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Abstract: To better consume high-density photovoltaics, in this article, the application of energy
storage devices in the distribution network not only realizes the peak shaving and valley filling of
the electricity load but also relieves the pressure on the grid voltage generated by the distributed
photovoltaic access. At the same time, photovoltaic power generation and energy storage cooperate
and have an impact on the tidal distribution of the distribution network. Since photovoltaic output
has uncertainty, the maximum photovoltaic output in each scenario is determined by the clustering
algorithm, while the storage scheduling strategy is reasonably selected so the distribution network
operates efficiently and stably. The tidal optimization of the distribution network is carried out
with the objectives of minimizing network losses and voltage deviations, two objectives that are
assigned comprehensive weights, and the optimization model is constructed by using a particle
swarm algorithm to derive the optimal dispatching strategy of the distribution network with the
cooperation of photovoltaic and energy storage. Finally, a model with 30 buses is simulated and the
system is optimally dispatched under multiple scenarios to demonstrate the necessity of conducting
coordinated optimal dispatch of photovoltaics and energy storage.

Keywords: distribution network optimization; high-density photovoltaic; energy storage; multi-target;
multi-scenario; improved particle swarm algorithm

1. Introduction

The rapid development of photovoltaic (PV) power generation provides a clean and
efficient solution for the use of energy, and its use as a renewable energy source has
great significance for the sustainable development of the energy industry. In terms of
environmental pollution, the use of photovoltaic resources can reduce the burning of fossil
fuels and alleviate some of the pollution caused by fossil fuel power generation. To build
a better photovoltaic power grid system, the use of distributed PV consumption is an
effective way to utilize high-density PVs. However, as the number of distributed power
sources increases, the control scheme needs to change significantly, and more complex
coordination and interaction between controllers is required. Recently, new challenges and
opportunities for voltage control in transmission and distribution grids were reviewed, and
layered voltage control was performed for high-penetration distributed power sources [1].
The PV consumption problem was solved in [2], in which the authors constructed a grid-
connected PV storage system and proposed a coordinated control strategy. Now that the
use of renewable energy is becoming more and more popular, in research on energy use
in transportation and electricity, the proportion of new energy used in various energy use
situations and the efficiency of energy use have become key research focuses [3–6].
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For a grid operation strategy containing PVs and energy storage, it is necessary to
determine the output characteristics of PVs and the charging/discharging characteristics of
energy storage. By modeling the distribution network structure and circuit configuration,
and controlling and managing the power side, the grid can avoid large transient voltage
fluctuations and load collapse. At the same time, this approach maximizes the use of PV
power generation in the grid-connected state, coordinates the source storage in the system,
and realizes the distributed integrated control of PVs and energy storage systems under the
microgrid [7]. Energy storage in solar-containing distribution grids has also demonstrated
a unique economic value, while research has progressed further in both siting and sizing
and dispatch optimization [8–10]. This paper differs from these studies by focusing more
on mobilizing the grid as a whole, providing good conditions for the use of distributed
power sources and energy storage, and realizing the reactive power optimization of the
system according to the change in power output on the power side and the adjustment of
the transformer.

Based on the demand for active power control in grid operation, a decentralized active
power control system containing distributed energy storage and distributed PVs with
hierarchical control is proposed [11]. The system decentralizes the regulation of power and
performance among components to keep the total system frequency as a continuous and
smooth signal, which avoids a sudden change in grid frequency caused by the access to
renewable energy sources. A grid with access to a large number of renewable energy sources
can also be operated alone during peak hours and blackout periods, and the PV arrays are
controlled hierarchically to provide power, which sets the grid supply power constraints
and improves the penetration of PVs into the grid [12]. By using the alternating direction
method of multipliers (ADMM) within a model predictive control (MPC) framework, a
shift from centralized to decentralized control is achieved [13].

For the wide application of distributed power within the distribution network, it is
necessary to solve the problems of supply demand balance and peak loads therein, as well
as to optimize the distribution of tidal currents within the distribution network, and to
form a corresponding demand response scheme. Considering both unbalanced network
constraints and reactive power limitations, an optimal tidal optimization of distribution
networks with reactive power control is proposed [14]. Then, from the perspective of a
hybrid distribution transformer, the remote coordinated control of PV arrays is carried
out through reactive power optimization to ensure voltage regulation and network loss
reduction [15]. Research on optimization of inverter-based PV integration has also attracted
a lot of attention, and topology optimization through the PV location capacity and the
design of the inverter also helps to improve the reliability and stability of the system [16–18].
The application of energy storage systems can alleviate some of the scheduling challenges
brought about by renewable energy access and contribute to improving the power quality
of the distribution network, among others. In some studies, the advantages of energy
storage systems in the optimized scheduling of distribution grid operation and the cor-
responding scheduling methods have been investigated [19–22]. There has also been a
significant breakthrough in the progress of research on the application methods of energy
storage technology in the power grid, which presents the characteristics of large-scale
integration and multi-objective co-regulation [23–26]. Although a lot of research work
has been conducted on energy storage technology and power system trend optimization,
there is still a lot of in-depth research that needs to be carried out to coordinate and control
the active output of each distributed power source and reduce the energy loss under the
premise of guaranteeing the quality of power system operation.

Due to the volatility and uncertainty of renewable energy output, the output char-
acteristics of renewable energy cannot be accurately reflected in the practical application
of optimal scheduling methods, and typical scenarios need to be divided to determine
its maximum output. Coordinated optimal scheduling of energy systems under PV un-
certainty can improve the economy and security of grid operation and realize real-time
energy utilization [27]. A large number of studies have optimized the PV output scheduling
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of systems with uncertainty by dividing different scenarios to achieve the coordination
of multiple distributed power sources, which makes the energy supply model more effi-
cient and improves the economy and stability of the system [28–30]. The method of PV
clustering is also reflected in many studies, and an equivalent computational model can
be obtained by analyzing the clustering of high-density distributed PVs connected to the
distribution grid [31]. Studies have also presented the clustering method in detail and have
demonstrated how it works in simulation models [32–36]. According to different control
strategies, different system models have been developed for full utilization of energy in
different scenarios [37]. The scenario division in this paper, on the other hand, is based on
the local climate and environment, and the light radiation intensity is clustered to reflect
the characteristics of PV output under different light conditions.

This paper starts from the status quo of accessing high-density distributed photo-
voltaics in the power grid, seeking to solve the related problems created by PV uncertainty,
dividing different light radiation intensity scenarios, accessing suitable-capacity energy
storage devices in the system, and inducing charging and discharging of energy storage
devices according to the fluctuation in electricity prices. Then, we establish an objective
function of network loss and voltage deviation, and we carry out rational scheduling for the
photovoltaic storage system in the distribution grid under different scenarios, so that each
bus accesses distributed photovoltaics as much as possible under the premise of stabilizing
the voltage, as well as reduces the network loss.

The results of this study show that the optimally dispatched system containing a high
density of PV power generation and energy storage devices can effectively reduce energy
losses, and we demonstrate that the system maintains good power quality even after a
large amount of PV power is connected. Section 1 of the manuscript describes the need
to develop a new type of power system with multiple distributed power sources, and
Section 2 presents a model for connecting PV power generation and energy storage devices
to the grid, as well as a methodology for clustering and optimizing their data. Section 3
presents the results obtained for the optimization of the system under the two optimization
objectives of network losses and voltage deviation values, and finally, Section 4 describes
the main conclusions and future work for this research.

2. Materials and Methods

Enabling high-density distributed PV access to the distribution network requires
considering not only the PV consumption brought about by the voltage limit but also
considering its coordination with the distributed power supply scheduling, to reduce
the network losses during system operation. At the same time, the high proportion of
distributed PV power output is characterized by strong randomness and fluctuation, which
challenge the safety of grid operation, and the coordinated and optimal scheduling of
PVs and energy storage in the distribution grid needs to be achieved in different scenar-
ios. Distributed photovoltaic access to the grid requires a series of conversion processes.
Photovoltaic power-generation devices need to convert sunlight into electrical energy,
which is controlled by the inverter to form the power that can be used for the network,
with the ability to output external voltage power. An energy storage device also has the
characteristics of charging and discharging and is connected to the distribution network as
a distributed power source together with PV power generation. In this way, a distribution
grid power system with high-density photovoltaics and energy storage devices is formed
(Figure 1).

To solve the optimization problem of a distribution network with high-density photo-
voltaics and energy storage, the following methods are applied in this paper, among which
the application of a clustering algorithm solves the problem of inaccurate operational data
and improves the solving efficiency and data accuracy of the algorithm; the application of
a comprehensive evaluation method solves the assignment problem in the multi-objective
decision process and makes a scientific selection and reasonable decision in the face of
multiple conflicting objectives; and the improved particle swarm optimization algorithm
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searches for optimization according to the optimization objectives, while having a faster
convergence speed and avoiding falling into the local optimal solution too early.
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2.1. PV Output Modeling

High-density photovoltaic access to the distribution network requires the solution
of two problems in terms of utilization, namely how to convert a large amount of solar
energy into electrical energy and how to make this converted electrical energy available
to the distribution network. For photovoltaic power generation, the photovoltaic model
used to generate electricity is generally in the form of photovoltaic cells. When sunlight
hits the surface of the cells, the carriers are subjected to the action of the P-N junction in
the interior, and a closed circuit is formed in the exterior to generate a current. When the
relevant parameters and inputs of the PV cell are given, the output characteristics of the
PV cell can be obtained. However, this output method is not sufficient for the grid. When
several PV cells are connected in series and parallel to form a PV array, they can output
voltage and power. This electrical energy online needs to be controlled by an inverter,
which can effectively control the transient current in the process of grid connection and
regulate the voltage and current to guarantee the stability of the system operation.

After coordinated control of all aspects, PV power generation is equivalent to a
distributed power supply for the load, while the structure of the distribution network is a
radial power supply. The power supply mode is changed from the original single power
supply to multiple distributed power supplies, which increases the reliability (Figure 2).

2.2. Energy Storage Modeling

The ESS energy storage system has both charging and discharging characteristics,
charging when the electricity supply is sufficient and discharging when the electricity
supply is insufficient and the price is high, to realize the peak regulation of the power grid.

It takes 24 h a day as an operation cycle to ensure that the energy storage battery is in
the lowest charge state at the initial moment and can recover this state after one operation
cycle. The 0/1 constraint is added to the control charging and discharging strategy to
ensure that the charging and discharging of the energy storage battery will not be carried
out simultaneously. Meanwhile, the self-discharge rate of ESS represents the coefficient
of ESS power loss after a period of time. After each period of charging and discharging
the battery, the power of ESS changes accordingly, which is expressed as SOCESS, and the
battery state is expressed in periods as

SOCESS,t = (1− σESS,t−1) + (Pcharge
ESS,t η

charge
ESS ∆t− Pdischarge

ESS,t η
discharge
ESS ∆t)/CESS (1)
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where Pcharge
ESS,t and Pdischarge

ESS,t are the charging and discharging power of ESS at time t, η
charge
ESS

and η
discharge
ESS are the charging and discharging efficiency of ESS, and CESS is the battery

capacity of the energy storage system.
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2.3. Distributed PVs and Energy Storage Connected to the Distribution Network Modeling

An example analysis was carried out using the IEEE 30-bus test distribution system,
which has a base capacity of SB = 100 MVA and a base voltage of VB = 135 KV. In the IEEE
30-bus distribution grid, distributed PVs are accessed at buses 2, 5, 8, 11, and 13, and energy
storage ESS devices are accessed at buses 22 and 27. The bus types can be categorized into
three: PQ buses, PV buses, and balanced buses. The voltage of balanced buses is 1.0 pu.
The buses are analyzed where the buses accessing distributed PVs with energy storage
devices can be classified as PQ buses. Bus 1, which is the balancing bus, is selected as the
reference bus for trend calculation. There is one and only one balancing bus in the system,
and in this system, bus 1 is connected to the higher grid for interaction. The rest of the
buses are set as PQ buses and PV buses depending on the conditions under which the data
measurements are obtained. The bus network of the 30-bus system is shown (Figure 3).

The distributed PV access to the distribution network for trend calculation, for the
distribution network over a day of PVs and energy storage system coordination and
optimization, can allow the PV output and storage charging and discharging to adapt to the
time-sharing tariff step change, thus supporting different operating strategies. Influenced
by the peak and valley periods of electricity prices, the energy storage system starts charging
to accumulate power in a valley, and then it discharges to release power at a peak. At the
same time, the application of high-density photovoltaics eases the problem of tight power
supply during peak hours, and the application of multiple distributed power sources makes
the supply of electric loads more secure.

In this system, transformer control is also an important factor in achieving reactive
power optimization and voltage regulation. By controlling the gear changes of the tap’s
five gears, the system can be made to absorb energy, to avoid over-voltage during peak
PV output, and to output energy, to avoid under-voltage at night. Therefore, when coordi-
nating the power output of each distributed power source of the system, the action of the
transformer taps should also be within the range of optimized dispatch, to achieve voltage
regulation. The action of transformer taps in the system is determined according to the
distribution of power tides, and when the load and distributed power generation change,
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guided by the optimization goal, the transformer taps will choose the appropriate gear
to coordinate the control of photovoltaic power generation and energy storage charging
and discharging.
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2.4. Clustering Algorithm

The difficulty of PV output prediction lies in the uncertainty and uncontrollability
of the power it emits. By organizing the historical data, using the clustering algorithm to
filter more reliable data can provide help for system scheduling and real-time operation,
and it can reduce the impact of distributed PV access on the grid. Therefore, the K-means
clustering algorithm is used to categorize the historical data and gather them into K clusters
according to their similarity. The process of using the K-means clustering algorithm to
process the data is as follows:

Step 1: Select appropriate sample eigenvalues and normalize five statistical indicators,
namely standard deviation, skewness coefficient, coefficient of variation, peaking coeffi-
cient, and total power, as the eigenvalues of the system. The formulas for the five indicators
are as follows:

σ =

√√√√√ N
∑

i=1
(Pi − Pavg)

2

N
(2)
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s =
N

N
∑

i=1
(Pi − Pavg)

2

σ(N− 1)(N− 2)
(3)

c =
σ

Pavg
(4)

ku =

N
∑

i=1
(Pi − Pavg)

4

σ(N− 1)
(5)

Psum =
N

∑
i=1

Pi (6)

where N is the number of sampling points, Pavg is the unit average PV power, and Psum is
the instantaneous power.

Step 2: Normalization of the indicators is calculated as

x1 =
x− xmin

xmax − xmin
(7)

Step 3: A sample is chosen at random as the first center of mass, denoted C1.
Step 4: The shortest distance D(x) between each sample and the center of mass C1 is
computed, and the next center of mass is selected based on the result obtained from the
probability p(x) that each sample is selected as the center of mass. The probability of being
selected as a center of mass is calculated as

p(x) =
D2(x)

∑
x∈X

D2(x)
(8)

Step 5: Repeat the previous step until K clustering centers are selected.
Step 6: Based on the distance of each sample from each center of mass, assign each sample
to its nearest center of mass to form the corresponding cluster.
Step 7: Update the center of gravity of each cluster.

Ci =

∑
x∈Ci

x

|Ci|
(9)

Step 8: Repeatedly update each cluster with the center of mass until no change occurs.

Figure 4 shows the flow of the K-means clustering-based optimal scheduling method
for high-density PV resources studied in this paper.

Take the data of light radiation intensity in Beijing, for example. Through K-means
clustering, all the data are categorized into five typical scenarios. The final clustering center
is determined through continuous iteration, and the distribution of light radiation intensity
is obtained under different scenarios. We followed these steps, and the results are shown
(Figure 5). All areas of similar climate can be included.
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Figure 4. Flowchart of the K-means clustering.
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2.5. Comprehensive Evaluation Methodology

To better evaluate the indicators of the distribution network, the hierarchical analysis
method–entropy weight method is invoked to assign weights to the indicators, and the
distributed power output situation is reasonably dispatched through the weight indicators.
The comprehensive evaluation system of the distribution network is established with sys-
tem network loss and voltage deviation as the optimization target and optimal scheduling
of multiple objects in the system.

2.5.1. Hierarchical Analysis Method

When applying the hierarchical analysis method to the comprehensive evaluation sys-
tem of distribution network optimization and dispatching, the optimization objectives are
empowered by combining qualitative and quantitative methods, so that the optimization
problem of the system has a hierarchy. The basic calculation steps are as follows:

Step 1: Establish the hierarchical structure of the system

The optimization problem is organized into a hierarchical architecture, and its elements
are divided into the highest, middle, and lowest levels according to the goal, criterion,
and object of decision-making. The highest level is the problem solved by the decision,
the middle level comprises the criteria to be considered, and the lowest level covers the
alternatives to achieve the goal.

Step 2: Construction of judgment matrix

According to the hierarchical structure, the factors are compared with each other two
by two, and the relative importance of each indicator is compared using the 1–9 scale. Then,
the comparison results are used as the elements of the judgment matrix in order to obtain
the judgment matrix A.

A = (aij)m×n (10)

where aij is the expert’s empirical weighting, m denotes the number of matrix rows, and n
denotes the number of matrix columns.

Step 3: Consistency test

First, the consistency index CI is defined, and the size of the CI is calibrated by using
the corresponding random consistency index RI. Then, the consistency ratio CR is calculated
with the formula:

CI =
λmax − n

n− 1
(11)

CR =
CI
RI

(12)

where λmax is the maximum eigenvalue of the judgment matrix. When CR≤ 0.1, the matrix
satisfies the consistency test. Otherwise, the judgment matrix needs to be adjusted so that
it meets the condition of the consistency test.

Step 4: Determine the integrated weights

Find the maximum eigenvector of the judgment matrix, which is used as the objective
weight of the index.

2.5.2. Entropy Weight Method

The entropy weight method determines the weights of the indicators according to
the magnitudes of their variability, obtains the respective entropy weights through the
information entropies of the indicators, and utilizes the entropy weights to correct the
magnitudes of the respective weights.

According to the proposed program data, establish the original information matrix X.

X = (xij)m×n (13)
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Indicators are normalized to obtain a normalization matrix Eij.

Eij =
xij

m
∑

j=1
xij

(14)

When Eij = 0, let Eij ln Eij = 0.
Calculate the information entropy of the indicator Ej.

Ej = −
1

ln m

m

∑
i=1

Eij ln Eij (15)

Calculate the weight ωj.

ωj =
1− ej

n−
n
∑

j=1
ej

(16)

2.5.3. Comprehensive Weight Calculation

According to the hierarchical analysis method and entropy weight method (used to ob-
tain the weight matrices for λ = [λ1, λ2, · · · , λm]

T and ω = [ω1, ω2, · · · , ωm]
T , respectively,

in order to form the substrate [λ, ω]), the two methods’ combined weight W is

W =
λ×ω

m
∑

j=1
λ×ω

(17)

2.6. Improved Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm is an evolutionary computing technique
that seeks the optimal solution of an objective through the iteration of a group of particles.
However, the traditional particle swarm algorithm relies on inertia weights and learning
factors, which make it easy to fall into the situation of local optimization. A single traditional
intelligent algorithm may not be able to solve some problems effectively, while the use
of intelligent algorithm fusion can improve traditional algorithms and obtain a better
performance [38,39]. Accordingly, research in this area has been widely used in the field of
power systems, seeking the optimal solution based on reactive power optimization [40,41].

Similarly, this paper improves the traditional particle swarm algorithm by searching
for the optimum in an improved initialized population and adopting a chaotic search to
improve the convergence and convergence speed of the algorithm (Figure 6).

The improved particle swarm algorithm containing power system tidal current calcu-
lation needs to constantly seek the optimal solution value of the objective, i.e., it constantly
seeks the optimal value for the system network loss. The flow is shown in Figure 7.
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Figure 6. Improved particle swarm algorithm calculation process.
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3. Results
3.1. Integrated Evaluation Decision-Making for Distribution Network Optimization

The optimization objective of the distribution network includes both network loss
and voltage offset. First, the active network loss of the system is used as the optimization
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objective, which is achieved by rationally allocating the size of the PV output. The active
network loss objective function is defined as

minPloss = ∑
P2

i + Q2
i

U2
i

Ri (18)

where Pi and Qi denote the active and reactive power at bus i, respectively, Ui denotes the
voltage at bus i, and Ri denotes the resistance at bus i.

Second, access to distributed energy sources will lead to changes in the voltage level;
to ensure the stability of the voltage, it is necessary to set the voltage stability level as an
objective function as well and adjust the voltage magnitude of each bus by adjusting the
output of the distributed power supply in the system and the taps of the transformer. The
voltage stability objective function is defined as

minδU = ∑
Ui −UN

UN
(19)

where Ui is the actual voltage at bus i and UN is the rated voltage at bus i.
Setting the objective function in these two aspects at the same time is equivalent

to making requirements for the economy and security of the system, respectively, and
optimizing the distribution network dispatch for economical and safe operation.

The two optimization objectives of minimal network loss and voltage deviation are
assigned, and the objective function expression is as follows:

minF = β1∑
P2

i + Q2
i

U2
i

Ri + β2∑
Ui −UN

UN
(20)

where the values of β1 and β2 can be calculated from the weights above.
The following constraints are also required for this distribution system, where the

capacity constraints are as follows:

0 ≤ Pi ≤ PPV (21)

Si ≤ Simax (22)

where PPV and Simax denote the maximum PV output and the maximum capacity of branch
transmission, respectively.

Set the voltage constraints as follows:

Uimin ≤ Ui ≤ Uimax (23)

where Uimin and Uimax are the minimum and maximum values of voltage at bus i. The
lower and upper limit values are set at 0.95 pu and 1.05 pu, respectively.

The current distribution constraints of the system itself are

Pi + PGi = PLi + ULi

N

∑
i=1

UiY (24)

Qi + QGi = QLi + ULi

N

∑
i=1

UiY (25)

where Pi and Qi are the active and reactive power at bus i; PGi and QGi are the active and
reactive power injected at the bus; PLi and QLi are the active and reactive power of the load;
Ui is the voltage at bus i; and Y is the branch conductance.
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Set the energy storage charge/discharge constraint as follows:

0 ≤ Pcharge
ESS,t ≤ Pcharge

ESS,max (26)

0 ≤ Pdischarge
ESS,t ≤ Pdischarge

ESS,max (27)

SOCESS,min ≤ SOCESS,t ≤ SOCESS,max (28)

where Pcharge
ESS,max and Pdischarge

ESS,max are the maximum charging and discharging power of the
storage battery, and SOCESS,min and SOCESS,max are the minimum and maximum power of
the storage battery, respectively.

Apply the improved particle swarm algorithm to the IEEE 30-bus system for multi-
objective optimization in terms of network loss and voltage deviation, where the calculation
steps are as follows:

Step 1: Determine the initial data matrix according to the relevant operation data of the
distribution network;
Step 2: Initialize the particle swarm, and set the number of particles and the maximum
number of iterations;
Step 3: Use the forward and backward generation method to calculate the current, and
analyze the particle adaptation value to select the optimal solution;
Step 4: Update the individual optimal value and the group optimal value;
Step 5: Update the particle velocity and position, and iteratively carry out the last two
calculations until the iteration stop condition is satisfied.

3.2. Application Example Optimization Results

The charging and discharging strategy of energy storage in the scheduling process of
the distribution grid containing PVs and energy storage should ensure the consumption of
PVs as much as possible and alleviate the pressure brought to the grid by high-density PV
access. For the cooperative control of PVs and storage in different scenarios, the scheduling
strategy is the same. Time-of-day regulation in the system can fully utilize the role of
energy storage in distribution grid scheduling, where the charging and discharging of
energy storage and the output of PVs are divided into 24 time periods of the day for
coordinated control. According to the optimization objectives and constraints related to
storage charging and discharging and PV output, the integration of distributed power
sources can be obtained for storage charging and discharging and PV output under different
periods on a given day under a large power grid (Figure 8).

Figure 9 shows the magnitudes of network losses in the five cases for the power
system without storage compared to that with storage and with dispatch optimization. If
reactive power compensation devices can also be added at each bus, the system network
loss is further optimized. For the five scenarios of distributed PV access in this system, the
network loss of the system after reasonable deployment is smaller than that of the original
system, which proves that distributed power can reduce the network loss of the system.
Meanwhile, according to the structure of the distribution network, the optimization of the
capacity and location of distributed PVs can also reduce the network loss of the system and
improve the power quality of the system operation.

After optimizing the distribution system containing high-density distributed photo-
voltaics and energy storage in five typical scenarios, the system still maintains a stable
voltage level and ensures good power quality, which proves that the optimized grid struc-
ture tends to be reasonable and the power supply modes are more diverse (Figure 10).
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The operation of the system was observed over a long period, under the control of
five different operation strategies. The voltage level of each bus of the system could still be
maintained at a relatively stable level, and the scheduling of the control strategies under
each scenario was effective (Figure 11).
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4. Conclusions

In this paper, based on the increasing high-density photovoltaic access to the distribu-
tion network and the rapid development of energy storage, the problems and solutions
that may arise from the coordinated control of high PV access to the distribution network
and energy storage were discussed, and different typical scenarios were delineated for the
uncertainty of distributed PV generation. We tested out the coordinated scheduling of a dis-
tribution network that contained high-density PVs and energy storage, and multi-objective
optimization was carried out, based on which the following can be concluded:

1. The original distribution network with high-density PVs, energy storage, and other
distributed power supply modes was changed, and the coordinated optimization of
PVs and energy storage could reduce the uncertainty brought about by distributed
PV access. Through the protection of bus voltage stability at the same time, and
distribution network loss optimization for multi-bus access to distributed PVs, energy
use was more reasonable.

2. Due to the uncertainty of PV output, grid scheduling is difficult, but different typical
scenarios can be divided and then optimized, which is close to the actual operation.
The division of scenarios has guiding significance for the subsequent optimization,
and the use of big data generation and analysis can improve the accuracy of the
calculations continuously.

3. The IEEE 30-bus model simulation was carried out after considering the cooperative
optimal scheduling of photovoltaic storage. We found that the deviations of each bus’s
voltage and the system’s network loss were within a reasonable range, which proves
the reasonableness of the algorithm’s calculations. At the same time, this system can
be further studied for optimization in dynamic operating situations.

4. Distributed photovoltaic access to the distribution network will have different impacts.
The variety of distributed power supply modes will make the power supply more
secure, but at the same time, the uncertainty of PV output will negatively impact on
the grid scheduling and power quality. Reasonable use of an energy storage system to
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configure the corresponding PV output can cut down the adverse effects, while the
application of an energy storage system realizes the peak shaving and valley filling of
the electricity load, and the coupling of multiple distributed power sources can also
allow those play to each other’s advantage.

This study examined the problems of and solutions to grid scheduling arising from
high-density photovoltaic access to the grid. The maximum PV power is obtained by
clustering the light intensity in the region, which, in turn, leads to the rational use of energy
storage devices and reactive power optimization of the system for optimal scheduling of
distributed power sources. The network losses and voltage offsets are optimized using an
improved particle swarm algorithm for the actual model, and the optimization objective
can be derived from the trend calculation. Since the network losses in the model are
significantly reduced and the power quality is still maintained at a high level, it can be
concluded that the proposed algorithm can be practically applied to compute the operating
conditions of a power system with a high density of photovoltaics and energy storage
devices. The model takes less account of aspects such as reverse power flow and load
variations, and it is planned to complete the research by studying those aspects in the
future. Future-focused modeling methodologies and theoretical studies of energy storage
and distribution-grid-optimization models will also be taken into account [42–45].
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