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Abstract: The number of electric vehicles (EVs) is increasingly growing day by day and the charging 
infrastructure for covering this growing number of EVs should be developed. The construction of 
charging stations is one of the main solutions for supporting EVs while it costs huge investments 
for installation. Thus, this is not financially logical to invest in charging stations in remote areas with 
lower demands. An alternative way of constructing charging stations is to provide a peer-to-peer 
(P2P) energy exchange system in order to support out-of-charge EVs. In this paper, a private cloud-
edge emergency energy trading framework is proposed to facilitate energy exchange among con-
sumers and providers. Furthermore, a bidding system is suggested to encourage EVs with extra 
charges to exchange their energy. Moreover, a matching strategy for pairing consumers and provid-
ers is suggested in this paper that considers the benefit of both consumers and providers. In the 
proposed matching system, a measurement strategy is also suggested for considering the effect of 
the reliability and punctuality of the providers. To develop the accuracy and efficiency of the pro-
posed framework, employing deep learning methods is also suggested in different layers of the 
framework. The performance of the proposed framework is evaluated on several case studies in the 
presence of EVs with realistic features to prove its efficiency, feasibility, and scalability. 

Keywords: edge computing; electric vehicle energy exchange; emergency energy trading;  
Gale-shapely matching algorithm; P2P energy trading 
 

1. Introduction 
1.1. Background 

The transportation system has been one of the main sources of environmental pollu-
tion for years. By increasing the concerns about carbon dioxide emissions, greenhouse 
gases and environmental pollution caused by burning fossil fuels, the transportation in-
dustries are encouraged to develop electric vehicles (EVs). With clean charging sources, 
EVs can deeply decrease the environmental concerns related to burning fossil fuels [1]. 
On the other hand, by increasing the number of EVs in the urban and interurban trans-
portation system, providing charging stations would be a challenging issue. To construct 
a public charging station, in addition to costs for equipment, support from the main utility 
company is also needed. To bring electricity to the desired point, up to tens of thousands 
of millions of dollars is required to plan and install a 480-volt charging station [2]. Due to 
that, it is not financially logical to install stations in low-traffic areas. Alternatively, the 
vehicle-to-vehicle (V2V) energy trading system is suggested to fill this gap in charging 
stations as a subcategory of peer-to-peer (P2P) energy exchange. A P2P energy trading 
system is defined as the electricity exchange between end-users equipped with energy 
resources. However, V2V trading system is defined specifically for energy exchange be-
tween EVs. In a P2P energy exchange of EVs, EVs not only are considered as vehicles but 
also as moving energy storage units [3]. EVs directly exchange energy with each other 
using special connectors constructed by DC/DC converters [4]. Regarding information 
sharing among EVs, there are two main concepts as P2P-based and V2V-based 
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communication schemes. The V2V-based communication facilitates local communications 
and P2P-based communication with a wider coverage area can be utilized for vehicles that 
are far from each other [5]. 

1.2. Literature Review and Discussion 
Recent papers in V2V energy exchange have been published on presenting ways to 

facilitate P2P trading of EVs in two main research areas: (1) inventing fast and efficient 
power electronic-based connectors for V2V charging [6], (2) optimizing the way of match-
ing EVs that need energy (consumers) and EVs with extra charge in their storage (provid-
ers) in an area [7]. The focus of the paper is on the second area of research. The studies in 
this regard try to find the best answer to the following question: “Which provider should 
provide energy to which consumer and in which location?”. Technically, there are two 
infrastructure-dependent and infrastructure-free ways of charging demanding EVs. In in-
frastructure-dependent systems, it is assumed that the energy transfer is performed in 
pre-installed stations, i.e., grid-connected stations or swapping stations without connec-
tion to the grid. On the other hand, in infrastructure-free systems, EVs connect to each 
other using the DC/DC converters at any desired location [8]. 

In the review of recent articles in the presented research area, [9] suggests a P2P en-
ergy exchange system in which EVs not only provide energy to their peers but also behave 
as ancillary services to help the energy deficiency of the smart grid. The P2P price of en-
ergy in the paper is assumed to be as the time of use price of the grid and the transactions 
are assumed to be executed through smart contracts to save their reliability. In [10], mobile 
charging stations as ultracapacitors are suggested to be implemented in the system in two 
on-grid and off-grid modes. In this idea, the charging stations are special cars with the 
duty to charge the consumers. In [11], the Stackelberg algorithm is employed to match the 
consumers with providers by increasing the incentives considering the profit of consum-
ers, providers and the system. In [12], the Stackelberg and genetic algorithms are utilized 
to optimize the energy trading between smart grid and EVs. Authors in [13] use a non-
cooperative game method that takes into account the linked limitation to solve the park-
ing-lot EV charging scheduling problem. In [14], the Stackelberg game model is suggested 
to optimize the utility of consumers and providers by making a competitive environment. 
Furthermore, the security and privacy of transactions are assumed to be preserved by 
blockchain technology. In [15], a blockchain-based strategy is suggested to make the trans-
actions and authentication of vehicles in V2V trading reliable and safe. The Bayesian game 
approach is utilized in [16] for the optimization of social welfare for consumers and pro-
viders to trade with the utility or with each other. In [17], a V2V trading system is pro-
posed considering the quality of service for parties. In addition, smart contracts are also 
suggested for making the exchange operation more transparent and reliable. The sched-
uling problem of charging stations with EVs using the benders decomposition method is 
solved in [18] to minimize the social costs. 

By elaborating on the recent pieces of research, the common features of the studies 
and the research gaps can be summarized as follows: 
Research gap 1-There are a great number of studies on using blockchain technology to pro-

tect the reliability of transactions among EVs. However, there is not a comprehensive 
framework for energy exchange covering locating service, pricing and matching EVs. 

Research gap 2-There are a lot of studies trying to optimize the V2V exchange in a central-
ized manner that needs to disclose the private features of the EVs such as their battery 
state of charge (SoC), battery consumption rate and driving behaviors. However, 
these approaches do not protect the privacy of EVs. 

Research gap 3-Moreover, few studies are performed on maximizing the benefit of consum-
ers based on realistic features such as monetary time value for consumers, the driving 
behavior and punctuality of the optional providers. 
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Research gap 4-Most of the researchers strive toward maximizing the benefits of the con-
sumers and several researchers work on the benefit of both sides of the energy ex-
change and they consider a competitive game among parties to acquire the maximum 
welfare through a competitive environment. However, few researchers consider the 
pricing strategy based on the realistic benefit of the providers containing their vehicle 
features and the monetary value of time for them. 

1.3. Contributions and Paper Organization 
Based on the reviewed literature and existing research gaps, in this paper, a compre-

hensive framework based on cloud-edge architecture is designed for P2P emergency en-
ergy exchange for out-of-charge vehicles stopped in the middle of their way. The paper 
provides the following contributions: 
Contribution to fill gap 1: To fill the research gap in providing a comprehensive framework, 

a cloud-edge structure is tailored in this paper for the proposed P2P emergency en-
ergy trading system to match the providers and consumers in a fair behavior. This 
aim is reached in this paper by a matching game inspired by the stable Gale-Shapely 
matching strategy that resolves the equality assumption in stable matching. 

Contribution to fill gap 2: To have a framework that protects the EVs’ privacy, the proposed 
framework provides a communication system in which both consumers and provid-
ers keep the private features of their EVs such as energy consumption, driving be-
havior, and remaining electric charge safe from exchanging with other parties. 

Contribution to fill the gap 3: To have a more realistic trading system with realistic features, 
a reliability measurement unit is defined in this paper. Due to that, the reliability and 
punctuality of the providers are considered as a decisive role in their winning chance. 
In other words, providers who do not keep their promises in previous trades have a 
lower chance of winning the game. 

Contribution to fill the gap 4: The benefits of providers and the utility of consumers are 
considered in the matching algorithm simultaneously considering the realistic fea-
tures of providers’ vehicles. That means both consumers and providers are deciders 
in the proposed energy exchange game. The performance of the proposed framework 
is also evaluated on several case studies considering realistic car features to show its 
feasibility and scalability. 
The remainder of the paper is organized as follows: In Section 2, the problem state-

ment and the proposed methodology are presented. After that, the proposed cloud edge 
framework and the matching strategy are completely explained. Next, the simulation re-
sults and discussion are analyzed in Sections 3 and 4. Finally, the conclusion is described 
in Section 5. 

2. Materials and Methods 
The main aim of this paper is to propose a private P2P matching emergency trading 

system for those EVs that run out of charge in the middle of their way with no charging 
station close to them. This system would descend the burden on the huge government 
investments in the construction of charging stations in remote areas with less charging 
demands. The considered EVs in the paper can be from both types of battery EVs (BEVs) 
and plug-in EVs (PHEVs) however BEVs are more likely to join the trade. Since BEV con-
sumers are in danger of needing emergency charge since their only energy source is elec-
tricity in comparison with PHEVs with two energy resources (electricity and fuel). Fur-
thermore, as a provider vehicle to provide emergency energy, BEVs have the more proper 
capacity. However, if a PHEV has extra capacity and based on its features wins in the 
matching process, there is no other limitation for them. In the following, the abovemen-
tioned system is presented and formularized to match the most proper consumers and 
providers. 
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Take Figure 1 as an example that illustrates a schematic view of an imaginary system 
with several demandant EVs to purchase energy (consumers) and several EVs as volun-
teers to sell their extra charge (providers) on the Aarhus city Google Earth. It is assumed 
that consumers have run out of charge and stopped in their location with no charging 
station near them. This paper aims to design a model to match them with the most proper 
providers, considering the benefits to both consumers and providers. Both consumers and 
providers want to maximize their benefits in this system. In other words, consumers want 
to purchase energy at a low price during the lowest possible time. Furthermore, the pro-
viders prefer to sell their extra energy at the maximum price with the lowest degradation 
of their vehicle during the minimum possible time. 

Providers position

Consumers position

 
Figure 1. Location of imaginary consumers and providers on the Aarhus google map. 

To this aim, the next subsection describes all the objective functions and constraints 
related to the proposed problem. Next, a matching strategy is devised to solve the prob-
lem. Furthermore, a cloud-fog structure is also designed for the practicality of the pro-
posed system. 

2.1. Problem Statement 
The main goal of the matching system is to help EVs that need emergency energy 

(called consumers) in their location by other EVs with extra energy (called providers) con-
sidering the utility of both sides. Therefore, the proposed problem is a stable matching 
problem to obtain the best match of consumers and providers based on their utility func-
tion. We match the providers to the consumers considering their location, available time 
and energy exchange costs. Thus, the decision variables are binary that show whether a 
match is established between a consumer and provider (1) or not (0). Furthermore, several 
variables in types of equality and inequality should be calculated before the matching 
process as the initial values to be considered in the matching process. In the following, the 
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utility functions of the consumers and providers are explained. Next, the required con-
straints to be considered for the trade are presented. 

2.1.1. Utility Functions 
In the proposed framework, the utility functions of both consumers and providers 

are taken into consideration [19]. The consumer utility function is maximized by trying to 
maximize the reliability of the matched provider and minimize the delivery time and the 
total payable price for the requested energy. Thus, the utility function of the i-th consumer 
in trading with the j-th presenting provider can be formularized as follows: 

( )2
, ,(EV ) .C P exchange P P req

i j i j i i j i j iU r R T B Eλ= − +  (1)

which is a function of the provider’s features as follows: 

{ }min maxEV , , , , , , , , ,SoC ,SoC ,SoCP veh conv y P
j j j j j j j j j j j j jx R vα η η θ τ φ=  (2)

where .i jr R  is the reliability variable of the optional provider with a coefficient that spec-
ifies the importance of the provider’s punctuality for the consumer. Furthermore, 

,
exchange

i i jTλ presents the exchange operation time with the coefficient that demonstrates the 
monetary value of every unit of time for the intended consumer. The payable price is also 
calculated by multiplying the P2P bid by the amount of requested energy as 2

,
P P req
i j iB E . 

Since the second and third terms in (1) are tried to be decreased, they are appeared in the 
function with a minus sign before them while the first term is shown with a positive sign 
to show the consumer’s willingness to its increase [20]. 

The provider utility function is maximized by trying to maximize the received pay-
ment from the optional consumer and minimize the actual costs of the charging process 
for the provider [21]. The utility function of the j-th provider in trade with the i-th con-
sumer is presented as follows: 

( )2
, , , , ,(EV )P C P P req delivery trans exchange

j i i j i i j i j i j j i jU B E C C C Tφ λ= − + + +
 (3) 

which is a function of the consumer-related variables as follows: 

{ }EV ,C req
i i iE x=  (4) 

The payment that the provider acquires is shown by 2
,
P P req
i j iB E  that appears with a 

positive sign because the provider intends it to be increased. However, due to the willing-
ness of the consumer to minimize the cost of energy that the provider needs to travel to 
the consumer ( ,

delivery
i jC ), energy transmission cost ( ,

trans
i jC ), the battery degradation cost (

,i jCφ ), and the monetary value of the whole exchange process time (including delivery and 
energy exchange time) for the provider ( ,

exchange
j i jTλ ), these amounts are shown by the neg-

ative sign in the provider utility function in summation of. 

2.1.2. Inequality Constraints 
The j-th provider needs to have a minimum amount of energy as ,min

, ,E P
i j t  in its battery 

to be able to attend to the trade with the i-th consumer. The amount of the stored energy 
in the provider’s battery ( P

jE ) must be more than this minimum amount, as follows [22]: 

,min
,E P P
i j jE≤  (5)

To calculate ,min
, ,E P
i j t , we should consider the nominal minimum ( ,minE P

j ) battery 
charge of the provider’s EV, the required energy of the provider to travel to the optional 
consumer location ( ,

delivery
i jE ), transmitted energy ( ,

trans
i jE ) to charge the consumer battery in 

the amount of the consumer requested energy and the extra energy that the provider want 
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to remain in its battery (other than the nominal minimum) after the process. The extra 
remaining energy is assumed to be obtained in two ways in this paper. One is to obtain it 
by a predefined percentage of the maximum battery capacity as .j jCapγ . The other is to 
calculate it based on the required energy to travel to the second destination (k) after the 
energy exchange process. The following equations present the mentioned ways to calcu-
late ,min

, ,E P
i j t : 

,min ,min
, , ,

,min ,min
, , , ,

E E .

E E

P P delivery trans
i j j i j i j j j

P P delivery trans delivery
i j j i j i j i k

E E Cap
or

E E E

γ= + + +

= + + +
 (6)

The maximum capacity of EV batteries decreases from the nominal capacity n
jCap  

over time. The current capacity of an EV is obtained as follows [6]: 

( )
0

LF
n y

j j j j j
y

Cap Cap θ τ φ
=

= − +  (7)

in which jθ  is the number of the operating cycles of the EV’s battery, jτ  is a constant 
coefficient, LF is the lifetime of the battery (in years) and y

jφ  indicates the yearly capacity 
degradation independent from the operating cycles. This formula shows the capacity of 
the provider’s battery at a particular time (the time of energy exchange). That is calculated 
based on the degradation indices including the number of operating cycles (charges and 
discharges) that is calculated based on the average utilization of the battery in a year and 
the degradation caused by the battery age after the manufacturing date. In other words, 
the total degradation of the capacity of the providers’ battery is calculated based on the 
summation of the battery degradation in each year of battery lifespan after its manufac-
turing date until the time of energy exchange based on usage and aging degradation fac-
tors. 

Another constraint that is considered in the proposed exchange problem is the avail-
able time of the providers ( max

jT ). In other words, the time length of energy exchange must 
not exceed the provider’s time limit, as is demonstrated as follows [23]: 

max
,
exchange
i j jT T≤  (8)

The exchange process length of time simply can be obtained using the distance be-
tween the optional match of the consumer and provider ( ,i jD ), the average velocity of the 
provider to travel the distance ( P

jv ) and the required time to transmit the requested energy 
to the provider which is obtained based on the velocity of transmission per energy unit (

,i jω ) and the transmission efficiency ( trans
jη ). Hence, the total energy exchange time is ob-

tained as follows [22]:  

, ,
,

req
i j i j iexchange

i j P trans
j j

D E
T

v
ω
η

= +  (9)

However, the authors suggest a deep learning-based method in which providers cal-
culate the exchange time based on the elaborated factors as follows: the driving behavior 
of the provider, the type of the streets toward the destination, and the weather. 

2.1.3. Bidding 
The price of the P2P energy exchange should be in a way that the provider would be 

encouraged to attend the exchange program. To this aim, in this paper, a share of the total 
price would be considered as the pure benefit for the provider as a reward called the per-
centage of benefit as jα . Furthermore, the bidding price of P2P trading is offered based 
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on the total exchange cost plus a percentage of benefit as calculated in (10). That means, 
the provider sells energy to the consumer with the energy price calculated by summation 
of the total cost of exchange (summation of the cost of traveling of the provider toward 
the consumer ( ,

delivery
i jC ), the transmission cost of the requested energy by the consumer (

,
trans
i jC ) and the battery degradation cost ( ,i jCφ ) and a benefit calculated by a percentage of 

the total cost of exchange, per each unit of exchanged energy. Thus, the P2P energy price 
and the pure benefit of the provider for the pair of the i-th consumer and the j-th provider 
is obtained as follows: 

( )( )2
, , , ,1 /P P delivery trans req
i j j i j i j i j iB C C C Eφα= + + +  (10)

( ), , ,
P delivery trans
ij j i j i j i jPB C C Cφα= + +  (11)

2.1.4. Exchange Costs for the Provider 
The cost of traveling is determined based on the following factors: the provider’s car 

model, the driving behavior of the driver, the distance between the consumer and pro-
vider, and the weather. Simply, the traveling energy and the related cost can be modeled 
as follows [22]: 

, , /delivery veh
i j i j jE D η=  (12)

, ,.delivery delivery
i j i jC B E=  (13)

However, we suggest a deep learning-based approach to predict ,
delivery
i jE  for each 

provider with the input factors mentioned above as an interesting area for future work. 
The transmission energy to provide the requested energy for the consumer is deter-

mined based on the efficiency of the connector that performs the exchange operation. 
Thus, the transmission energy and the related cost are obtained as follows: 

,

req
trans i
i j conv

E
E

η
=  (14)

, .
req

trans i
i j trans

j

E
C B

η
=  (15)

The cost of the provider’s battery degradation to attend the exchange with the i-th 
consumer is calculated based on the battery replacement cost (as σ , containing the capital 
cost to replace the battery plus the labor costs) and the coefficient of battery capacity deg-
radation (ϕ ), as follows: 

, . . req
i j iC Eφ σ ϕ=  (16)

2.1.5. Reliability 
In this paper, the reliability of a provider is defined as a factor that is specified based 

on the precedent history of the provider in attending the previous exchanges. This factor 
is calculated based on the punctuality of the provider after winning an exchange. If the 
provider appears in the meeting after winning, the variable l  would be set to 1 and one 
point be added to its reliability factor. Otherwise, the variable l  is 0 and the reliability 
factor loses two points. Furthermore, in this paper, we assumed the importance of being 
on time for the meeting. In other words,  to the extent that the provider meets the con-
sumer sooner or later in comparison with the promised exchange time, the reliability fac-
tor increased or decreased by a constant coefficient ( β ). The reliability factor for the next 
time interval is updated after the exchange operation as follows: 
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,1 ( ) 1

2 0

exchange real
j i j

j
j

R T T if l
R

R if l

β + + − =←⎯⎯ 
− =

 (17)

Another factor worth considering in a P2P trade of EVs is the reliability of the trans-
actions. To this aim in [24], authors define innovative transactive control frameworks for 
energy communities with independent energy storage systems that facilitate energy stor-
age sharing in a reliable manner. They offer algorithms based on a game theoretical con-
trol formulation that determine the best time to allocate the energy activities of a group of 
prosumers, who were defined by their own demand and renewable generation, and a 
group of energy storage service providers, who were able to store the surplus energy pro-
duced by the prosumers and release it after receiving payment. 

2.2. The Proposed Cloud-Edge Framework 
A private cloud-edge computing framework is designed in this paper, to efficiently 

solve the P2P energy trading problem. In this section, we propose a matching system to 
match the providers with the minimum possible consumption cost for providers and the 
lowest energy price for the consumers at the most efficient timespan that tries to increase 
the pure benefit for the provider, simultaneously. Next, a cloud-edge architecture is de-
signed based on the proposed matching strategy as a private infrastructure to make the 
proposed strategy feasible to be practically implemented. The proposed matching algo-
rithm supported by the particular cloud-edge architecture would design a feasible frame-
work for a private energy trading system. In the suggested framework, providers and 
consumers are determiners of their exchange while keeping the particular features of their 
EVs and driving behaviors private. Furthermore, the providers in the proposed system 
have the right to specify their benefits based on their situation. A supervisory unit is also 
devised to determine the reliability of the EVs and the system’s security. Figure 2 illus-
trates a general view of the proposed cloud-edge P2P energy exchange system. 
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ConsumersProviders

Maybe
Propose

Location

Reliability
Supervisory

Communication

 
Figure 2. A schematic view of the proposed cloud-edge emergency energy trading framework. 

2.2.1. Matching Consumers to Providers 
In general, we have two sets of EVs, i.e., consumers and providers that want to max-

imize their own benefits in the energy exchange system. To match the consumers with the 
optimal providers considering the benefit of providers, the proposed matching strategy 
inspired by the Gale-Shapely algorithm is presented after an introduction to the Gale-
Shapely method. 
(a) Gale-Shapely algorithm 

The Gale-Shapley algorithm is an efficient algorithm that is devised to solve match-
ing problems stably. To elaborate on stable matching, the stable marriage problem is a 
common example. Take two sets of people as an example. The first set contains N females 
and the second set contains N males. Each member in the group has a list of preferences 
to be paired with the other group. The aim is to match these men and women based on 
their preferences somehow there is no other pair where both participants prefer each other 
as their partners (stable matching) [25]. David Gale and Lloyd Shapley proved that, for an 
equal number of males and females, it always exists a stable solution to pair them stably 
[26]. The Gale-Shapely algorithm is as follows: 

In the first round, every man proposes to the woman at the first rank on his prefer-
ence list. Next each woman replies ‘Maybe’ to the most preferable suitor based on her 
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predefined list and ‘Reject’ the other suitors. Now, she is temporarily engaged with the 
suitor she preferred. 

In each following round, each unengaged man proposes to the first woman on his 
list to whom he is not yet proposed regardless of the engagement status of the woman. 
Afterward, each woman replies ‘Maybe’ to the most-preferable man among all suitors and 
his probable partner. If the woman prefers a suitor over her current partner, she is en-
gaged with the new preferred suitor and ‘Reject’ his partner who will be unengaged then. 
This round is repeated until everyone is engaged. 
(b) The proposed matching strategy 

In the proposed energy exchange problem, we have unequal sets of consumers and 
providers to optimally match utilizing the extended version of Gale-Shapely. Each mem-
ber has its own preference list based on its utility function calculated by the imaginary 
trade with members of the other group. In this paper, to have a fair matching strategy for 
both consumers and providers with unequal numbers we try to consider the benefit of 
both consumers and providers. The stable Gale-Shapely algorithm is for problems with 
an equal number of participants in both sets. However, this assumption is not rational in 
the proposed system. 

To establish justice among providers and consumers, the bidding right is conferred 
to providers, and the right to propose using the extended Gale-Shapely strategy and ac-
quire a more-optimal partner is given to the consumers, in return. Thus, in this matching 
strategy, the consumers behave similar to the suitors in the stable marriage example men-
tioned above who propose to their preferred providers based on their utility function. 
Next the providers provisionally engage with the best proposers based on their utility 
function. The proposal rounds are repeated until all the members of either consumers or 
providers find their pairs. 

2.2.2. Cloud Layer 
To facilitate the implementation of the proposed matching program, a two-layer ar-

chitecture based on cloud and edge computing is designed and tailored for the proposed 
exchange system. The cloud layer is the upper layer using cloud computing technology 
that brings remote computing and storage resources for users who are distributed in dif-
ferent locations [27]. Several duties are assigned to the cloud layer in the proposed frame-
work which is illustrated in a flowchart in Figure 3 and described as follows: 

Supervisory and Security 
The cloud layer is responsible for supervising the functionality of the system and 

conserving its security. This layer is in charge of identity recognition of the participating 
providers and consumers to preserve the system and participants safe from malicious at-
tacks. Furthermore, financial transactions are performed under the control of this layer for 
their safety. Moreover, the responsibilities of making and enforcing rules and regulations 
are all allocated to the cloud layer. 

Reliability Updating System 
As mentioned in subsection 2.1.5, the reliability of the providers should be deter-

mined using (17). That means a supervisory utility should observe the functionality of the 
providers in order to determine and render them to the consumer that is assigned to the 
cloud layer as well. 

Locating Service 
In order to have more optimal routing, timing and energy consumption results, the 

locating service system is devised to be performed in the cloud layer containing position-
ing of the participants, weather prediction, i.e., wind speed and raining status, street traf-
fic and slide modeling, and driving rules in different streets. This information is provided 
in the cloud layer for a better decision-making process for consumers and providers. 
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Communication Interface 
A telecommunication bridge is assumed to be constructed between consumers and 

providers using cloud computing. That means, after the identity recognition of consumers 
and providers, the cloud layer makes an interface between these two groups by connect-
ing the confirmed ones. 

2.2.3. Deep Learning-Enabled Edge Layer for Providers 
The edge layer using the edge technology brings computing and storage sources 

close to the application [28]. That helps the proposed system to be more private. Since the 
calculation needs private features of EVs as inputs are assumed to be privately calculated 
in the edge layer by each participant. Here, two different edge layers are described for 
providers and consumers that are suggested to be equipped with deep learning algo-
rithms to higher their functionality. 

Routing 
Routing is one of the main duties of the providers’ edge layer. Finding the most 

proper route to meet the consumer is executed on the individual provider’s edge using 
the gathered data from the cloud locating service of the cloud layer and is suggested to be 
performed by deep learning methods. 

Timing 
Providers timing to travel toward the consumers is a determinative factor in the cal-

culation of utility functions. This factor also affects the reliability of providers due to their 
punctuality at meeting times. This timing is assumed to be calculated based on the locat-
ing service data gathered from the cloud layer and is suggested to be calculated based on 
the behavior of the driver and the type of his EV. 

Energy Consumption 
The energy consumption of an EV per distance depends on several factors such as 

the EV model, speed of driving, weather situation and wind speed, and slope of the ways. 
The energy consumption can be estimated based on the precedent data of the EV using 
deep learning algorithms. In the edge layer, the energy consumption prediction is calcu-
lated for determining the consumption used for traveling to the consumer or to specify 
the required energy to drive toward the third destination after the exchange operation. 

Bidding and Preference List 
Finally, to calculate the utility function and provide bidding for each consumer using 

(10), the edge layer performs the related computation using the information of the con-
sumers’ location and their requested energy which are gathered by the infrastructure that 
the cloud layer provides for participants’ communication. After bidding, the providers set 
their preference list based on the gained utility. 

Communication with the Other Layers 
Each provider needs information about other consumers and the locating service in-

formation of the cloud layer. Thus, its edge communicates with the cloud layer and con-
sumers’ edge to acquire this non-sensitive information conserving the privacy of all the 
participants. 
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Figure 3. A flowchart of the proposed cloud-edge emergency energy trading framework. 

2.2.4. Deep Learning-Enabled Edge Layer for Consumers 
Consumers also are assumed to have their individual edge layers to perform their 

calculations privately near their location. The responsibilities of the consumers’ edge layer 
are as follows: 

Energy Consumption 
Each consumer needs to calculate the required energy to continue their way to the 

new destination. This consumption is suggested to be performed by having the infor-
mation of the EV and the desired route features by having the cloud locating service using 
the deep learning method in the consumers’ edge layer. 

Preference List 
Calculating the consumers’ utility to set a preference list by having the timing, bid-

ding, and reliability factor of the providers is also operated in the edge layer. 

Communication with the Other Layers 
To have the global features of the providers and location service of the cloud layer, 

the consumer communicates with the providers’ edge and the main cloud layer through 
its edge layer. 



Inventions 2023, 8, 27 13 of 20 
 

3. Results 
The performance of the proposed cloud-edge energy exchange framework is evalu-

ated using MATLAB simulation. The simulation is firstly performed on a toy example to 
show the stages of the work, winning and losing participants’ benefits and bids, and the 
effect of the reliability variable on the output matching rounds and pairs. Next, the per-
formance of the proposed work is examined on a larger scale to observe the scalability of 
the framework. The toy example contains a system shown in Figure 1 with three consum-
ers and eight providers. Their locations are randomly selected in a special area on the 
Aarhus map. 

The features of the EVs are gathered from realistic cars which are listed in Tables 1 
and 2 in addition to other related initial data for consumers and providers separately. It is 
noteworthy that the requested energy of the consumer, the current energy of the provider, 
and the provider’s minimum needed energy are calculated as .req req

i i iE SoC Cap= , 

E SoC .j j jCap=  and min minE SoC .j j jCap= . Furthermore, the bid of each kWh ( tB ) energy 
in common charging stations is assumed to be the average electricity price of the unites 
states 10.42 ¢/kWh, and the other initial values are gathered from [22] as ,i jω  = 0.025, ϕ  
= 0.27%, and conv

jη  = 2.7%. 

Table 1. Consumers initial data. 

EV Model iλ  
$/h 

req
iSoC  

% 
iCap  

kWh 

Opel Corsa-e 10 7 50 
Renault Zeo R110 12 5 52 
Volkswagon e-UP 15 10 36.8 

Table 2. Providers initial data. 

EV Model 

veh
jη  

kWh/ 
km 

σ  
$/kwh 

SoC j  
% 

minSoC j  
% 

jR  α  
% 

jλ  
$/h 

jCap

kWh 

Audi e-tron 4.167 150 57 5 10 40 11 95 
BMW i3 2018 5.55 145 47 18 8 45 12 42.2 
Chevrolet Bolt 5.55 271 52 5 0 25 10 65 
Tesla Model X 75 4.35 137 34 17 5 50 10 75 
VW e-Golf 2017 5.55 654 25 11 1 50 15 35.8 
VW e-Golf 2020 5.55 137 79 20 6 35 11 35.8 
Tesla Model X 90 4.35 135 31 5 −2 45 13 90 
Nissan Leaf 2018 0.19 187 53 9 5 25 14 40 

In the first case study, the reliability coefficient r is assumed to be fixed on 1. The 
order of the proposals and answers for this case can be observed in Figure 4. First, con-
sumers send their location, the monetary value of time for them and requested energy to 
the cloud. Providers send their location and monetary value of time for them to the cloud 
as well. Cloud also identifies the reliability of the providers based on their precedent ex-
changes. After the identity recognition process, the cloud layer shares the data of two sets 
with private edges of the other sets. Having this data, provider edges compute the P2P 
bid, required timing, and their utility for each consumer and send them into the cloud. 
Next, the cloud layer based on these non-private and non-sensitive data runs the matching 
algorithm to find the best matches in two rounds as is illustrated in Figure 4. In the first 
round, consumer1 and 3 send their proposal to their best optional match which is provider 
6 and consumer 2 proposes to provider 1. Thus, provider 1 engaged with its only proposer 
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and provider 6 choose its best optional consumer which is consumer 3. Next, the only 
unengaged consumer proposes to provider 8 which is currently unengaged too. Now, all 
the consumers are engaged and the pairs are defined by the cloud. 
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Figure 4. Matching steps in the proposed simulation system. 

The final results are shared with the winners’ edges for the exchange operation. Op-
tional consumers’ and providers’ benefits in trade with each other are demonstrated in 
Figures 5 and 6, respectively. By elaborating on these figures, we can conclude that the 
proposed matching system tries to maximize the consumers’ benefit. This is fair for both 
sides of the game in the proposed work since the providers also predefined their percent-
age of benefit for participating in the game as a privilege to providers. Furthermore, in the 
situation of confronting two or several consumers to match with one provider, the pro-
vider is the final decider of the game. The consumers’ payable bids calculated by provid-
ers’ edge are also shown for different consumers in Figure 7. 

−− − − −
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−−−−−−−

− − − − − − −
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Figure 5. Heatmap and scatter plots of consumers benefits from trade with various providers. 
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Figure 6. Heatmap and scatter plots of Providers benefits from trade with various consumers. 
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Figure 7. Heatmap and scatter plots of consumers payable bids in trade with various providers. 

Now, to evaluate the effect of reliability on the results, the reliability coefficient is 
increased from one to 100, one by one. The results of matching and the required rounds 
to acquire these results can be observed in Table 3. As can be observed, the reliability of 
the EVs and their coefficient can have an essential impact on the final matches and even 
the number of required rounds. 

Table 3. Required rounds and winning providers using the proposed strategy calculated with dif-
ferent reliability coefficients. 

r Rounds Winning Providers in Trade 
with (C1, C2, C3) 

1 ≤ r ≤6 2 8, 1, 6 
7 ≤ r ≤ 11 4 1, 2, 6 
12 ≤ r ≤ 13 3 1, 2, 6 
13 ≤ r ≤ 17 3 6, 2, 1 
18 ≤ r ≤ 53 2 6, 2, 1 

54 ≤ r ≤ 100 3 2, 6, 1 

To evaluate the scalability, the proposed example is extended for different numbers 
of providers and consumers. In Table 4, the average number of required rounds to acquire 
the final matches are listed. In the table, the first two rows are dedicated to the situations 
in which the number of providers (Np) is more than the number of consumers (Nc) and the 
second two rows are vice versa. The table shows that the convergence will happen even 
with a large number of participants in the limited but scale-related number of rounds. 
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Table 4. Required rounds of running the proposed method with different numbers of providers and 
consumers as (Np, Nc). 

(Np, Nc) (200, 10) (200, 50) (200, 100) (200, 150) (350, 200) 
Average required rounds 3.31 21.58 61.12 160.97 135.44 

(Np, Nc) (10, 200) (50, 200) (100, 200) (150, 200) (200, 350) 
Average required rounds 2.33 20.29 52.54 134.26 114.24 

4. Discussion 
The main problem of the paper is to match EVs with extra charge to consumers with 

emergency energy requirements in their location. A matching strategy in a cloud-fog ar-
chitecture is proposed in this paper that considers both consumer’s and provider’s utility. 
In this scheme, the effect of the reliability of the providers in their previous trades is also 
considered. The parties’ privacy is protected in the suggested framework. This means 
thanks to the cloud-fog architecture, both customers and suppliers maintain their EVs’ 
private characteristics, such as their energy usage, driving style, and remaining electric 
charge, hidden from the other EVs. To evaluate the proposed framework, several numer-
ical examinations were performed. First, the performance of the method on a toy example 
is evaluated. The results demonstrate that the suggested matching system aims to max-
imize the benefit to the consumers. This is appropriate for the planned task because the 
suppliers also agreed to a predetermined percentage of benefit as a privilege for partici-
pating in the game. In addition, the provider is the ultimate decider of the game when two 
or more consumers are pitted against one supplier. After that, the effect of the reliability 
index on the final results is evaluated by changing the value of the reliability coefficient. 
The outcome demonstrates that this index directly influences the final winners in the sys-
tem. This can help the more reliable providers with more punctuality have a better chance 
to win in the trades. This fact helps us to have a more reliable trading system that encour-
ages providers to be more punctual and responsible. Next, the performance of the pro-
posed framework on larger scales is analyzed. The data indicate that even with a large 
number of participants in the limited yet scale-related rounds, convergence will occur. 

Several areas for future improvement of the manuscript can be as follows: The per-
formance of the proposed framework can be improved by working on the scalability of 
the matching strategy somehow the required round of convergence become irrelated to 
the scale of the number of participants. Furthermore, recharging costs after the trade for 
the providers can also be considered in future related works. Furthermore, the transac-
tions settlement of the P2P trades would be a future research area to amend the practical 
aspect of the trading system. 

5. Conclusions 
In this paper, a cloud-edge framework for a fair P2P emergency energy trading sys-

tem is proposed. The proposed framework considers the reliability of providers and their 
punctuality based on the precedents that the cloud layer defines. It conserves the privacy 
of participants from the disclosure of their private features such as their EV battery con-
sumption, their current battery charge, etc. using a private edge layer. Furthermore, the 
proposed framework makes a fair exchange environment to exchange energy that consid-
ers the utility of both consumers and providers at the same time. The proposed framework 
functionality is examined in several case studies. The privacy of the parties remained safe 
from disclosure using the suggested cloud-edge structure through the simulation. Fur-
thermore, it is observed that by changing the coefficient of reliability, a clear change oc-
curred in the final winners. In addition, by increasing the number of participants, the 
number of required rounds increases but the convergence occurs in limited rounds. In 
conclusion, the simulation results prove the privacy-preserving, reliability-conserving, 
and scalable nature of the proposed matching framework. Furthermore, the framework 
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performance is suggested to be developed using deep learning algorithms in various men-
tioned layers of the system. 
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Nomenclature 
Indices  

EVC
i  Set of the consumer-related variables of the i-th consumer 

EV P
j  Set of the provider-related features of the j-th provider 

i Index for the consumers 
j Index for the providers 
Parameters  

jα  Percentage of benefit for the j-th provider 

β  Punctuality factor 

B  Utility price of one kWh of energy (¢/kWh) 

/i jCap Cap  Current battery capacity of the i/j-th consumer/provider (kWh) 

n
jCap  Nominal battery capacity of the j-th provider (kWh) 

req
iE  Amount of the requested energy of the i-th consumer (kW) 

trans
jη  Transmission efficiency of the stored energy to electricity for the j-th 

provider (h/kWh) 
veh
jη  Vehicle efficiency (km/kWh) 

jθ  Number of operating cycles of the j-th provider’s battery 

LF Battery lifetime (years) 
max
jT  Maximum time that the j-th provider can be available for exchange (h) 

jτ  Coefficient of battery capacity (kWh/cycle) 

σ  Cost of battery replacement ($/kWh) 
y
jφ  Yearly capacity degradation (kWh) 

,i jλ λ  The monetary value of time for the i-th/j-th consumer/provider($/h) 

,i jω  The velocity of energy transmission per energy unit (h/kWh) 

Variables  
2

,
P P
i jB  Price of the P2P exchanging of one kWh energy between the i-th and j-
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th EVs (¢/kWh) 

,
delivery
i jC  

Cost of energy that the j-th provider consumed to meet the i-th con-
sumer ($) 

,
trans
i jC  

Cost of transmission of energy exchanged between the i-th and j-th 
EVs ($) 

,i jCφ

 
Cost of battery degradation for exchanging energy between the i-th 
and j-th EVs ($) 

,i jD  Distance between the i-th and j-th EVs (km) 

,
delivery
i jE  

The required energy for the j-th provider to drive towards the i-th con-
sumer ($) 

,
delivery
i kE  The required energy for the j-th provider to drive towards its desired 

destination after the energy exchange (kWh) 
P
jE  The current stored energy in the j-th provider’s battery (kWh) 

,min
,EP
i j  Minimum battery charge that the j-th provider must have to trade with 

the i-th consumer (kWh) 
,minEP
j  Minimum nominal battery charge of the j-th provider (kWh) 

req
iE  Amount of the requested energy of the i-th consumer (kWh) 

,
trans
i jE  Amount of the calculated transmission energy (kWh) 

jγ  The amount SoC of that the j-th provider needs to remain after the en-
ergy trade 

l  

Reliability variable of the j-th provider (0 when the winner does not 
provider appear at the meeting point after winning and 1 for the ap-
peared winners) 

P
ijPB  

Pure profit of the j-th provider for the P2P trade with the i-th consumer 
($) 

ir  Value of the provider reliability for the consumer ($) 

jR  Reliability of the j-th provider  

minSoC j  Minimum SoC of the j-th provider (%) 

SoCreq
i  Required SoC of the i-th consumer (kWh) 

SoC j  SoC of the j-th provider (%) 

,
exchange
i jT  The whole operating time of the P2P energy exchange including relo-

cating and energy exchange (h) 

realT  
Delivery time really occurred after matching a provider and a con-
sumer (h) 

C
iU  The total utility function of the i-th consumer ($) 

P
jU  The total utility function of the j-th provider ($) 

P
jv  The velocity of the j-th provider to meet the consumer (km/h) 

,i jx x  Location of the i-th/j-th EV 
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