

Inventions 2023, 8, 9. https://doi.org/10.3390/inventions8010009 www.mdpi.com/journal/inventions

Article

Execution Time Decrease for Controllers Based on Adaptive

Particle Swarm Optimization

Viorel Mînzu 1,*, Eugen Rusu 2 and Iulian Arama 3

1 Control and Electrical Engineering Department, “Dunarea de Jos” University, 800008 Galati, Romania
2 Mechanical Engineering Department, “Dunarea de Jos” University, 800008 Galati, Romania
3 Informatics Department, “Danubius” University, 800654 Galati, Romania

* Correspondence: viorel.minzu@ugal.ro

Abstract: Execution time is an important topic when using metaheuristic-based optimization

algorithms within control structures. This is the case with Receding Horizon Control, whose

controller makes predictions based on a metaheuristic algorithm. Because the closed loop’s main

time constraint is that the controller’s run time must be smaller than the sampling period, this paper

joins the authors’ previous work in investigating decreasing execution time. In this context, good

results have been obtained by introducing the “reference control profile” concept that leads to the

idea of adapting the control variables’ domains for each sampling period. This paper continues to

address this concept, which is adjusted to harmonize with the Particle Swarm Optimization

algorithm. Moreover, besides adapting the control variables’ domains, the proposed controller’s

algorithm tunes these domains to avoid losing convergence. A simulation study validates the new

techniques using a nontrivial process model and considering three modes in which the controller

works. The results showed that the proposed techniques have practical relevance and significantly

decrease execution time.

Keywords: optimal control; receding horizon control; particle swarm optimization; control profile;

simulation

1. Introduction

Control engineering applications (see [1–5]) frequently use metaheuristic algorithms

(see [6–8]) because of their robustness and the different process types they can deal with.

The controlled processes may include nonlinearities or imprecise, incomplete, and

uncertain knowledge. The main drawback of using them is the large controller’s

computational effort, which could involve a large execution time that must be prevented

from surpassing the sampling period. This is a time constraint mandatory for the

controller’s implementation. In this context, decreasing metaheuristic algorithm

execution time is an important topic for control applications.

This paper considers the optimal control applications using a well-known control

structure, Receding Horizon Control (RHC) (see [9,10]), which includes a metaheuristic

algorithm (MA). It is a continuation of our previous work, where different optimal control

problems (OCPs) have been solved using RHC (see [11–13]). Some MAs are used, and

some methods for decreasing execution time are proposed.

RHC has retained our attention due to several characteristics:

• RHC is a control structure that uses a process model (PM).

• Its controller computes optimal control sequences over a prediction horizon based

on the PM (see [10,13,14]) at each sampling period.

Citation: Mînzu, V.; Rusu, E.;

Arama, I. Execution Time Decrease

for Controllers Based on Adaptive

Particle Swarm Optimization.

Inventions 2023, 8, 9. https://doi.org/

10.3390/inventions8010009

Academic Editor: Leo Chen

Received: 19 December 2022

Accepted: 26 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Inventions 2023, 8, 9 2 of 24

• A metaheuristic, such as Particle Swarm Optimization Algorithm or Evolutionary

Algorithm, can be integrated by the controller to make quasi-optimal predictions (see

[13,15–17]).

These characteristics constitute the scientific context of the previous works that this

paper is a continuation of. This paper concerns the works that have been devoted to the

execution time decrease. In each control step, a metaheuristic algorithm searches for the

best prediction over the current prediction horizon.

Our work does not concern the computation complexity of a problem ([18,19]), but it

is devoted to the execution time decrease for the proposed predictors. The proof is made

using an empirical “a posteriori” analysis. Papers using PSO algorithms for different

applications have proposed methods for decreasing execution time. For example, the

paper [20] addresses the time complexity of the PSO algorithm. A simple analysis

underlines that the number of computations is the sum of those required by the cost

function calculation and those involved by the position and velocity update. Both are

directly proportional to the number of iterations. To decrease the execution time of PSO

algorithms many papers have a general approach, which is to increase the convergence

speed through the inertia weight adaptation (see [21]) or the updating of the

hyperparameter coefficients [22].

The key principle that can lead to execution time reduction is “the larger the search

space, the bigger the execution time”. A practical method to reduce the search space is to

shrink the control output domains (from the controller’s point of view, or equivalently,

control input domains for the controlled process). Usually, the control variables take

values inside the known technological limits. Our general approach exploits additional

information concerning the control output domains, allowing us to shrink them. In this

way, some non-useful subdomains are cut off without affecting the algorithm

convergence.

In this context, a soft sensor presented in [23], called in each sampling period, gives

information useful for shrinking the intervals where the control outputs take values. The

proposed method devoted to a special process is based on a physical parameter

measurement.

Paper [24] has proposed a module integrated into the controller to replace the soft

sensor. This module estimates the future process states using the PM for a short time

horizon. The proposed method needs a “state quality criterion” that filters the control

output values. The simulation programs have used evolutionary algorithms (EAs).

Having the same objective, the paper [25] has proposed a discretization method that

can be applied when the metaheuristic is an EA. Regardless of prediction horizon length,

the control sequence encoding uses the same number of genes. The execution time decreases

because the discretization step increase has a small influence on computation accuracy.

A new method to reduce execution time is proposed in [26], where the metaheuristic

used in simulations is also based on EAs. A quasi-optimal control profile, defined as a

sequence of control values, is determined offline before controlling the real system. The

main idea is that the control outputs should take values inside a specified control profile’s

neighborhood. The simulation results prove that the execution time is significantly

diminished.

Particle swarm optimization algorithms have been used to solve different OCPs

[4,13,23,27,28], especially integrated into the RHC structure. This metaheuristic employed

in the same context can also lead to effective methods that reduce execution time, which

is the target of our work presented in this paper.

Our paper continues the research work presented in [26] and has the same approach

concerning the execution time decrease. The basic characteristic adopted by the two

papers are the following:

Inventions 2023, 8, 9 3 of 24

• The OCP’s solution is a closed-loop solution, not a sequence of control output values.

The entire approach may be described by the 4-tuple RHC–Controller–Predictor–

Metaheuristic.

• The closed-loop has an RHC structure, which includes a PM.

• An optimization module uses a metaheuristic algorithm to make predictions.

• The metaheuristics use a quasi-optimal control profile determined offline before

controlling the real system. The control structure employs this control profile to

shrink the control ranges, wherein the control outputs take values.

• The controller adapts the control output ranges at each sampling period, and calls

the prediction module (Predictor) so that the Predictor will be more efficient in

finding the best prediction.

• The present work’s novelties beyond those of the paper [26] are mentioned hereafter.

• Instead of using EA as a metaheuristic, the prediction module is based on an adaptive

variant of the Hybrid topology particle swarm optimization ([29,30]), referred to as

Adaptive Particle Swarm Optimization Algorithm (APSOA).

• The controller sets the control ranges resulting from the control profile and adapts

them to the prediction moment. In addition, the Predictor tunes the control ranges;

i.e., adjusts the intervals’ length wherein the control outputs take values. The tuning

aims to progressively increase the control ranges’ size, not to lose convergence of the

APSOA when control ranges are too small.

Our work is validated through a simulation study devoted to a specific OCP, also

mentioned in the paper [26]. The latter has another topic and does not deal with execution

time decrease. We are reconsidering this OCP to set out a nontrivial case study to which

we will apply our execution time-decreasing method. The PM is a nonlinear system that

originates in a distributed-parameter system, from which it inherits a certain complexity.

Besides the controller proposed in [23], the present work proposes two new

controllers. The first one uses a predefined CP and adapts control ranges to each sampling

period before calling the Predictor. The second one has the same tasks, but its Predictor

can also make the tunning of control ranges in conjunction with the APSOA.

Sections 2 and 3 briefly recall the notion of Receding Horizon Control using a MA

and the Control Profile approach such that the paper preserves its self-content character.

The specific controller structure proposed in our work, using predictions based on the

APSOA, is described in Section 4.

After giving the algorithms of the new controllers in Section 5, we conducted

simulation series for the old and new controllers and made a comparative analysis in

Section 6. The simulation results entitle us to conclude that the proposed method

significantly diminishes execution time.

2. Control Horizon Discretizationand Predictions

This section contains some preparatives for using the RHC structure (see [11–

13,23,26]). The controller’s optimal predictions can be found using metaheuristics, such as

Adaptive Particle Swarm Optimization.

When we use metaheuristic algorithms to solve OCPs, we must discretize the control

horizon [0]finalt and control outputs,

1() [() ()]TmU t u t u t= , (),1 , [0,]i finalu t i m t t (1)

maxmin
() , ; 1, , ; 0i i

i i finalu t u u i m t t =

 (2)

according to the sampling period T. The values
min
iu and max

iu are usually the

technological limits for the control output ()iu t . Hence, it holds:

Inventions 2023, 8, 9 4 of 24

finalt H T= (3)

()?) ()U t U kT U k= , for (1) ; 0, , 1k T t k T k H + = − (4)

In the sequel, we will adopt a convention: when there is no confusion, the product

k T will be simply denoted k . The control horizon will be denoted [0 H], and the discrete

moments are 0, , 1k H= − . Therefore, besides the specific OCP’s constraints, we must

add a supplementary one expressed by (4): the control outputs’ values are constant

throughout each sampling period. Hence, each control output (), 0, , 1U k k H= − is a

step function.

As a data structure, predictions are sequences of control outputs placed inside the

technological limits. For example, if the prediction horizon is [k, H], the predicted

sequence has the structure (), (1), , (-1)U k U k U H+ .

3. Predefined Control Profile

We recall the notion of a predefined control profile illustrated in Figure 1. This figure

presents the evolution solely of the control output (),1 , [0,]i finalu t i m t t . The blue

curve depicts a control profile as a continuous evolution of control output (against the

controller). The control profile (CP) is supposed to be a “good” control output that

determines even an optimal or a quasi-optimal performance index. Hence, it corresponds

to an optimal or quasi-optimal solution to our control problem and will be called the

reference CP in the sequel.

Figure 1. Predefined Control Profile.

The red curve is the graphic representation of a real solution implemented through a

closed-loop control structure. When the latter works well, this real solution is placed in a

blue curve’s neighborhood, and a close performance index is expected. Figure 1 suggests

a possible neighborhood, the blue zone, which is a “tube” around the optimal or quasi-

optimal solution.

Inventions 2023, 8, 9 5 of 24

The main idea is to replace the interval i (see Equation (2)), which usually involves

a too-large search space, with the domain represented by the blue zone. This

neighborhood of the reference CP should be large enough to ensure metaheuristic

algorithm convergence.

As mentioned in Section 2, we shall work with discrete values for time and control

outputs. Figure 2 shows how the predefined CP principle can be illustrated in this situation.

Figure 2. Predefined Control Profile and control output ranges after discretization.

Figure 2 uses an example from the paper [26] illustrating the positions of the

predefined CP and control values inside the control ranges. For each sampling period, the

intersection between the domain Ωi and the blue zone from Figure 1 forms a blue rectangle

referred to as the control range.

For example, the values i used to determine the control ranges may be calculated

using Equation (5).

()max min
i ii

u u = − ; 20% = . (5)

In Figure 2, considering = and the technical bounds 0 and 2, we have Δ = 0.4.

Thus, the height of the blue rectangles would be 0.8. However, these control ranges cannot

surpass technological limits. For this reason, some blue rectangles have their heights cut

off at the upper or lower sides.

Remark 1. The control range must be adapted for each sampling period , 0, , 1k k H= − and

control input (),1iu t i m to implement the predefined CP.

The control range for the control output i and moment k is denoted iR (k) and

determined by its height because its width is always the sampling period.

Remark 2. In the sequel, a control range will be assimilated with the interval representing its

height and denoted Ri(k) as well.

Inventions 2023, 8, 9 6 of 24

Hence the control range for the moment k will generally be:

Rk = R
1
(k) R

2
(k) ... R

m
(k). (6)

Details concerning how the control range ()iR k is calculated in our case study will

be given in Section 5.1.

Remark 3. The smaller the value
i , the smaller extent of the new control range. However, a too-

small
i will cause the convergence to be lost. A realistic approach is to set

i after a few

simulations.

4. Predictions Based on Adaptive Particle Swarm Optimization Algorithm

This section presents the specific controller structure proposed in our work, having

a few modules connected among them. A practical example is also given to demonstrate

the systemic connections and prepare a case study for the execution time analysis.

4.1. Process Model, Constraints, and Performance Index

This section presents the process model, constraints, and performance index concepts

using a specific OCP, which concerns a specific artificially lighted photobioreactor. As we

have already mentioned, we are not interested in presenting this process to disclose its

technological aspects but in describing a nontrivial process model and preparing a case

study, in which we apply our execution time-decreasing method.

4.1.1. Process Model

This subsection presents the model of a continuously stirred flat-plate

photobioreactor (PBR) lighted on one side for algae growth, whose physical and

constructive parameters are presented in [23,31].

Because of the attenuation of the light inside the PBR, the latter’s dynamic model is a

distributed-parameter system. The PBR’s depth, L, is discretized in Lk points equally

spaced ([0,]iz L , 1,...,i Lz i k=) to convert this system into a lumped-parameter system.

The resulting process model (PM) is presented hereafter:

max
1 12

1

()1
() ()1

() ()

Lk
i

d
L i S i i

I

G t
x t x tk

k G t G t
k

=

 −

=
+ +

 (7)

2() ()x t A C q t= (8)

1()
() () , 1, ,

x t
i i LG t q t k i k= = (9)

1

2 ; 1,...,
a iE z

i Lk e i k

+
−

= = (10)

1() ()m t V x t= (11)

The state variables have the following meaning:

1()x t : the biomass concentration (in g·/L);

2()x t : the amount of light that has illuminated the PBR up to moment t (in

µmol/m2/s);

Equations (9) and (10) complete Equation (7) and are used, in different modules of

our simulation programs, for the numerical integration.

The input variable q(t) is the incident light intensity and will be considered the control

input and denoted by a consecrated notation:

Inventions 2023, 8, 9 7 of 24

u(t) = q(t) (12)

Equation (11) calculates the biomass in the PBR, m(t), which can be considered an

output variable because it is the PBR’s product.

Table A1 from Appendix A shows the constants used by the PM (7)–(11), avoiding

their definitions, which are irrelevant to this work.

4.1.2. Constraints

Other elements that define an optimal control problem are the constraints. We denote

by t0 and tf the initial and final moments of the control horizon.

In our case study, the following constraints must be met:

control horizon: t0 ≤ t ≤ tf, where t0 = 0; tf =120 h (13)

initial conditions: 1 0 0()x t x= ; 2 0() 0x t = (14)

bound constraints: qm ≤ q(t) ≤ qM, with t0 ≤ t ≤ tf. (15)

As a productivity constraint, it is important to have minimal final biomass; that is,

0()fm t m , (16)

• where 0m is the minimal newly produced biomass. Equivalently, it holds

0
1()f

m
x t

V
 . (17)

Equation (9) can be seen as a path (state trajectory) constraint defining the admissible

trajectories.

4.1.3. Performance Index

The third element defining an OCP is the performance index. This one supposes

having a cost function associated with each admissible trajectory and the optimization

sense (to find the minimum or maximum).

In our work, the cost function (18) minimizes the amount of light irradiating the PBR

while constraint (10) is met. The setting of two weight factors (1w and 2w) is an important

issue.

()
0

0 1 2 0((),) () ()
ft

f
t

J q x w q t dt w m t m = + − . (18)

In this context, the performance index has the following expression:

0

*
0 0

(),
() min ((),)

fq t t t t
J x J q x

= . (19)

Solving the PBR optimal control problem means finding the optimal control

sequence, which minimizes the cost function (18):

0
*

(), fq t t t t . (20)

Equations (18)–(20) are adapted below to our discretized RHC structure. When the

prediction horizon is [k, H], the objective function that must be minimized (over the set of

all predicted control sequences pcs(k)) is given by Equation (21).

() 0

1

1 2 1 0
()

(, ()) min () ()

m H m

H

pcs k i k

J k x k w A C q i w V x H m

−

=

= + −

 (21)

Consequently, the optimal prediction is the following optimal control sequence:

Inventions 2023, 8, 9 8 of 24

ocs() arg (, ())k J k x k= . (22)

Hence, the current control output is the first element of the sequence ocs()k .

NB: We note that generating a closed-loop solution to this problem is more complex

than finding the optimal control sequence (22).

4.2. Prediction-Based Controller Structure

Section 3, together with the option of using the APSOA, leads to the general structure

of the proposed controller presented in Figure 3.

Figure 3. Structure of the proposed controller.

Before including the APSOA in the controller, this algorithm is tested to discover

whether it is suitable to solve the considered problem. Consequently, we obtain the best-

known evolution of the process, which gives the best performance index. This optimal or

quasi-optimal solution can be called “reference process evolution”. The best CP yielding

the reference process evolution is recorded and used subsequently to generate the control

ranges 0 1 1, , , HR R R − . This CP is referred to as reference CP and denoted “Uref”.

The APSOA is integrated into the prediction module, called the predictor, in the

sequel. At the moment ,0k k H , the predictor searches for the best prediction from the

current state according to the control ranges 1, ,k HR R − . Thus, the search space is less

extended, being a neighborhood of the reference CP.

To do that, the predictor sends the current state vector ()X k and a candidate

prediction ()U k toward the “objective function computation” module. In turn, the latter

frequently calls the PM for numerical integration.

The result is ocs(k), a control sequence with H-k control values for the remaining

sampling periods. Its first element, *()U k , is the optimal control value that is sent toward

Inventions 2023, 8, 9 9 of 24

the process. Data exchanged between the controller and the process are indicated by red

arrows, which also close the control loop.

The well-known ASPOA (Adaptive Particle Swarm Optimization Algorithm) is

presented in many papers [4,28,32]; paper [23] gives a comprehensive description of this

algorithm in a similar context. The next section describes APSOA as a module of the

controller proposed here.

5. Execution Time Decrease

This section is devoted to the predefined CP implementation and range tuning

considering the OCP formulated in Section 3. Although our presentation considers some

details of the solved problem, it can be applied to any other OCP with minor changes.

5.1. Implementation of the Predefined Control Profile

To prove the efficiency of our approach, we developed programs used in the sequel

to conduct some simulation series, which are the topic of Section 6. Their algorithms are

described below in a way that focuses on implementing control range adaptation and

tuning.

Implementing the proposed method affects all three levels of our application

schematically represented below (in order of calling):

CONTROLLER → PREDICTOR → APSOA.

As we saw in Section 3, the employment of a predefined CP involves finally defining

and using the control ranges. The proposed algorithms consider three modes of using the

predefined CP:

mode = 1: The control ranges are not used

mode = 2: The closed-loop control adapts the control ranges

mode = 3: The closed-loop control adapts and tunes the control ranges

The control range tuning will be described in Section 5.2.

Mode 1 corresponds to the situation described in our previous work [23], where the

controller does not use a predefined CP.

Considering Remark 2 and the fact that m = 1, we can specify the limits of the interval

representing a control range:

Rk = R1(k) = [xm(k) xM(k)], k = 0,…,H − 1. (23)

Thus, the vectors xm and xM store the lower and upper limits of the control ranges.

In mode = 2 and mode = 3, we consider these limits proportional to the predefined

CP (called Uref) as below:

xm = (1 − p)·Uref;. (24)

xM = (1 + p)·Uref. (25)

The value p is constant, defining the neighborhood of Uref wherein control outputs

take values. This value must be initialized; for example, p = 20%. Obviously, the values of

vectors xm and xM must be truncated so as not to surpass the technological limits,

denoted “qmin” and “qmax” (considering they are light intensities).

In mode = 1, because no control profile is used, the vectors xm and xM have all values

equal to qmin and qmax, respectively.

With these specifications, Table 1 gives the controller algorithm related to the control

structure from Figure 3.

Inventions 2023, 8, 9 10 of 24

Table 1. Pseudo code of the CONTROLLER.

 Function Controller (k, Mode)

 /* for simulation: CONTROLLER(k,X0,mode) */

 /* k—the current discrete moment */

1 #Initializations; /*concerning the global constants*/

2 # Obtain the current state vector X(k) /*In simulation, X0 is used instead */

3 If (mode = 1) /*CR and tuning*/

4 xm(i) = qmin; i = 1,…,H. /* qmin is the lower technological limit */

5 xM(i) = qmax; i = 1,…,H. /* qmax is the upper technological limit */

6 else /* mode = 2 or 3 */

7 xm = (1-p)·Uref;

8 xM = (1 + p)·Uref

9 # Truncate xm and XM not to overpass the technological limits.

10 end

11 ocs(k) PREDICTOR(k,X(k),mode)

12 U*(k) the first element of ocs(k)

13 # Send U*(k) toward the process /*the current optimal control value */

14 return /* or wait for the next sampling period */

Instruction #1 refers to initializing certain global constants and variables, especially

concerning the predefined CP and PM. Instructions #3–#10 detail how the control ranges’

limits are set according to the chosen mode.

All preparatives lead to instruction #11, which is the call of the PREDICTOR function

that returns the best prediction ocs(k). The latter’s first element is the optimal control value

that will be sent to the process in the current sampling period.

The CONTROLLER is organized here as a function, but in our tests, it is included in

the main simulation program.

Table 2 shows the PREDICTOR’s algorithm conceived to prepare the function

“APSOA” call. Each time is called, the APSOA function solves another optimization

problem with another prediction horizon, “h”, and another current state,”x0”. The

“mode” value is only transmitted to the APSOA function.

Instructions #3 and #4 construct the vectors xmh and xMh, which are the reduced

version of xm and xM according to the h value. The function returns the global best

prediction to the CONTROLLER.

Table 2. Algorithm of the function PREDICTOR.

 Function Predictor (k, x0, Mode)

/* mode = 1: without control ranges;

mode = 2: with control ranges;

mode = 3: with control ranges and tuning;

k—the current discrete moment; x0—the current state (biomass concentration)*/

1 Initializations; /*space reservation for each particle*/

2 h H-k /*h is the prediction horizon*/

3 xmh xm(k + 1,…,H); /*copy h elements into the vector xmh */

4 xMh xM(k + 1,…,H); /*copy h elements into the vector xMh */

5 Pgbest APSOA(k, h, x0, xmh, xMh, mode) /*call the metaheuristic */

6 ocs Pgbest

7 return ocs

Inventions 2023, 8, 9 11 of 24

As mentioned, the authors gave in [23] a comprehensive description of the APSOA,

especially the movement particles’ equations and adaptive behavior implementation.

Table 3 presents the new APSOA, which has two main characteristics:

• It keeps all the parts described in [23] concerning the adaptive behavior and

movement equations. These parts are generically recalled (using the character #) to

simplify the presentation, but they can be easily accessed.

• The algorithm’s new parts focus on the implementation of execution time decrease.

Hence, the pseudo-code details the actions implementing the three modes of using

control ranges.

APSOA is organized in the manner of a function of six input parameters, whose

meaning results from the details already given. It calls the function “EvalFitnessJ”, which

evaluates the objective function resulting from Equations (21) and (22).

Instructions #35–#41 constitute a group (shaded in dark grey) which is always

executed when particles change position, whatever the mode. If the particles’ positions

surpass the control range limits, the positions are truncated, and the velocity is reflected.

The algorithm’s main loop (instructions #13–#47), which implements the particles’

movement, uses the constant “stepM” representing the accepted maximum number of

steps until convergence.

Table 3. Algorithm of the function APSOA (Adaptive Particle Swarm Optimization Algorithm).

 Function APSOA (k,h,x0, xmh, xMh, Mode)

Input parameters: k—the current discrete moment; x0—the current state (biomass

concentration); h—predicted sequence length (particle’s positions Xi has h

elements)

xmh: vector with h elements—minimum value for each control range

xMh: vector with h elements—maximum value for each control range

1 #General initializations; /*space reservation for each particle*/

2 If (mode=3) /*CR and tuning*/

3 #initialization step0 and step

4 #initialization a /* e.g., 1/3, 1/4, 1/5,…*/

5 m(i) a (xmh(i)-qmin); i=1, ,h /* decrement step*/

6 M(i) a (qmax-xMh(i)); i=1, ,h /* increment step*/

7 end

8 # Set the particles’ initial velocities, v(i,d), and positions x(i,d), i=1,...,N; d=1,...,h .

9 # For each particle, compute the best performance using the EvalFitnessJ function.

10
Determine the position, Pgbest, and the value, GBEST, of the global best

particle.

11 found 0; /* found =1 indicates the convergence of the algorithm*/

12 step 1;

13 while (step <= stepM) & (found = 0)

14 /* stepM is the accepted maximum number of steps until convergence.*/

15 # Modify the coefficients that adapt the particles’ speed.

16 if (mode = 3) and (step > =step0) /*tuning of the Control Ranges */

17 for i = 1:h

18 xmh(i) = xmh(i)- m(i)

19 If (xmh(i) < qmin)

20 xmh(i) = qmin

21 end

22 xMh(i) = xMh(i) + M(i)

23 if (xMh(i) > qmax)

24 xMh(i) = qmax

Inventions 2023, 8, 9 12 of 24

25 end

26 end

27 step0 step0 + step

28 end

29 for i = 1,…,N

30 #Compute the best local performance of particle i.

31 for d = 1,…,n

32 #Update the particle’s speed

33 #Speed limitation

34 #Update the particle’s position

35 if x(i,d) > xMh(d)

36 x(i,d) xMh(d)

37 v(i,d) -v(i,d)

38 elseif x(i,d) < xmh(d)

39 x(i,d) xmh(d)

40 v(i,d) -v(i,d)

41 end

42 end /*for d*/

43 #Compute fitness(i) and update the best performance of particle #i

44 #Update Pgbest, GBEST, and found

45 end /*for i*/

46 step step + 1;

47 end /*while*/

48 return Pgbest

49 end

5.2. Tuning of Control Ranges

Before calling the predictor, the controller adapts the established control ranges to

each sampling period (instructions #3–#10). Lower and upper limits are assigned to each

control output and each prediction horizon step. Thus, the intervals’ limits have initial

values.

A compelling situation is when the current state is very different from the PM state

due to important perturbations of any sort. The APSOA may not converge using the initial

limits, but rather stops at a best-found solution. The PREDICTOR will return the control

sequence ocs(k) that would not generate a state trajectory “neighboring” the reference

trajectory (i.e., the trajectory of the PM yielded by the reference CP).

The solution is to adjust the intervals’ limits after a certain number of steps until the

convergence should have been ascertained. In other words, the predictor will tune the

control ranges modifying the initial intervals’ limits. Moreover, the tunning action may

gradually increase the control ranges’ sizes so as not to lose the convergence of the

APSOA.

The instructions of APSOA to achieve the control range tuning are shaded in light

grey. Some initializations are performed by instructions #2–#7. The tuning of intervals

uses decrement and increment steps defined below, respectively:

m(i) a (xmh(i)-qmin); i=1, ,h (26)

M(i) a (qmax-xMh(i)); i=1, ,h (27)

The constant “a” has values such as 1/3, 1/4, 1/5 and so on. In this way, the difference

between the control range lower (upper) limit and the technological lower (upper) limit

can be progressively covered by a few adjustments. The decrement and increment steps

are computed only once using the initial values of xmh(i) and xMh(i).

Inventions 2023, 8, 9 13 of 24

The adjustment of the control range (instruction #16–#28) is performed when the step

number, “step”, equals a predefined number, “step0”, using the following equations:

xmh(i) = xmh(i) − m(i) (28)

xMh(i) = xMh(i) + M(i) (29)

The values of “step0” and “ step” are initialized in instruction #3 following some

simulations. The reader will find proper values for our OCP in the programs attached as

supplementary materials.

Remark 4. The APSOA performs the tuning action gradually to allow the search process to extend

as less as possible. In this way, there will be a benefit in terms of execution time.

6. Simulation Results and Discussion

This section presents a simulation study concerning the closed-loop optimal control

of the process described in the OCP stated in Section 4.1. The algorithms CONTROLLER,

PREDICTOR, and APSOA, developed in the previous section, have been used to

implement and simulate the control structure. The simulations must allow the execution

time evaluation to validate the proposed decreasing method. Concretely, our simulation

study has the following goals:

1. To implement the closed-loop structure using the algorithms mentioned above.

2. To implement the three algorithms, CONTROLLER, PREDICTOR, and APSOA, to

cope with the three modes of using the control profile.

3. To confirm that the proposed technique works properly and decreases the execution

time.

The authors have addressed the first objective in [23], but in another context. In

addition, the control ranges’ adaptation and tuning have important repercussions on the

structure and implementation of the algorithms and programs.

A general program emulates the working of the entire closed-loop control structure.

It is written using MATLAB language and system and allows us to achieve the simulation

study. The pseudo-code of this program is given in Appendix B.

All the modules depicted in Figure 3 have associated program units. The

CONTROLLER integrates the PM, subjected to Equations (7)−(11), and sends the optimal

control output toward the process. The latter also is emulated by a simulation module,

which in this study is identical to the PM. This choice is not a simplification that

guarantees the success of our simulations. We should not expect that the simulated

process tracks the reference trajectory, implicitly expressed by the reference CP, because

of two factors:

• The closed loop does not work identically with the open loop. We recall that the

reference CP can be assimilated to an open-loop solution of the OCP at hand.

• The APSOA is a stochastic algorithm that finds quasi-optimal solutions not identical

to the reference CP.

Moreover, in this simulation study, we are not interested in evaluating the

consequences of a process different from the PM but in evaluating the control range’s

adaptation end tuning.

6.1. Execution Time Evaluation

The closed-loop structure makes a computational effort to optimally control the

process in a sense defined by the OCP. We are interested in estimating this effort during

the entire control horizon. The third objective of our simulation study means that the

controller’s execution time must be evaluated for the three CONTROLLER utilization

modes.

Inventions 2023, 8, 9 14 of 24

The APSOA has two parts, the initialization part (see Table 3, lines #1–#12) and the

“while” loop (lines #13–#47). Its execution has a stochastic character, but for a specific

realization of this stochastic process, we can give the “a posteriori” execution time “ExT”:

1 2()ExT n N D Nsteps n N D= + + + . (30)

The values n1 and n2 represent the durations of the elementary actions (assignments,

tests, etc., except the objective function calls) included in the previously mentioned parts,

expressed in time units. D is the duration of the objective function (EvalFitnessJ)

execution, which in this context is practically constant. Nsteps denotes the step number

until stop-criterion fulfilment. Using the APSOA in our computation context has a

particularity: the process integration needs much greater execution time than the other

parts of the algorithm. Because we have 1 2,n n N D , it holds:

(1)ExT Nsteps N D Ncalls D + = , (31)

considering that “Ncalls” is the number of calls of the objective function during the

APSOA’s running.

Equation (31) justifies why, in previous works, we have used an empirical measure

of execution time, which means counting the objective (cost) function calls throughout the

control horizon. In our case, the simulation program counts the number of calls of the

“EvalFitnessJ” function during the control horizon [0 H]. The number of calls is cumulated

for all sampling periods and divided by H at the end; the average number of calls is more

appropriate for comparisons and is also denoted “Ncalls” from here on.

The value of Ncalls is an empirical measure of the implemented algorithms’

execution time. Of course, it depends on the number of steps until convergence, which, in

turn, can be influenced by the integration method and its parameters. Nevertheless, when

it is obtained in similar conditions, Ncalls helps us to compare the proposed algorithms

from the point of view of execution time: its decrease means the execution time decrease.

The CONTROLLER and PREDICTOR inherit the stochastic character from the

APSOA. For this reason, the simulation program was carried out 30 times such that a

statistical analysis could be done. Details concerning the simulation program are given in

Appendix C.

6.2. Simulation without Range Adaptation

The first implementation of the simulation program calls the CONTROLLER with

mode = 1; that is, it does not adapt the control ranges and considers the technological

bound uniquely. Thus, the first simulation series consisted of 30 runs of this program and

yielded the data reported in Table 4 (following the procedure given in Appendix C.1).

Table 4. Simulation series for closed loop without control ranges.

Run # J Ncalls Run # J Ncalls

1 9.0136 960 16 9.2717 672

2 9.0423 665 17 9.3212 727

3 9.0523 951 18 9.2314 689

4 9.0448 845 19 9.2276 758

5 9.1961 940 20 9.2726 731

6 8.9792 962 21 9.2753 848

7 9.1024 663 22 9.3992 717

8 9.0728 959 23 9.2007 738

9 9.0605 841 24 9.2302 839

10 9.0059 941 25 9.4145 654

11 9.3527 773 26 9.4045 745

12 9.4327 662 27 9.2029 759

Inventions 2023, 8, 9 15 of 24

13 9.2569 747 28 9.4126 753

14 9.2506 785 29 9.2264 798

15 9.4629 812 30 9.2924 790

The results of the simulation series are presented in Table 4, where the average

number of calls is shown in the “Ncalls” columns and calculated by dividing the

cumulated call number by 120 (the sampling period number). The columns denoted J give

us the performance index.

Table 5 shows some statistical values concerning the performance index: the

minimum, average, maximum, standard deviation (Sdev), and typical values.

Table 5. Statistics on the performance index.

Jmin Javg Jmax Sdev Jtypical

8.979 9.224 9.463 0.142 9.226

We consider a specific execution as “typical execution” when its performance index

has the closest value to “Javg”. In our case, the typical execution is the 29th and is plotted

in Figure 4. The CONTROLLER with mode = 1 generates the control values from Figure

4a. The typical state evolution of the process is given in Figure 4b.

(a) (b)

Figure 4. Typical closed-loop evolution without control range adaptation (mode = 1). (a) The

control profile without range adaptation. (b) The state trajectory of the typical closed-loop

evolution.

Ncalls = 798 can be a “measure” of the typical execution time. This measure has the

advantage of not depending on the hardware’s characteristics.

To reinforce our analysis based on Ncalls, we also measured the real execution times

for thirty runs (different from Table 4). The processor we have used in our simulations is

Inventions 2023, 8, 9 16 of 24

an Intel Core i7-6700HQ CPU@2.60 GHz, and the PM was integrated using the functions

of the MATLAB system.

Table 6 presents these execution times in columns called “ExTime”.

Table 6. Execution times for the closed loop without control ranges.

Run # ExTime Run # ExTime Run # ExTime

1 890.8 11 771.2 21 892.6

2 796.5 12 858.8 22 902.5

3 855.7 13 880.2 23 898.4

4 845.2 14 947. 24 878.8

5 924.3 15 894.4 25 938.7

6 861. 16 750.8 26 798.

7 910.5 17 1022.9 27 879.5

8 879.5 18 895.7 28 904.2

9 901.3 19 854.9 29 831.

10 854.8 20 1009.3 30 898.1

It holds:

average ExTime = 880.9 s. (32)

We must verify that the proposed techniques shorten this duration.

6.3. Simulation of Closed-Loop Working with Control Ranges Adaptation

In the second simulation series, each execution called the CONTROLLER with mode

= 2 and adapted the control ranges according to the reference CP. These simulations

yielded the data reported in Table 7 (following the procedure given in Appendix C.2).

Table 7. Simulation series for closed loop with control ranges.

Run # J Ncalls Run # J Ncalls

1 9.1501 530 16 9.1549 666

2 9.1695 591 17 9.1715 566

3 9.1828 511 18 9.1572 619

4 9.1377 569 19 9.1775 505

5 9.1786 656 20 9.1112 644

6 9.1506 563 21 9.1682 654

7 9.2067 623 22 9.1841 507

8 9.155 624 23 9.1643 552

9 9.1398 591 24 9.169 540

10 9.1751 595 25 9.1868 611

11 9.1937 596 26 9.1607 576

12 9.1627 511 27 9.1544 520

13 9.2359 713 28 9.1786 633

14 9.1701 602 29 9.1897 601

15 9.1822 563 30 9.1788 635

Table 8 presents similar statistics as Table 5 but uses data from Table 7.

Table 8. Statistics on the performance index (mode = 2).

Jmin Javg Jmax Sdev Jtypical

9.111 9.170 9.236 0.023 9.170

Inventions 2023, 8, 9 17 of 24

This time, the typical execution is the 14th of Table 7. Thus, Ncalls= 602 can

characterize the typical execution time in this case.

The standard deviation of J is 0.023, much less than 0.142 (for mode = 1). This fact has

a logical explanation: the domain between technological bounds is more extended that the

union of control ranges. As a repercussion, the values of the performance index are also

less spread out.

The typical execution is plotted in Figure 5. The CONTROLLER with mode = 2

generates the control values from Figure 5a. The process’ typical state evolution is given in

Figure 5b.

(a) (b)

Figure 5. Typical closed-loop evolution with control range adaptation (mode = 2). (a) The control

profile with range adaptation. (b) The state trajectory of the closed-loop typical evolution.

Remark 5.

1. Figures 4 and 5 have the same aspect, meaning that the closed loops work similarly.

2. The controller with mode = 2 works properly, as in mode = 1, but faster. All the constraints

are fulfilled.

3. The controller with control range adaptation decreased the execution time because Ncalls

diminished by 24.5% compared to the controller with mode = 1.

For the simulation series presented in Table 7, we also measured the total execution

time for the thirty runs, 22,131.5 s. This measure allowed us to calculate the

average ExTime = 737.7 s. (33)

In the hardware context presented before, the average execution time decreased from

880.9 (see (32)) to 737.7, which means a diminution of 16.2% compared to the controller

without control ranges. This percentage is less than that indicated in Remark 5, because

Inventions 2023, 8, 9 18 of 24

Equation (31) approximates ExT. Nevertheless, this remark is in agreement with the real

tendency.

6.4. Simulation of Closed-Loop Working with Control Range Adaptation and Tuning

In the third simulation series, each execution called the CONTROLLER (with mode

= 3) to adapt and tune the control ranges. These simulations yielded the data reported in

Table 9 (using the procedure given in Appendix C.3).

Table 9. Simulation series for the closed loop with control ranges and tuning.

Run # J Ncalls Run # J Ncalls

1 9.1879 672 16 9.1943 633

2 9.1742 538 17 9.1714 581

3 9.1759 717 18 9.1742 569

4 9.1834 639 19 9.1548 605

5 9.1504 652 20 9.1672 621

6 9.1713 630 21 9.1353 537

7 9.1615 523 22 9.1582 611

8 9.1423 508 23 9.1765 670

9 9.1712 577 24 9.2054 554

10 9.1739 608 25 9.1333 705

11 9.1916 613 26 9.1832 547

12 9.1639 571 27 9.2009 643

13 9.1728 774 28 9.1935 585

14 9.1775 501 29 9.1443 592

15 9.1736 673 30 9.1785 599

The data included in this table were used to compute the statistics displayed in Table

10 (as in Table 5).

Table 10. Statistics on the performance index (mode = 3).

Jmin Javg Jmax Sdev Jtypical

9.133 9.171 9.205 0.018 9.171

This time, the typical execution is the 17th of Table 9. Thus, Ncalls= 581 can

characterize the typical execution time when mode = 3.

The typical execution is plotted in Figure 6. The CONTROLLER with mode = 3

generates the control values from Figure 6a. The process’ typical state evolution is given in

Figure 6b.

Inventions 2023, 8, 9 19 of 24

(a) (b)

Figure 6. Typical closed-loop evolution with control range adaptation and tuning (mode = 3). (a)

The control profile with control range adaptation and tuning. (b) The state trajectory of the typical

evolution of the closed loop.

The standard deviation of J is 0.018, practically equal to 0.023 (for mode = 2). The

situations when the control ranges must be tuned are infrequent; that is, they occur when

the current state is distant from the reference state trajectory. Only in those cases are the

control ranges extended to conserve convergence. For this reason, the standard deviations

are practically equal. On the other side, although rare, these situations decrease the

execution time, because Ncalls diminishes from 602 to 581. It decreases by 3.5% compared

to the controller with mode = 2, and by 27.1% against the first controller (mode = 1).

Remark 6.

1. Figures 4 and 6 have the same aspect, meaning that the closed loops work similarly.

2. The controller with mode = 3 works properly, as in mode = 1, but faster. All the constraints

are fulfilled.

3. The controller with control range adaptation decreased the execution time, because Ncalls

diminished by 27.1% compared to the controller with mode = 1.

As in previous subsections, we also measured the real execution times for thirty runs

(different from Table 9). Table 11 presents the results.

Table 11. Execution times for the closed loop with control ranges and tuning.

Run # ExTime [s] Run # ExTime [s] Run # ExTime [s]

1 696.01 11 656.02 21 606.25

2 778.46 12 681.86 22 601.70

3 736.75 13 828.09 23 812.89

4 665.94 14 745.42 24 754.47

5 843.31 15 823.66 25 616.89

6 851.08 16 779.48 26 591.39

Inventions 2023, 8, 9 20 of 24

7 712.82 17 670.01 27 699.41

8 724.09 18 742.59 28 786.92

9 665.91 19 750.33 29 641.37

10 642.30 20 713.98 30 745.00

This measure allowed us to calculate the

average ExTime = 718.8 s. (34)

In the same hardware context presented before, the average execution time decreased

from 880.9 (see (32)) to 718.8, which means a diminution of 18.4% compared to the

controller with mode = 1. This percentage is less than that indicated in Remark 6 for the

same reason mentioned before. Nevertheless, this remark is in agreement with the real

tendency.

The real values of the average execution time for the three simulation series are

summarized in Table 12.

Table 12. Average execution time for the three simulation series.

Controller Type Average Execution Time [s]

Controller without control range adaptation 878.7

Controller with control range adaptation 737.7

Controller with control range adaptation and tuning 718.8

The conclusion of our analysis based on Ncalls corresponds to the data from Table

12: the execution time decreased, as mentioned previously.

7. Conclusions

In the context of optimal control using a new technique based on reference CP, we

presented implementation aspects that led to an execution time decrease when using

metaheuristic algorithms.

Previous work has used predictions based on evolutionary algorithms integrated

into an RHC structure, able to implement the control range adaptation. This paper

adopted the same scientific context and treated two new general aspects:

• The APSOA was used as the metaheuristic generating the optimal predictions.

• A new technique, the tuning of control ranges, was proposed and integrated into the

controller.

A simulation study was conducted to validate the contributions using a case study.

The PM was a nontrivial dynamic system that stemmed from a distributed-parameter

system. Looking at the simulation’s goals listed in Section 6, we can draw some

conclusions:

• The APSOA was modified to include actions necessary to implement control ranges

adaptation and tuning.

• Besides the new APSOA, the modules CONTROLLER and PREDICTOR were

implemented to work according to three use modes: without control range

adaptation, with control range adaptation, and with control range adaptation and

tuning.

• A general simulation program was implemented, and three simulation series were

carried out for each mode.

The controller converged for all simulations and sampling periods, and the closed

loop worked properly with good performance index values. The control range adaptation

and tuning determined the number of calls to decrease, so the controller’s execution time

was reduced.

Inventions 2023, 8, 9 21 of 24

Although the tuning action rarely occurs, it causes the state trajectory to neighbor the

reference trajectory, and consequently causes the performance index to preserve a quasi-

optimal value.

The comparative analysis proved that the control range adaptation and tuning are

effective, and the execution time decrease is significant. The interested reader can

thoroughly understand and use the algorithms presented in this work, including the

written programs attached as Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at:

www.mdpi.com/article/10.3390/inventions8010009/s1. The archive “Inventions-2MTLB.zip”

contains the files mentioned in Appendix C.

Author Contributions: Conceptualization, V.M.; methodology, E.R. and V.M.; software, V.M.;

validation, V.M. and I.A.; formal analysis, V.M.; investigation, E.R.; resources, I.A.; data curation,

I.A.; writing—original draft preparation, V.M.; writing—review and editing, V.M. and I.A.;

visualization, I.A.; supervision, E.R.; project administration, E.R.; funding acquisition, I.A. All

authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This work benefited from the administrative support of the Doctoral School of

“Dunarea de Jos” University of Galati, Romania.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The constants of the PBR model.

radiative model 𝐸𝑎 = 172 m2·kg−1 absorption coefficient

 𝐸𝑠 = 870 m2·kg−1 scattering coefficient

 𝑏 = 0.0008 backward scattering fraction

kinetic model 𝜇𝑚𝑎𝑥= 0.16 h−1 specific growth rate

 𝜇𝑑 = 0.013 h−1 specific decay rate

 𝐾𝑆 = 120 µmol·m−2·s−1 saturation constant

 𝐾𝐼 = 2500 µmol·m−2·s−1 inhibition constant

physical parameters 𝑉 = 1.45·10−3 m3 the volume of the PBR

 L = 0.04 m depth of the PBR

 A = 3.75·10−2 m2 lighted surface

 0x = 0.36 g/L the initial biomass concentration

other constants C =3600·10−2 light intensity conversion constant

 Lk =100 number of discretization points

 2mol5 /0 /sμ mmq = lower technological light intensity

 22000 μmol/m /sMq = upper technological light intensity

 0m = 3 g. the minimal final biomass

This table shows the constants used by the PM (7)–(11) and programs included in

Supplementary materials.

Appendix B

The pseudo-code for the simulation of the closed loop is presented in Table A2.

Inventions 2023, 8, 9 22 of 24

Table A2. General closed-loop simulation algorithm.

 Closed-Loop Simulation

 start /* k—the current discrete moment */

1 #Initializations; /*concerning the global constants and the mode = 1 or 2 or 3 */

2 INIT_CONST /* Initialize the constants from Table A1

3 H tfinal/T;

4 Ncalls_C 0; /* The cumulated numbers of calls along the control horizon */

5 state (0) x0;

6 k 0; /*sampling moment counter */

7 while k <= H−1

8 CONTROLLER (k, x0, mode)

9 uRHC(k) U*(k)

10 Ncalls_C Ncalls_C + Ncalls;

11 xnext RealProcessStep(U*(k), x0, k);

12 x0 xnext;

13 state(k + 1) x0

14 k k + 1;

15 end /*while*/

16 # Final integration of the PM using the optimal sequence uRHC

17 # Display the simulation results

18 end

“uRHC” is a vector that collects the “optimal” command determined by the

PREDICTOR in each sampling period.

When the PM state is x0, and its control input is U*(k), the next state is calculated by

the procedure “RealProcessStep”.

Appendix C

The simulation algorithm described in Appendix B may be implemented by one of

the scripts:

“INV_PSO_RHC_without_CR.m” for mode = 1,

“INV_PSO_RHCwithCR.m” for mode = 2,

“INV_PSO_RHCwithCRandT.m” for mode = 3.

The function “RealProcessStep” is implemented by the script

“INV_RHC_RealProcessStep.m”. All files are inside the folder “Inventions-2MTLB”.

Appendix C.1. Simulation without Control Ranges

• The closed-loop algorithm without control ranges is implemented by the script

“INV_PSO_RHC_without_CR.m”. It can be executed alone or 30 times by the script

“Loop30_PSO_without_CR.m”. In the last case, the results have been stored in the

file “WSP30_without CR.mat”.

• The statistics in Tables 4 and 5 are produced by the script

“MEDIERE30loop_without_CR.m”, which also creates the file

“WSPwithoutCR_i0.mat”.

• The script “DRAWfigWithoutCR.m” uses the latter to plot Figure 4a,b.

Appendix C.2. Simulation with Control Ranges

• The closed-loop algorithm with control ranges is implemented by the script

“INV_PSO_RHCwithCR.m”. It can be executed alone or 30 times by the script

“loop30_PSO_Predictor2.m”. In the last case, the results have been stored in the file

“WSP30_CR.mat”.

Inventions 2023, 8, 9 23 of 24

• The statistics in Tables 6 and 7 are produced by the script

“MEDIERE30_PSO_Predictor2.m”.

• Then the script “Integration_CR_i0.m” will create data characterizing the typical

execution stored in the file “WSP_CR_i0.mat”.

• The script “DRAWfigWithCR.m” uses the latter to plot Figure 5a, b.

Appendix C.3. Simulation with Control Ranges and Tuning

• The closed-loop algorithm with control ranges is implemented by the script

“INV_PSO_RHCwithCRandT.m”. It can be executed alone or 30 times by the script

“loop30_PSO_Predictor3.m”. In the last case, the results have been stored in the file

“WSP30_CRandT.mat”.

• The statistics in Tables 8 and 9 are produced by the script

“MEDIERE30_PSO_Predictor3.m”.

• Then the script “Integration_CRandT_i0.m” will create data characterizing the

typical execution stored in the file “WSP_CRandT_i0.mat”.

• The script “DRAWfigWithCRandT.m” uses the latter to plot Figure 6a,b.

References

1. Valadi, J.; Siarry, P. Applications of Metaheuristics in Process Engineering; Springer International Publishing: Berlin/Heidelberg,

Germany, 2014; pp. 1–39. https://doi.org/10.1007/978-3-319-06508-3.

2. Faber, R.; Jockenhövelb, T.; Tsatsaronis, G. Dynamic optimization with simulated annealing. Comput. Chem. Eng. 2005, 29, 273–

290.

3. Onwubolu, G.; Babu, B.V. New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004.

4. Minzu, V.; Riahi, S.; Rusu, E. Optimal control of an ultraviolet water disinfection system. Appl. Sci. 2021, 11, 2638.

https://doi.org/10.3390/app11062638 .

5. Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A. Dynamic optimization of bioprocesses: Efficient and robust numerical

strategies. J. Biotechnol. 2005, 117, 407–419.

6. Talbi, E.G. Metaheuristics—From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-27858-1.

7. Siarry, P. Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-45403-0.

8. Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence—A Methodological Introduction, 2nd

ed.; Springer: Berlin/Heidelberg, Germany, 2016. https://doi.org/10.1007/978-1-7296-3.

9. Mayne, D.Q.; Michalska, H. Receding Horizon Control of Nonlinear Systems. IEEE Trans. Autom. Control. 1990, 35, 814–824.

10. Goggos, V.; King, R. Evolutionary predictive control. Comput. Chem. Eng. 1996, 20 (Suppl. S2), S817–S822.

11. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for arrival sequencing and scheduling. Eng. Appl.

Artif. Intell. 2005, 18, 633–642.

12. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for real-time implementations in dynamic

environments. In Proceedings of the 16th Triennial World Congress, Prague, Czech Republic, 4–8 July 2005; Elsevier IFAC

Publications: Amsterdam, The Netherlands, 2005.

13. Minzu, V.; Serbencu, A. Systematic procedure for optimal controller implementation using metaheuristic algorithms. Intell.

Autom. Soft Comput. 2020, 26, 663–677. https://doi.org/10.32604/iasc.2020.010101.

14. Chiang, P.-K.; Willems, P. Combine Evolutionary Optimization with Model Predictive Control in Real-time Flood Control of a

River System. Water Resour. Manag. 2015, 29, 2527–2542.

15. Minzu, V. Quasi-optimal character of metaheuristic-based algorithms used in closed-loop—Evaluation through simulation

series. In Proceedings of the ISEEE, Galati, Romania, 18–20 October 2019.

16. Abraham, A.; Jain, L.; Goldberg, R. Evolutionary Multiobjective Optimization—Theoretical Advances and Applications; Springer:

Berlin/Heidelberg, Germany, 2005; ISBN 1-85233-787-7.

17. Minzu, V. Optimal Control Implementation with Terminal Penalty Using Metaheuristic Algorithms. Automation 2020, 1, 48–65.

https://doi.org/10.3390/automation1010004.

18. Vlassis, N.; Littman, M.L.; Barber, D. On the computational complexity of stochastic controller optimization in POMDPs. ACM

Trans. Comput. Theory 2011, 4, 1–8. https://doi.org/10.1145/2382559.2382563.

19. de Campos, C.P.; Stamoulis, G.; Weyland, D. The computational complexity of Stochastic Optimization. In Combinatorial

Optimization; Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V., Eds.; ISCO. Lecture Notes in Computer Science; Springer:

Cham, Switzerland, 2014; Volume 8596. https://doi.org/10.1007/978-3-319-09174-7_15.

20. Sohail, M.S.; Saeed, M.O.; Rizvi, S.Z.; Shoaib, M.; Sheikh, A.U. Low-Complexity Particle Swarm Optimization for Time-Critical

Applications. arXiv 2014, https://doi.org/10.48550/arXiv.1401.0546.

21. Chopara, A.; Kaur, M. Analysis of Performance of Particle Swarm Optimization with Varied Inertia Weight Values for solving

Travelling Salesman Problem. Int. J. Hybrid Inf. Technol. 2016, 9, 165–172. http://dx.doi.org/10.14257/ijhit.2016.9.5.13.

Inventions 2023, 8, 9 24 of 24

22. Sethi, A.; Kataria, D. Analyzing Emergent Complexity in Particle Swarm Optimization using a Rolling Technique for Updating

Hyperparameter Coefficients. Procedia Comput. Sci. 2021, 193, 513–523. https://doi.org/10.1016/j.procs.2021.10.053

23. Minzu, V.; Ifrim, G.; Arama, I. Control of Microalgae Growth in Artificially Lighted Photobioreactors Using Metaheuristic-

Based Predictions. Sensors 2021, 21, 8065. https://doi.org/10.3390/s21238065.

24. Minzu, V.; Arama, I.; Optimal Control Systems Using Evolutionary Algorithm-Control Input Range Estimation. Automation

2022, 3, 95–115. https://doi.org/10.3390/automation3010005.

25. Minzu, V.; Riahi, S.; Rusu, E. Implementation aspects regarding closed-loop control systems using evolutionary algorithms.

Inventions 2021, 6, 53. https://doi.org/10.3390/inventions6030053.

26. Minzu, V.; Georgescu, L.; Rusu, E. Predictions Based on Evolutionary Algorithms Using Predefined Control Profiles. Electronics

2022, 11, 1682. https://doi.org/10.3390/electronics11111682.

27. Kennedy, J.; Eberhart, R.; Shi, Y. Swarm Intelligence; Morgan Kaufmann Academic Press: Cambridge, MA, USA, 2001.

28. Beheshti, Z.; Shamsuddin, S.M.; Hasan, S. Memetic binary particle swarm optimization for discrete optimization problems. Inf.

Sci. 2015, 299, 58–84.

29. Maurice, C. L’Optimisation par Essaims Particulaires-Versions Paramétriques et Adaptatives; Hermes Lavoisier: Paris, France,

2005.

30. Minzu, V.; Barbu, M.; Nichita, C. A Binary Hybrid Topology Particle Swarm Optimization Algorithm for Sewer Network

Discharge. In Proceedings of the 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile

Gradistei, Romania, 14–16 October 2015; pp. 627–634, ISBN 9781479984800.

31. Tebbani, S.; Titica, M.; Ifrim, G.; Caraman, S. Control of the Light-to-Microalgae Ratio in a Photobioreactor. In Proceedings of

the 18th International Conference on System Theory, Control and Computing, ICSTCC, Sinaia, Romania, 17–19 October 2014;

pp. 393–398.

32. Beheshti, Z.; Shamsuddin, S.M. Non-parametric particle swarm optimization for global optimization. Appl. Soft Comput. 2015,

28, 345–359, https://doi.org/10.1016/j.asoc.2014.12.015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury

to people or property resulting from any ideas, methods, instructions or products referred to in the content.

