2.73–3.36] m/s and maximum values that reach between
[8.93 and 12.31] m/s. The meteorological data indicate average values of [2.31–3.13] m/s,
while the maximum can reach up to 28 m/s. The in situ maximum values are defined by
a random variation, with extreme values being possible during the summer season. This
aspect is not visible in the case of the ERA5 data, where the maximum values are defined
by a smooth monthly fluctuation. This is a characteristic of the reanalysis dataset, where
the values are averaged over a particular grid box [49].
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Figure 6 provides the monthly evaluation for the solar irradiance and temperature
parameters by making a direct comparison between ERA5 and SARAH data for the interval
2005–2016.

In terms of the solar values (Figure 6a), ERA5 seems to overestimate this parameter,
indicating a maximum of 267.2 W/m2 during June/July compared to only 209.5 W/m2,
which is expected from the SARAH data for the same time interval. Depending on the
month taken into account, the differences between the two datasets are in the range of
[21.5–31]%, with higher values being expected during the winter time. A different pattern
is noticed for the temperature data (Figure 6b), where a good agreement is noticed between
the mentioned datasets.

A more detailed analysis of the U100 parameter is provided in Figure 7, considering
that at this time, the wind roses are associated with each season. According to this infor-
mation, the north and south sectors correspond to the dominant wind direction, with the
northern sector being defined by more energetic wind resources that frequently exceed
8 m/s. Each season is defined by particular features that, for example, in the case of the
summer time, will indicate a concentration of the wind from the northern part, which will
reach almost 10% from the entire dataset. As we move to the winter period, it is possible to
notice a significant presence of the wind action from the south-west sector that will have an
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impact on the performance of a particular wind project. The spring and autumn values are
below 5%, with some energetic peaks being expected for the northern sector, where wind
speeds higher than 10 m/s may occur.
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The IEC 61400 (International Electrotechnical Commission) establishes in detail the
requirements for the development and operation of a particular wind project. Among
various parameters, this includes the IEC wind classes (from 1 to 4), that are defined
by specific annual average wind speed values, namely [50], C1 (high wind)—10 m/s;
C2 (medium wind)—8.5 m/s; C3 (low wind)—7.5 m/s; C4 (very low wind)—6 m/s. In
Figure 8, the monthly distribution of these classes is highlighted, with the fact that in
their selection, only the average wind speed was considered, without including additional
details, such as the turbulence intensity or the 50 year gust events. As it is noticed, a site
with values in class C1 will represent a suitable candidate for the development of a wind
project. For the Brates Lake, these events are more frequent in January with maximum
values of 6% (from monthly values). The values gradually increase as we move from C1
to C4, with a maximum of 9% being expected for class C2 (in March and December), 11%
for class C3, or 22% for class C4 in February and March. These results were calculated
based on the data associated with the thresholds indicated in the IEC guideline (mentioned
above), which means that the missing values (up to 100%) are related to the U100 values
located below 6 m/s. Based on these results, we can estimate that during the winter time, a
particular wind turbine can obtain better performances compared to other time periods.

The solar energy potential can be indicated through the use of the solar irradiance
(W/m2), with the expectation that a site defined by average values of about 140 W/m2

presents interest for the development of a photovoltaic project [51]. Figure 9 provides the
annual distribution of the solar irradiance (average values), where the associated months
were divided between each season. During the spring time (Figure 9a), better performances
of an FPV system can be obtained in March with a maximum of 275 W/m2 (in 2003), which
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is also possible that in some cases (for example, in 2020), April can become more important
with a peak of 245 W/m2. Moving to the summer season (Figure 9b), we can notice peaks of
294 W/m2, but also significant inter-annual fluctuations that are in the range of [19.3–20.4]%.
During the autumn time (Figure 9c), the values gradually decrease as we move to November,
with an expected minimum value of 48.4 W/m2. The values obtained are relatively constant,
with some energetic peaks of 193 W/m2 and 132 W/m2 being noticed in September (2012)
and October (2022), respectively. As it is noticed, during winter (Figure 9d), the values
associated with December and January do not exceed 70 W/m2, with higher values being
expected from February that are in the range of (74.6–116) W/m2.
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A more detailed analysis of the solar irradiance is highlighted in Figure 10, considering
all the monthly/hourly combinations. A maximum peak of 725 W/m2 is noticed during
the interval June-August, while as expected, during the night solar power will not generate
electricity. The time interval November-February is the less energetic one, with values
that do not exceed 368 W/m2. The summer time presents the best solar resources that
can be classified into three intervals: (a) 06–07 AM and 04–05 PM—solar < 340 W/m2;
(b) 07–08 AM and 03–04 PM—solar < 490 W/m2; (c) 08:00 AM–03:00 PM—solar irradiance
between 490 and 725 W/m2.

Besides the resource assessment, the present work aims to identify the expected
performance of some solar and wind systems that may operate near the Brates Lake. A first
analysis is provided in Figure 11, where the AEP of each wind turbine from Table 2 was
estimated for different hub heights, as mentioned by the manufacturer. Although turbines
T2 and T4 have the same rated capacity and relatively close operational hub heights, the
AEP production is significantly influenced by the fact that turbine T4 has the lowest rated
wind speed (11 m/s) from all the considered generators. Another drawback of turbine T2
is related to the higher value of the cut-in limit (4 m/s), which, for example, in the case of
turbine T3, is associated with 2 m/s.
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Figure 9. Brates Lake (site B)—solar irradiance (in W/m2) corresponding to the ERA5 dataset,
computed for the time interval 2001–2022. Average values associated with (a) spring; (b) summer;
(c) autumn; (d) winter.

Although turbine T3 is defined by the highest hub height (138 m), such a solution is
not justified, taking into account that a maximum AEP of 3.44 GWh can be obtained. This
value is relatively close to the one expected from turbine T4, that may operate on a much
lower hub height (for example, 67 m). The AEP production of these systems operates in the
range of T1—2.61 and 2.78 GWh; T2—2.05 and 2.19 GWh; T3—3.12 and 3.44 GWh; T4—3.44
and 3.72 GWh.
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Figure 11. Brates Lake—AEP performance of the wind turbine considered, based on the ERA5 data
(for the time interval 2001–2022). Results are processed for different hub heights.

Besides the AEP production, one way to identify the efficiency of a particular wind
turbine is through the capacity factor (in %), that is the ratio between the average AEP
production and the rated AEP production if a wind turbine will operate under optimal
wind conditions [52]. In Table 5, such an analysis is presented, from which we can notice
that turbine T4 is the only one that exceeds 21%, reaching a maximum of 21.23%. On the
contrary, we may find that turbine T2 with a hub height of 80 m may expect a minimum
capacity factor of 11.71%. Turbine T3 presents values in the range of 17.82 and 19.61%,
compared to turbine T1, where a maximum value of 12.68% can be achieved. The present
results are in line with the average capacity factor mentioned for some other onshore
European areas [53,54], indicating values in the range of 20 and 30%.
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Table 5. Capacity factor (%) of the wind turbines expected for the Brates Lake area. Results are based
on ERA5 data (2001–2022), considering different hub heights.

Turbine
Hub Height (m)

67 75 78 80 85 90 95 98 100 105 108 138

T1 11.91 12.68
T2 11.71 12.2 12.49
T3 17.82 18.08 18.53 18.83 19.61
T4 19.64 20.24 20.81 21.23

The onshore wind industry evolves very fast, including the occurrence of some large
capacity generators. As a next step, in order to anticipate the implementations of a 6.2 MW
wind turbine in the vicinity of Galati County, the performance of the Vestas V162-6.2 MW
turbine was considered for evaluation, which was already implemented in some areas from
Romania. From the official information provided by the Vestas producer, the rated wind
speed value associated with this generator is missing, and for simplicity, two values (11
and 12 m/s) were assumed. This is in line with the trend from this sector, to lower the rated
wind speed in order to obtain better performances [55]. In Figure 12, the performance of
the Vestas V162-6.2 MW system is presented by considering all the possible scenarios (hub
heights and rated wind speeds).
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Figure 12. Performance of the Vestas V162-6.2 MW system expected from the Brates Lake location,
according to the ERA5 data (for the time interval 2001–2022). The AEP and capacity factor are
estimated for different hub heights and rated wind speeds (11 m/s and 12 m/s) of this generator.

As expected, better performances are associated with a rated speed of 11 m/s, with the
AEP values ranging from 11.91 to 12.69 GWh according to the considered hub heights (from
119 to 169 m). For the same scenario, the capacity factor starts from 21.93% and reaches
a maximum of 23.3% for hub heights, exceeding 166 m. For a wind turbine operating at
a rated speed of 12 m/s, the performances decrease by 16.3% in the case of the AEP and
capacity factor.

The idea of using a floating photovoltaic system is not new, as this was previously
considered for different water bodies from Spain [45], Africa [56], Brazil [57], and even
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Romania [46]. Looking at the existing literature, it was noticed that for a large water body, a
floating project could cover almost 40% from the available area [58], and as a consequence,
this limit was considered in the present work. In Figure 13, the AEP production of the four
solar panels is indicated, and Table 3 presents the covered water area by the FPV systems,
which gradually increased from 10% to 40%.
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Figure 13. AEP performance of different floating PV modules operating on the Brates Lake. The
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The AEP production gradually increases with the covered area, starting from a min-
imum of 475 GWh in the case of P1 solar panel (10% area) and reaching a maximum
of 2372 GWh for the system P4 (40% area) that is also defined by the highest capacity
production of a single unit (540 W). This kind of project could provide, on an annual
scale, the following average electricity output: (a) 10%—475 to 593 GWh (from P1 to P4);
(b) 20%—950 to 1186 GWh; (c) 30%—1425 to 1779 GWh; (d) 40%—1900 to 2372 GWh.
A 40% scenario (8 km2) is difficult to obtain, although similar works propose scenarios
involving water areas that exceed 20 km2, from which 7434 GWh of solar electricity can be
obtained [59].

Besides the electricity production, another objective of the present work is related to
the impact of an FPV project on the Brates Lake water evaporation. Figure 14 presents
such an analysis, where the natural evaporation from this area (no FPV) was estimated
based on the ERA5 data and Equation (6). On an annual scale (Figure 14a), there are
significant fluctuations, with minimum values of 1.02 × 107 m3 and peaks of 1.36 × 107 m3

being expected during the warmer years (for example, in 2017). In terms of the monthly
projection (Figure 14b), during June and July, it is possible to reach a peak evaporation of
4.37 × 107 m3, compared to only 0.43 × 107 m3 which is expected for the winter period.

In Figure 15, the expected water volume saved by the presence of an FPV project that
may operate on the Brates Lake is provided, considering the annual distribution. According
to these results, the values range from a minimum of 0.5 × 106 m3 in the case of the 10%
scenario and reach up to a maximum of 3.27 × 106 m3 for the 40% scenario.

A similar analysis was carried out in Figure 16, considering this time the monthly
distribution. A scenario involving a 10% FPV farm may reduce the water evaporation
with values in the range of [0.25–2.62] × 106 m3, gradually increasing to a maximum of
5.24 × 106 m3 (for 20%), and 7.87 and 10.49 × 106 m3 for the 30 and 40% scenarios.
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The water scarcity represents a real issue, especially in the case of the agricultural
sector. It is estimated that it is necessary to use an average water volume between 209
and 480 m3, in order to obtain one ton of grain [60]. In some other works, it is suggested
that for a single hectare (= 0.01 km2) of agricultural land, an average of 0.394 × 108 m3 of
water consumption is required in order to run a successful project [61]. By comparing this
number with the expected water volume saved by an FPV farm operating in the Brates
Lake area, we can notice that even a 10% scenario can provide enough water for 3.42 km2

of agricultural cultures, a value that increases to 13.71 km2 in the case of a 40% scenario.

4. Conclusions

Although the north-eastern part of Romania is defined by attractive solar and wind
resources that can be successfully used through a renewable project, there is little informa-
tion in the public domain regarding the performances of this sector. Galati County has the
potential to become a regional hot spot in terms of renewable sources, with the develop-
ment of a wind project that will exceed the Fantanele–Cogealac capacity being expected
in the near future, which is located in the vicinity of this area and is among the largest
operational onshore wind parks in Europe. In addition, the Liberty Galati steel factory
plans to implement an important hydrogen factory that will reduce the CO2 emissions by
almost 80%.

Based on the ERA5 data and on some in situ measurements, the dynamics of the
wind and solar resources in the vicinity of the Brates Lake were evaluated, including the
evolution of some other key parameters (temperature and evaporation). Although this lake
is in an advanced degradation state, it still remains as one of the important water bodies
from Romania. The ERA5 data for this area replicate quite well the monthly fluctuations
of the average wind speed (U10), while significant differences occur when we discuss the
maximum values.

From the performances of the renewable systems, we clearly highlight the AEP output
of the Vestas V162-6.2 MW system that is expected to be installed in this region. One
objective of the REPowerEU plan [61] is to implement several floating PVs in the marine
environment or inland waters, in order to increase the electricity production, or eventually
to reduce the water evaporation. In this context, the surface area of the Brates Lake (20 km2)
was considered to be gradually covered by solar panels, with the percentages varying
from 10 to 40%. Besides the electricity output, it was found that if only 10% of this area
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could be covered, it would be possible to provide enough fresh water for almost 3.5 km2 of
agricultural land.

Finally, it is worth mentioning that this work is ongoing and some further research
directions need to be considered. First, it will be important to implement a long-term
monitoring station on the Brates Lake area, where various physical–chemical parameters
of this lake will be recorded. In this way, it will be possible to check the accuracy of the
present results, taking into account that they are mainly based on the ERA5 reanalysis
data. In the case of the FPV systems, a general evaluation was carried out in terms of
the electricity output, which may be considered a limitation of the present work. A more
in-depth analysis is required, in order to properly identify the expected performances of
various systems, where the layout of the panels or the optimal tilt angle will be properly
taken into account. Another aspect may be related to the expected support that an inland
FPV/wind project may provide for irrigation purposes and which solution will be more
feasible from a technical and economic point of view.
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