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Abstract: Active magnetic bearings (AMBs) are electromagnetic mechanism systems in which non-
contact bearings support a rotating shaft using attractive forces generated by electromagnets through
closed-loop control. For complete support of a five degree of freedom (DOF) rotor system, most
AMB structures include two radial actuators and one for the axial direction. Conical active magnetic
bearings (CAMBs) is one of the development directions of conventional magnetic bearings in which
the requirement of the axial bearing can be eliminated. In this paper, we propose a structure
with a CAMB integrated into a canned motor pump to eliminate the need for mechanical bearings
and shaft seals. However, this system necessitates a more complicated control strategy due to
a significant coupling effect between rotor motion and hydrodynamic disturbances. This paper
presents a fractional order active disturbance rejection control (FOADRC) including a fractional
order extend state observer (FOESO) and a proportional derivative controller (PD) to track and
reject lumped disturbances actively. The proposed controller achieves better performance than the
integer-type ADRC and traditional PID controller. The control performance of the proposed FOADRC
is illustrated in terms of very good disturbance rejection capability that is demonstrated through
MATLAB/Simulink simulation results.

Keywords: conical active magnetic bearing; active disturbance reject control; fractional calculus;
extended state observer; canned motor pump

1. Introduction

Active magnetic bearings (AMBs) have gained popularity in recent decades. They are
necessary to suspend shafts that can spin at high speeds without mechanical contact or
lubrication [1–3]. AMBs are currently employed globally in a variety of industrial, space,
and laboratory applications such as turbo compressors, vacuum pumps, and flywheel
energy storage systems [4,5]. The widespread adoption of this technology is primarily due
to its numerous advantages over traditional bearing technology [6]. Pumps are typically
manufactured in industries with the pump and motor located separately, and the liquid they
handle can leak out of the pump casing and cause electrical isolation issues. To alleviate
some of the problems associated with traditional pumps, canned motor pumps employ a
structure that integrates a pump and motor, while sealing the liquid inside. This pump
utilizes AMBs to eliminate the need for mechanical bearings and shaft seals, which have a
short life expectancy for some processes [7]. For pumps operating in extreme environments
pumping harsh chemicals or pumps that need to maintain high purity of the pumped fluid,
the elimination of seals, bearings, and lubrication is particularly desirable. The design
and construction of a 15 kW canned motor pump with magnetic bearings, including two
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single-acting thrust bearings to support the pump rotor and 8-pole radial magnetic bearings,
was described by Allaire in [8]. Some similar projects with greater power were reported in
the following years [9,10].

The present trend in AMBs focuses on the development of various geometrical bearing
designs to save axial space for mounting additional mechanical components such as gear-
boxes. A potential development path is to use a conical shape for active magnetic bearings
(CAMBs). The structure of CAMBs allows exerting forces in both the axial and radial
directions simultaneously, which saves one couple of electromagnets and hence reduces
the size. However, the CAMB design is more complex than a standard cylindrical solution,
particularly during the control design phase [11,12]. Furthermore, the geometry of CAMBs
allows for higher spin speeds in cylindrical solutions that are limited by strains growing
in an axial-bearing disc. Nonetheless, CAMB highlights two coupling properties: current-
coupled and geometry-coupled effects [13], making dynamic modelling and control of these
frameworks especially troublesome. In addition, the nonlinear nature of the dynamics,
small natural damping in the process, the strict positioning specifications often required by
the application, and the unstable open-loop system dynamics make the controller design for
the CAMB system a challenging task. In most cases, a proportional-integral-derivative (PID)
controller is chosen due to its simplicity and intuitiveness in the tuning of the controller
parameters. However, there are times when a conventional PID controller is unable to meet
the industry performance standards for CAMB systems. Many previous researchers have
proposed some control methods of a CAMB. Lee and Jeong [12] used optimal control based
on the linearized dynamic model that included the linkages between the input voltage and
output current in the conical magnet coil, but the geometry-coupled effects were omitted.
The conical magnetic bearing was described by Mohamed and Emad [11] in the state
variable form, and a controller was designed using Q-parameterization to simulate the
controlled system. In [14], Huang developed the T-S fuzzy modelling and control for the
general six-DOF conical magnetic bearings. The parallel distributed compensation is then
adopted for synthesizing a stable fuzzy control for a high-speed and high-accuracy control
CAMB. Based on the estimate of external disturbances, offset-free model predictive control
(OF-MPC) was used in [15] to effectively handle coil current saturation. Because OF-MPC
handles the coupling of rotational and axial control actions and the effects of low axial force
generation, it is well suited to CAMB systems. Although these control methods result in
good control performance, the nonlinear characteristics are still not completely considered.

In this paper, a coupled dynamic model of a canned rotor pump that incorporates
hydrodynamics, rotor dynamics, and electromagnetic bearings dynamics was developed
(refer to Figure 1). A new control strategy based on fractional order active disturbance rejec-
tion control (ADRC) was proposed to stabilize this model. The principle of ADRC is to treat
recompense unpredictable disturbances and model uncertainties as lumped disturbances
and rejects them actively [16,17]. ADRC is an effective and practical algorithm with strong
robust and dynamic characteristics, although it does not require a precise model of the
controlled object. However, applications of ADRC in the industrial fields were still limited
due to the complexity of the structure and the difficulty of tuning parameters, until the
linear ADRC (LADRC) was proposed in [18]. In recent years, increasing attention has been
placed on improving the outcomes of LADRC regulators through the application of the
concept of fractional calculus [19,20], which has been generalized as fractional order active
disturbance rejection control. Integer-order controllers are used in different applications
such as roll-to-roll [21,22], automotive [23,24], motors [25,26], robots [27,28], and so on.
Since fractional-order calculus was created, it has been widely used in different fields of sci-
ence. Researchers have found that fractional order controllers have the potential to provide
higher and more robust control performance than the integer-order controller [29], which
has made them particularly significant and fascinating in the field of control engineering.
Many fractional-order controllers have been proposed, including fractional-order sliding
mode controller [30,31], fractional-order PID controller [32,33], fractional-order intelligent
PID controller [34], and so on. A FOADRC controller was first recommended for linear
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commensurate linear fractional order systems (FOS) in [35], which combined a fractional
order proportional derivative (FOPD) controller and fractional order extend state observer
to enhance the control performance. However, the orders of FOPD and FOESO must corre-
spond to the order of the FOS by rigorous conditions of the proposed FOADRC. In [36], the
author used a FOPD controller based on ESO to control a single flexible link manipulator,
but the parameters tuning rule was not presented. A strategy combined with the FOESO
and a simple proportional controller was proposed in [37] with a tuning approach based on
frequency–domain specifications, which is difficult for industrial applications with accurate
mathematical descriptions that are usually not available. This structure is applied in [38,39]
for systems that have a relatively slow response and is not suitable for models that need a
fast response, such as AMBs.

In order to solve these problems, this paper proposes a FOADRC combining PD con-
troller based on FOESO for the integer order system to enhance the transient response of
the closed-loop system [40] and recommends a simple parameter tuning method, which is
crucial for industrial applications. The main contributions in this paper can be stated as fol-
lows: (1) proposed integration of the conical active magnetic bearing into the canned motor
pump and analysis structure with some dynamic vibrations that are typically disregarded
in other related work; (2) all coupling and nonlinear time-varying dynamics are estimated
as total disturbances through FOESO, and the PD controller achieves optimal tracking
performance. Simulation results are presented to demonstrate the control performance
advantages of the designed FOADRC over the traditional ADRC and PID controllers.

The remainder of the paper is organized as follows. Section 2 gives the mathematical
model of the conical active magnetic bearing pump with a canned motor system; the
structure of the FOADRC, system stability analysis, and parameters tuning are presented
in Section 3; simulation verification is shown in Section 4; some concluding remarks are
given in Section 5.

Figure 1. A canned motor pump with CAMB: (1) impeller; (2) centering tip; (3) conical geometry; (4)
rotor; (5) electric motor; (6) magnetic actuators.

2. System Description and Modeling
2.1. Fundamental Principle of Rigid Rotor Dynamics

The rigid rotor has five degrees of freedom, in which z, x, and y are the three radial
translations, and the two rotational positions θx, θy are around the x and y axes, respectively.

The rotor states are given by q =
[

z x y θx θy
]T in the center of mass (COM)

frame. The equations of motion are generalized in matrix form for an axially symmetric
rotor rotating at a constant speed and are given by

Mq̈ + (G + Cb)q̇ + (K + Kb)q = f(t) (1)
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where M, G, and K denote the nominal parameter values of symmetric mass, skew-
symmetric gyroscopic, and symmetric stiffness matrices, respectively. The gyroscopic
matrix G is proportional to rotor spin speed Ω [41]. For AMBs, the matrix K = 0, because
there is no physical contact between the rotor and a stationary mechanical bearing. The
hydrodynamic effects of the fluid film between the rotor and the stator act on rotor dynamics
through the damping matrix Cb and the stiffness matrix Kb; f(t) is a forcing function
including the CAMB suspension forces.

In the development of rigid body dynamics, the sensor coordinate of the rotor center-
line located at the CAMB is determined by qb =

[
z x1 y1 x2 y2

]T . To transform
between two coordinate frames, the transformation matrix T is given by qb = Tq

T =


1 0 0 0 0
0 1 0 0 b1
0 0 1 −b1 0
0 1 0 0 −b2
0 0 1 b2 0


2.2. Conical Active Magnetic Bearing Model
2.2.1. Electromechanical Interaction

The forces F1, ..., F8 generated by the active magnetic bearings are integrated into the
rotor dynamics. They enter the rotor equations of motion through the input term f(t) of
Equation (1) as the forces created by each bearing. Figure 2 shows the simple model of
conical active magnetic bearings. Table 1 lists the parameters of the system.

Table 1. System parameters.

Symbol Description Value

g0 Radial air gap 0.45 mm

A Cross-sectional area 118 mm2

m Rotor mass 0.755 kg

β Inclined angle 0.98 rad

N Magnetic coils 82 turns

Jd Diametral moment 31.68× 10−4 kg ·m2

Jp Polar moment 1.54× 10−4 kg ·m2

I01 Bias current 2 A

I02 Bias current 1 A

b1 Bearing span 55 mm

b2 Bearing span 55 mm

Rm Effective radius 12.4 mm

Figure 2. Schematic of conical active magnetic bearing system.
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The equations of motion can be written as following Newton’s second law and Euler’s
second equations:

mz̈ = (F1 + F2 + F5 + F6) sin β− (F3 + F4 + F7 + F8) sin β

mẍ = (F5 − F6 + F7 − F8) cos β

mÿ = (F1 − F2 + F3 − F4) cos β−mg

Jd θ̈x = [(F1 − F2)b2 + (F4 − F3)b1] cos β

+ (F2 − F1 + F3 − F4)Rm sin β− Jp θ̇yΩ

Jd θ̈y = [(F6 − F5)b2 + (F7 − F8)b1] cos β

+ (F5 − F6 + F8 − F7)Rm sin β + Jp θ̇xΩ

(2)

where Jp θ̇yΩ and Jp θ̇xΩ are additional components of the feedback force caused by gyro-
scopic action based on the law of angular momentum. In order to linearize Equation (2),
the dynamic equation of the air gap can be written as follows considering the small motions
of the rotor:

gy1,2 = go − z sin β∓ (y + b2θx) cos β

gy3,4 = go + z sin β∓ (y− b1θx) cos β

gx1,2 = go − z sin β∓ (x− b2θy) cos β

gx3,4 = go + z sin β∓ (x + b1θy) cos β

(3)

2.2.2. Electromagnetic Forces

Assume that the reluctance of the iron is neglected concerning gap reluctance [42]. In
addition, all magnets have identical structures and the fringing effect can be neglected [43].
The electromagnetic forces are given by:

Fj = K
I2

g2 , j = 1, ..., 8 (4)

The force coefficient is given as follows:

K =
µ0N2 A

4
(5)

where µ0 = 4ß× 10−7 H ·m−1 is the air permeability. In terms of the actual air gap and the
current, the change in magnetic force can be written as follows:

F1,3 = K
(I01+iy1,3 )

2

g2
y1,3

F5,7 = K
(I01+ix1,3 )

2

g2
x1,3

F2,4 = K
(I02+iy2,4 )

2

g2
y2,4

F6,8 = K
(I02+ix2,4 )

2

g2
x2,4

(6)

where iqj (j = 1, 4 and q = y, x) are the control currents of each magnet. Assume that
the displacement of the rotor and the current change is small relative to the nominal air
gap and bias current I0. Substituting Equation (3) into Equation (6), the magnetic force
can be linearized as follows by using the Taylor series expansion. By choosing suitable
approximations, second-order terms can be neglected, yielding a linear approximation to
the function:

F1 = Fo1 + Ki1 iy1 + Kq1 z sin β + Kq1(y + b2θx) cos β
F2 = Fo2 + Ki2 iy2 + Kq2 z sin β− Kq2(y + b2θx) cos β
F3 = Fo1 + Ki1 iy3 − Kq1 z sin β + Kq1(y− b1θx) cos β
F4 = Fo2 + Ki2 iy4 − Kq2 z sin β− Kq2(y− b1θx) cos β
F5 = Fo1 + Ki1 ix1 + Kq1 z sin β + Kq1(x− b2θy) cos β
F6 = Fo2 + Ki2 ix2 + Kq2 z sin β− Kq2(x− b2θy) cos β
F7 = Fo1 + Ki1 ix3 − Kq1 z sin β + Kq1(x + b1θy) cos β
F8 = Fo2 + Ki2 ix4 − Kq2 z sin β− Kq2(x + b1θy) cos β

(7)
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where F0j = K
I2
0j

g2
0

, j = 1, 2 are the steady-state magnetic forces and Kqj =
2F0j
g0

, Kij =
2F0j
I0j

,

j = 1, 2 are the position and current stiffnesses.

2.3. Hydrodynamic Forces

As an absolutely leak-proof safety pump, a canned motor pump requires a more
complicated and clever design. The rotor is completely surrounded by a hermetically
sealed can with a thin fluid layer between the rotor can and the stator can. However, this
causes whirling of the rotor, which can become more serious at high speed. In addition,
hydrodynamic interactions generate cross-coupling forces between the radial axes of signif-
icant magnitude. This phenomenon, which is the main cause of system instability, is far
more complex and cannot be neglected.

The hydrodynamic force amplitude is not significant during normal operation and is
only brought on by the velocity difference between the cans of the rotor and stator. However,
forces on the impeller, mass imbalances in the motor, and external disturbances all cause
the rotor to wander slightly away from its geometric center, which immediately causes
radial hydrodynamic forces to act on the rotor. These forces depend on the rotor’s rotational
speed and movement. The hydrodynamic forces can be described by the dimensionalized
stiffness and damping matrices coefficients Kij and Cij, respectively [44]. Their interaction
with the axial force on the rotor is given by:[

Fx
Fy

]
=

[
C11 C12
C21 C22

][
ẋ
ẏ

]
+

[
K11 K12
K21 K22

][
x
y

]
(8)

The coefficients are derived as non-dimensional coefficients to simplify the derivation
of the stiffness and damping matrices. The relationships between them are given by:

Kij =
F0

g0
K∗ij, Cij =

F0

g0Ω
C∗ij, i, j = 1, 2 (9)

F0 = FµS∗ =
µL3ΩRm

2g2
0

ε
√

π2 − π2ε2 + 16ε2

2(1− ε2)2 (10)

where g0 denotes the nominal space between the cans of the rotor and the stator; F0/Fµ is
referred to as the bearing Summerfield number; F0 is the static force; e = εg0 =

√
x2 + y2

and 0 ≤ ε ≤ 1 is the eccentricity ratio referred to Figure 3; µ is the absolute viscosity; L,
Rm, and Ω are the length of the rotor, the radius of the rotor, and the angular velocity,
respectively.

Figure 3. Hydrodynamic forces.

The values of the non-dimensional stiffness and damping matrix are given by [44].
The hydrodynamic forces only act in the radial motion of the rotor and have no effect on
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the rotation of the rotor axis about the z-axis. Hence, the hydrodynamic force equations in
the AMB coordinate system can be written as follows:

Fz
Fx1
Fy1
Fx2
Fy2

 =


0 0 0 0 0
0 K11 K12 0 0
0 K21 K22 0 0
0 0 0 K11 K12
0 0 0 K21 K22




z
x1
y1
x2
y2

+


0 0 0 0 0
0 C11 C12 0 0
0 C21 C22 0 0
0 0 0 C11 C12
0 0 0 C21 C22




ż
ẋ1
ẏ1
ẋ2
ẏ2

 (11)

Fb = Kbqb + Cbq̇b (12)

Finally, they are transformed into the COM coordinate system by:

F = TTFb = TT(KbTq + CbTq̇) (13)

2.4. CAMB with Lumped Disturbances

In the COM coordinate system, Equations (2), (7), and (13) are combined to describe
the motion of the rotor. After the appropriate transformations are applied, the model in
COM coordinate is given by

(M + ∆M)q̈ + ((G + ∆G) + TTCbT)q̇ + ((Kc+∆Kc) + TTKbT)q = Kibmim (14)

where ∆M, ∆G, and ∆Kc represent parameter uncertainties of symmetric mass, skew-
symmetric gyroscopic, and symmetric stiffness matrix, respectively.

q = {z, x, y, θx, θy}T

im = {iy1 , iy2 , iy3 , iy4 , ix1 , ix2 , ix3 , ix4}T

M =


m 0 0 0 0
0 m 0 0 0
0 0 m 0 0
0 0 0 Jd 0
0 0 0 0 Jd

 G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Jp

.
θz

0 0 0 −Jp
.

θz 0



Kibm =



Ki1 sin β Ki1 cos β 0 0 Ki1 σ
Ki2 sin β −Ki2 cos β 0 0 −Ki2 σ
−Ki1 sin β Ki1 cos β 0 0 −Ki1 γ
−Ki2 sin β −Ki2 cos β 0 0 Ki2 γ
Ki1 sin β 0 Ki1 cos β Ki1 δ 0
Ki2 sin β 0 −Ki2 cos β −Ki2 δ 0
−Ki1 sin β 0 Ki1 cos β Ki1 γ 0
−Ki2 sin β 0 −Ki2 cos β −Ki2 γ 0



T

Kc =


−K11 0 0 −K14 −K15

0 −K22 0 0 −K25
0 0 −K33 −K34 0
−K41 0 −K43 −K44 0
−K51 −K52 0 0 −K55


δ = b2 cos β− Rm sin β
γ = −b1 cos β + Rm sin β
σ = −b2 cos β− Rm sin β
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K11 = 4(Kq1 + Kq2)sin2β
K14 = −K15 = (b1 + b2)(Kq1 − Kq2) sin β cos β
K22 = K33 = 2cos2β(Kq1 + Kq2)
K25 = K52 = −K34 = −K43 = cos2β(Kq1 + Kq2)(b1 − b2)
K41 = −K51 = sin β(Kq1 − Kq2)[(b1 + b2) cos β− 2Rm sin β)]
K44 = K55 = cos β(Kq1 + Kq2)

[
(b2

1 + b2
2) cos β− Rm(b1 + b2) cos β)

]
It can be seen that only the mass matrix has components that are on the major diagonal,

the system’s equation is intricate and coupled. This feature prevents the normally linear
controller from being applied in all motion directions. In order to reject coupling effects,
the FOADRC method treats them as system disturbances.

2.5. Driving Current Structure

Every magnetic pole pair of the CAMB can provide both the axial force and radial
force to the rotor; it constitutes an inherently unstable system. The stabilizing control of
the electromagnet current is necessary to find a solution for this issue. The coil current of
the system operating in differential driving mode is employed to control the rotor. The
general principle is one electromagnet is driven with the sum of a bias and a control current,
whereas the opposite one is driven with their difference. By increasing the forces on the
lower bearings and reducing the forces on the upper bearings in Figure 2, any positive
movement along y away from the equilibrium point can be compensated for. The goal of
this control strategy is to sustain levitation and maintain the rotor position at the center
of the stator with only the bias current present on each magnetic pole pair. Five virtual
control currents are used to control the five-DOF plant. The following is how the currents
passing through the coils are expressed:

iy1

iy2

iy3

iy4

ix1

ix2

ix3

ix4


=



Io1

Io2

Io1

Io2

Io1

Io2

Io1

Io2


+



1 0 0 0 1
1 0 0 0 −1
−1 0 1 0 0
−1 0 −1 0 0
1 0 0 1 0
1 0 0 −1 0
−1 1 0 0 0
−1 −1 0 0 0


︸ ︷︷ ︸

H


Iz
Ix1
Iy1
Ix2
Iy2

 (15)

where I0 =
[

I01 I02 I01 I02 I01 I02 I01 I02
]T is the bias current. At steady-state,

consider I0 = 0, ir =
[

Iz Ix1 Iy1 Ix2 Iy2
]T are the five virtual control currents. For

this situation, Equation (14) can be rewritten as:

(M + ∆M)q̈ + ((G + ∆G) + TTCbT)q̇ + ((Kc+∆Kc) + TTKbT)q = KibmHir (16)

Equation (14) has shown the object model in linear form, there is still an inter-channel
component between the control variables, so in this part, the decoupling technique will be
used to reduce them and the amount of computation as well as increase the accuracy of the
FOADRC controller. The Kc and KibmH are invertible. The interstitial component can be
reduced by using the following control structure:

ir = (KibmH)−1(v + KcT−1qb) (17)

Equation (16) can be rewritten as

Mq̈ + (∆Mq̈ + (G + ∆G + TTCbT)q̇ + (∆Kc + TTKbT)q)︸ ︷︷ ︸
D(q̈,q̇,q,t)

= v (18)
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where D(q̈, q̇, q, t) denotes the lumped disturbances of CAMB including the external
disturbances f, the parameter uncertainties, and the coupling components; v is the new
control signal. We have the linear version of the system presented in Equation (18) with
five inputs and five outputs due to linearity and decoupling. Equation (18) shows that the
gyroscopic force and hydrodynamic impact cause the interchannel component of the model
to persist in the control channel. The control object is then stabilized, and the remaining
interstitial components are removed using the FOADRC.

3. Lumped Disturbances Rejection Control Design
3.1. Preliminaries and Problem Formulation

Many studies in the literature present different definitions of fractional-order deriva-
tives; Caputo’s definition is usually used by engineers. The fractional derivative of a
fractional order is defined by Caputo [45] with variable t0 = 0 and starting point as in

Dα f (t) =
1

Γ(n− α)

t∫
0

f (n)(τ)

(t− τ)α+1−n d(τ) (19)

where Γ(x) is Euler’s gamma function and n is an integer satisfying n− 1 ≤ α ≤ n, f (n)(τ)
is the n derivative of the f (τ). The following characteristic function with commensurate
order α of a linear fractional system [46] is represented by the transfer function model as

D(s) = ansnα + an−1s(n−1)α + ... + a1sα + a0 (20)

Denoting ω = sα, Equation (20) becomes

D(ω) = anωn + an−1ω(n−1) + ... + a1ω + a0 (21)

Lemma 1. In [46], the fractional order system with the characteristic function (20) is BIBO stable
if and only if all poles ωi of the polynomial (21) satisfy |arg(ωi)|> (απ)/2, i = 1, 2, . . . , n.

The stability zone of the commensurate fractional-order system in the ω plane is
depicted in Figure 4; two boundary lines for the stable region has the slope with±απ/2 [47].
The stable region includes the left half-plane, including the imaginary axis because 0 <
α < 1. The fractional-order of the s plane is transferred to the integer-order system of the
ω plane using the mapping relation ω = sα, where α is the initial system’s order. The
correlation between the trajectory and the stable region of the ω plane can be used to
determine how stable the initial fractional-order system is. If all the poles of the mapped
integer order system about ω are determined at the left half-plane, the system is stable;
otherwise, it is unstable.
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Figure 4. Stability regions of a fractional order system.

3.2. FOADRC Design

In this paper, a FOADRC including a FOESO and PD controller is proposed, and the
structure of the FOADRC is shown in Figure 5. The second order system is given as follows:

P(s) =
Y(s)
U(s)

=
b

s2 + a1s + a2
(22)

Considering the external disturbance w, Equation (22) can be rewritten as follows:

¨̄y = −a1 ˙̄y− a2ȳ + w + bu (23)

where a1, a2, and b are constants, and ȳ and u are the output and input, respectively. The
second integer order model can be converted into a cascaded fractional order integrator
platform as follows:

ȳ(2α) = f (ȳ(2α), ¨̄y, ˙̄y, ȳ, w) + bu (24)

where f is referred to as the generalized disturbance including external disturbance w,
fractional dynamics ȳ(2α) where 0 < α < 1, and unknown dynamics. Only the order of the
system and parameter b are known; the control input is defined as u.

The idea of ESO is to estimate the total disturbance through an extended state and
compensate for it. ESO can determine the total disturbing forces affecting the active
magnetic bearing system by measuring the rotor output displacement and the controller
output. Let x̄1 = ȳ, x̄2 = ȳ(α), and x̄3 = f , where x̄1 and x̄2 represent system states and x̄3
represents the external state. The state equation of Equation (24) is defined as follows:

x̄(α)1 = x̄2

x̄(α)2 = x̄3 + bu
x̄(α)3 = h
ȳ = x̄1

(25)

States estimation in Equation (25) is achieved through the FOESO as follows:
z1

(α) = z2 + β1(ȳ− z1)

z2
(α) = z3 + bu + β2(ȳ− z1)

z2
(α) = β3(ȳ− z1)

ˆ̄y = z1

(26)
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where L =
[

β1 β2 β3
]T are observer gains indicated by the displacement, speed, and

disturbance feedback gain; z1 z2, and z3 are outputs of FOESO and the estimation of the
state x̄1, x̄2, x̄3, respectively.

Figure 5. Block diagram of FOADRC system.

The disturbance compensation link adjusts the control volume as determined by state
error feedback when the FOESO can estimate an extended state. Then, to reject f (t), the
control law can be designed as follows:

u =
−z3 + u0

b
(27)

In order to achieve the desired response, a controller with proportional and derivative
actions is designed as follows:

u0 = kp(r− z1) + kd(−z2) (28)

Note that −kdz2 is used instead of kd(ṙ − z2) to avoid the differentiation of the set
value, which also prevents the AMB’s system problems caused by the rapid change of
the set value. The perturbed system is approximately converted into a fractional order
integrator as follows:

ȳ(2α) = u0 + ( f − f̂ ) ≈ u0 (29)

3.3. Stability Analysis and Parameter Tuning

The error equation combining Equations (25) and (26) can be written as

e(α) = Aee + Eh (30)

where

Ae =

 −β1 1 0
−β2 0 1
−β3 0 0

, E =

 0
0
1

 , e =

 e1
e2
e3

 =

 x̄1 − z1
x̄2 − z2
x̄3 − z3


Theorem 1. The FOADRC design from Equation (26) to Equation (29) is bounded-input bounded-
output (BIBO) stable closed-loop system if the observer in Equation (26) and L and the state feedback
control law are stable, respectively.

Proof. If the error equation converges, the poles should be placed in the stable area of the
graph according to the bandwidth parameter approach of the integer-order extended state
observer. Since 0 < α < 1, it is obvious that the left half-plane of s is where the root locus
of its transfer function resides. In other words, the entire left half of the plane is covered by
the stable zone. For linear FOESO parameter adjustment, the integer-order ESO bandwidth
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tuning approach is acceptable. Therefore, it is possible to employ the observer bandwidth
ωo concept put out by professor Gao Zhiqiang [18]. The characteristic function of error
Equation (30) is

F(s) = s3α + β1s2α + β2sα + β3 (31)

The observer gains are chosen such that the characteristic polynomial is Hurwitz.
For convenience, all the observer poles are placed at −ω1/α

o , with ωo > 0, that is, F(s) =
(sα + ωo)3. Hence, the parameters β1 = 3ωo, β2 = 3ω2

o , β3 = ω3
o ensure Ae is a Hurwitz

matrix. The fractional-order extended state observer’s parameter adjustment procedure is
straightforward because the bandwidth ωo and the parameters that need to be altered are
directly related. Under the zero initial conditions, the transfer function from h(t) to ei(t) is
calculated as

G(s) =

 sα + β1 −1 0
β2 sα −1
β3 0 sα

−1 0
0
−1

 (32)

By using the final value theorem, we have e1(+∞)
e2(+∞)
e3(+∞)

 = lim
s→0

sG(s)h(s) =

 −1/β3
−β1/β3
−β2/β3

h(+∞) (33)

Assuming h is bounded, i.e., |h(+∞)|≤ M, we obtain

[ei(+∞)] ≤

 −1/β3
−β1/β3
−β2/β3

M (34)

The upper bounds of the estimate errors are given by Equation (34). With Ae being
Hurwitz and h bounded, FOESO is asymptotically BIBO stable via Lemma 1.

Remark 1. The state and extended state of the fractional-order object can be precisely observed
using the fractional-order extended state observer. Additionally, FOESO’s resistance to parameter
changes is strengthened. Instead of using integer-order controllers, fractional-order controllers are
utilized to manage the position feedback error rate, resulting in a wider range of adjustment for the
feedback control law and a more effective control signal.

Referring to Equations (27)–(29), the required response of FOADRC may be derived
as the following closed-loop transfer function:

Gd(s) =
Y(s)
R(s)

≈
kp

s2α + kdsα + kp
(35)

The stability of the closed-loop system (refer to Equation (35)) using FOADRC is
determined by the characteristic function H(s) = s2α + kdsα + kp. For tuning simplicity,
the closed-loop characteristic polynomial has two poles at −ω1/α

c . Here, the parameter
adjustment is further simplified as kp = ω2

c , kd = 2ωc, where ωc is the ω-plane bandwidth
of the controller. Thus, the closed loop is BIBO stable.

In general, a larger ω-plane bandwidth results in a faster reaction, but it may push
the system to its limit, leading to oscillations or even instability. As a result, a well-tuned
ω must achieve a balance between rapidity and stability. By applying the tuning method
in [48], the controller bandwidth is tuned via the settling time. By choosing the controller
gain as kp = ω2

c , kd = 2ωc, the closed-loop transfer function becomes

Gd(s) =
ω2

c

(sα + ωc)
2 (36)
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The tuning method presented in [48] uses the settling time ts and the overshoot σ%
to determine controller bandwidth. If the overshoot of Equation (36) is constantly zero, ts
turns into the main factor considered when picking ωc. Therefore, one practical approach
with a desired 2% settling time is used to derive the relation between ts and ωc. Under a
unit step change in the input signal, the output of Equation (36) is

Y(s) =
ω2

c

s(sα + ωc)
2 (37)

The inverse fractional Laplace transform of Equation (37) is given as

ȳ(t) = [1− Eα(−ωctα)] ∗
[
ωctα−1Eα,α(−ωctα)

]
(38)

where E is Mittag-Leffler function. According to the definition of setting time

|ȳ(ts)− ȳ(∞)|= ∆ (39)

where ȳ(∞)=1 and ∆ ∆
= 2%, we have

|ȳ(t)− 1|= 0.02 (40)

By solving Equations (38)–(40), ωc can be determined as follows:

ts =
3.3265

ωc
(41)

As a result, the desired dynamic characteristic of the system is decided. However,
the actual output, due to some factors, cannot achieve the desired dynamic characteristic.
Therefore, some margins are required to ensure the design’s reliability [48]. In this paper,
ωc is determined as following ωc = 6/ts. With the observer bandwidth set as a multiple of
the controller bandwidth ωo = 5 ∼ 10ωc [18], the entire system is tuned by adjusting the
controller bandwidth.

4. Numerical Simulation Study
4.1. Simulation Settings

In this section, we consider three scenarios using the MATLAB/Simulink environ-
ment to compare and evaluate the efficacy of FOADRC, ADRC, and PID controllers in
the presence of variable rotation speed, rotor load disturbance, measurement noise, and
hydrodynamic force. Then, from the initial values of the rotor center of mass position,
the controller is used to drive the rotor’s five axes to a set point of 0. The initial values of
the rotor center of mass position are z(0) = 0.2× 10−3 m; x1(0) = 0.2× 10−3 m; y1(0) =
0.2× 10−3 m; x2(0) = 0.2× 10−3 m; y2(0) = 0.2× 10−3 m. The selected coefficients of the
FOADRC are listed in Table 2.

The control strategy of the CAMB in a canned motor pump, presented in Figure 6.
Position sensors measure the difference between the desired and actual rotor positions and
transmit these data to the FOESO and the structure “different driving mode”. The control
signal is then calculated using the FOESO and position controller. The control signal and
available information are used by the current controller to change the attraction force for
the electromagnets in order to change the position of the rotor. In order to evaluate the
performance of the proposed control system compared with conventional ADRC and PID
for CAMB, three scenarios are expressed as follows:
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Figure 6. Control strategy.

Scenario 1: The rotating rotor of the conical active magnetic bearing is not spinning around
the z-axis, and the rotor deviates from the equilibrium position at the initial time under the
parameter uncertainties including ∆M, ∆G, and ∆Kc (i.e., the actual parameters of CAMB
deviate about 10% from the nominal value).

Scenario 2: The rotor is brought to the equilibrium position at the initial time. Then, it
rotates at normal speed (3000 rpm), and the conical active magnetic bearing is affected by
the parameter uncertainties (i.e., the actual parameters of CAMB deviate about 10% from
the nominal value) and the external disturbances (i.e., the hydrodynamic vibrations of the
canned motor that are detailed in the Section 2.3).

Scenario 3: The rotor is brought to the equilibrium position at the initial time. Then,
it rotates at high speed (12,000 rpm) in case the hydrodynamic force is applied. The
conical active magnetic bearing is affected by the disturbances, including the parameter
uncertainties and the external disturbances. In addition, the measurement noise created by
white Gaussian noise is added to the rotor states to demonstrate the performance of the
proposed control system.

Table 2. System parameters.

Symbol Description Value

α Fractional order 0.98

b1, b2, b3 1/m

b4, b5 1/Jd

ts Time settle 0.1 s

ωc Controller bandwidth 60

kp Controller gain 3600

kd Controller gain 120

ωo Observer bandwidth 600

β1 Observer gain 1800

β2 Observer gain 1,080,000

β3 Observer gain 216,000,000

4.2. Results and Discussion
4.2.1. Results of Scenario 1

The performance of the FOADRC controller is verified and compared with PID and
ADRC controllers. The FOADRC system’s position response achieves no fluctuation, a
shorter settling time, and a small overshoot peak, as shown in Figure 7a–c. As a result,
the FOADRC controller shows superior controllability compared to the ADRC and PID
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controllers when the rotor is not spinning around the z-axis and is deviated from the
equilibrium position.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Transient response when the rotor lifts up with FOADRC, ADRC, and PID controller (a–c).
ESO estimation with the FOADRC method on the plant model is presented in (d–f).

Based on Figure 7d–f, the FOESO can track the disturbance and actual values in a
remarkably short period of time (0.02 s). The FOESO provides observation quality, ensures
control quality, and sees good response performances when parameter uncertainties are
presented.

The required levitation control currents in upper and lower coils computed by the
FOADRC, ADRC, and PID controllers are shown in Figure 8. Unlike the PID controller’s
current, the FOADRC controller’s current rapidly brings the rotor to equilibrium, with only
bias current flowing through each coil.
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(a) (b)

(c) (d)

Figure 8. Control currents of the upper coils (a,c) and the lower coils (b,d).

4.2.2. Results of Scenario 2

The rotor speed is set to 3000 rpm, and the rotor is brought to equilibrium at the start.
At 0.15 s, hydrodynamic forces make contact with the rotor. With the hydrodynamic forces
applied to the rotor, the FOADRC system achieves lower overshoot, fluctuation, and a
faster settling time, as shown in Figure 9a–e. The position of the rotor oscillates around
the equilibrium point with the FOADRC controller and has a stability state of 0.8 s. As
shown in Figure 9, the PID and ADRC controllers can keep the rotor oscillating close to the
equilibrium position and cannot fully bring the rotor to equilibrium. These results show
that the FOADRC controller has faster response times and better vibration-damping ability
than ADRC and PID controllers when the rotor is operated under hydrodynamic forces.

Figure 10 shows the responses of typical direct control currents in systems controlled
by FOADRC, ADRC, and PID. As can be seen, when the system is under the influence of
hydrodynamic force, the control currents generated by the FOADRC controller are quite
large but still within the allowable limit. The main reason is that the FOADRC controller is
quite sensitive to uncertainties and external disturbances. The FOADRC control current
quickly brings the rotor into equilibrium and remains stable around the bias current with
very little oscillation, whereas the control currents generated by ADRC and PID controllers
fluctuate significantly around the bias current.

4.2.3. Results of Scenario 3

The rotor speed is initialized to 12,000 rpm to evaluate the performance of controllers
when the rotor is in the high-speed region under hydrodynamic force. The rotor is brought
to the equilibrium position at the initial time. Then, hydrodynamic forces contact the rotor
at 0, 15 s. This simulation scenario includes measurement noise. As shown in Figure 10a–e,
the simulation results on the z, x1, y1, x2, and y2 axes are similar to those obtained in
the second simulation scenario. When the rotor rotates at high speed, under the action
of hydraulics and measuring noise, no axis of motion is significantly affected using the
FOADRC controller. According to Figure 10f, when using the FOADRC controller, the
eccentricity ratio of the rotor returns quickly and close to 0 after 0.6 s, whereas the PID
and ADRC controllers show an eccentricity ratio close to 0 after a long time interval. The
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FOADRC controller has considered the rotor speed factor and shows its ability to resist
measurement noise and work effectively in the high-speed region.

(a) (b)

(c) (d)

(e)

Figure 9. Transient response of rotor when a hydrodynamics force is applied in the axial and radial
directions with FOADRC, ADRC, and PID controllers (a–e).

Figure 11 shows control currents where the rotor works in the high-speed region under
hydrodynamic force and measurement noise. Similar to scenario 2, when starting to be
under the influence of hydrodynamic force, the FOADRC control current is larger than
the ADRC and PID control current but still within the allowable range. The FOADRC
control current quickly brings the rotor into equilibrium, but it fluctuates more around
the bias current than in scenario 2 because the rotor rotates at a fast speed and the system
is influenced by measurement noise. When compared to ADRC and PID control, the
FOADRC control current amplitude of oscillation is quite small and has no significant
impact on rotor stability.

The closed-loop responses under PID, ADRC, and FOADRC control actions in terms
of rotor state tracking errors are summarized in the following table.

It can be observed from Table 3 that, in the face of measurement noise, both FOADRC
and ADRC performances deteriorate. This result is expected because the two controls
are not designed to be robust to this type of noise. However, FOADRC still slightly out-
performs ADRC.
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(a) (b)

(c) (d)

Figure 10. Control currents of the upper coils (a,c) and the lower coils (b,d).

(a) (b)

(c) (d)
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(e) (f)

Figure 10. Transient response of rotor (taking into account measurement noise) when a hydrodynam-
ics force is applied in the axial and radial directions with FOADRC, ADRC, and PID controllers (a–e).
The eccentricity ratio is presented in (f).

Table 3. The control performance benchmark.

Index
Scenario Controller ISE 1 IAE 2 ITAE 3

FOADRC 5.705× 10−10 7.703× 10−6 1.292× 10−7

1 ADRC 8.393× 10−10 9.83× 10−6 1.671× 10−7

PID 1.907× 10−9 2.13× 10−5 9.186× 10−7

FOADRC 2.169× 10−10 1.357× 10−5 4.474× 10−6

2 ADRC 2.272× 10−10 1.479× 10−5 5.321× 10−6

PID 2.667× 10−10 1.898× 10−5 7.579× 10−6

FOADRC 2.212× 10−10 1.525× 10−5 5.182× 10−6

3 ADRC 2.323× 10−10 1.653× 10−5 6.047× 10−6

PID 2.805× 10−10 2.135× 10−5 8.952× 10−6

1 Integral squared errors (ISE) of the rotor states q. 2 Integral absolute errors (IAE) of the rotor states q. 3 Integral
time-multiplied absolute errors (ITAE) of the rotor states q.

(g) (h)

(i) (j)

Figure 11. Control currents of the upper coils (a,c) and the lower coils (b,d).
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5. Conclusions

The paper deals with the design integration of a cone-shaped magnetic bearing in
a canned motor pump, which is characterized as a class of under-actuated and strongly
coupling systems. The control strategy based on FOADRC combining FOESO and PD
controller is suggested for improving the transient and steady performances and robustness
with respect to parameter uncertainty and disturbance. Moreover, the convergence of the
extended state observer and the stability of the proposed control strategy are proved. The
simulation result is conducted and showed the effectiveness of the proposed controller,
achieving superior performance and less sensitivity to noise measurement compared to
the traditional ADRC and PID controller. In the near future, experiments considering the
real-time implementation of the fractional system will be conducted to demonstrate the
designed control structure thoroughly for real-life applications.
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