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1. Introduction

Algebras and operator algebras over the real field and the complex field were inten-
sively studied and have found multi-faceted applications (see, for example, [1–7] and the
references therein).

For normed algebras and operator algebras over the real and complex fields, many
results were already obtained (see, for example, [3,5,6,8] and the references therein). On the
contrary, for algebras over non-Archimedean normed (i.e., ultranormed) fields, compar-
atively few results are known. This is explained by their specific features and additional
difficulties arising from structure of fields [9–18].

Many results in the classical case use strong conditions to which the real field and the
complex field satisfy. Among them there are the following: the real field, R, has a linear
ordering that is compatible with its additive and multiplicative structure; complex field C is
algebraically closed and norm complete and locally compact, and it is the quadratic exten-
sion of R; moreover, there are no other commutative fields with Archimedean multiplicative
norms and that are complete relative to their norms besides these two fields.

For comparison, in the non-Archimedean case, the algebraic closure of the field of
p-adic numbers is not locally compact [9,18,19]. Each ultranormed field can be embedded
into a larger ultranormed field. There is no ordering of an infinite ultranormed field such
as Qp, Cp or Fp(t) that is compatible with its algebraic structure.

Non-Archimedean analyses, functional analyses, and the representation theory of
groups over non-Archimedean fields have developed quickly in recent years [18,20–24].
This is motivated not only by the needs of mathematics but also their applications in other
sciences such as physics, quantum mechanics, quantum field theory, informatics, etc. (see,
for example, [25–31] and the references therein). Henceforward, a norm (or normed) will
be written shortly instead of an ultranorm or a non-Archimedean norm (or ultranormed
correspondingly). That is, it satisfies the strong triangle inequality |x + y| ≤ max(|x|, |y|)
for each x and y in a normed space, X.

This article is devoted to the study of vector functions in Banach algebras and Banach
spaces over normed fields. A structure of their Banach algebras is investigated. Ideals in
them are studied in Theorem 1, Proposition 1, and Corollaries 1 and 2. The Banach algebras
of vector functions with values in ∗-algebras, finely regular algebras, and B∗-algebras are
scrutinized in Propositions 2 and 3. An approximation of vector functions is investigated
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in Theorems 2 and 3. The realizations of these algebras by operator algebras are studied.
Examples 1–5 are provided. An invariance of such algebras relative to multiplication on
bounded continuous functions is given by Theorems 4 and 5. Necessary definitions and
notations are recalled in Appendix A.

All main results of this paper are obtained for the first time. Their possible applications
are discussed in the Conclusion.

2. Algebras of Vector Functions over Normed Fields

Definition 1. Let F be an infinite field with a non-Archimedean multiplicative norm | · |F = | · |
such that ∃v ∈ F, 0 < |v| < 1. Let F be norm complete. Let S be a nonvoid zero-dimensional
topological space. Let each s ∈ S be posed as a Banach algebra As over F, where norm | · |As is non-
Archimedean on As. Let Ba(S, {As}) be a family of all vector functions x = {x(s) ∈ As : s ∈ S}
possessing the following properties (i), (ii):

(i) x(s) ∈ As for each s ∈ S;
(ii) |x(s)| is a bounded continuous function on S, where |x(s)| = |x(s)|As .
By an algebra of vector functions generated by S and the family {As : s ∈ S} of Banach

algebras, we use a subset A = A(S, {As}) of Ba(S, {As})by forming a Banach algebra over F
relative to the following operations:

(1) f x = { f (s)x(s) : s ∈ S}, x + y = {x(s) + y(s) : s ∈ S},
xy = {x(s)y(s) : s ∈ S}

for every x and y belonging to A, f ∈ Cb(S, F), where Cb(S, F) denotes the space of all continuous
bounded functions f : S→ F. This Banach algebra is supplied with the following norm.

(2) |x| = sups∈S |x(s)|.
Shortly, x = {x(s) ∈ As : s ∈ S} is also denoted by {x(s) : s ∈ S} or {x(s)} if S is specified.

Moreover,
(3) | f | = sups∈S | f (s)| < ∞ for each f ∈ Cb(S, F), where | f (s)| = | f (s)|F.
If Xs is a Banach space over F for each s ∈ S, then Banach spaces Ba(S, {Xs}) andA(S, {Xs})

are similarly defined instead of algebras.
A subset K in A by clAK is denoted the closure of K in A. Henceforward, χW denotes

the characteristic function of a subset W in set S such that χW(x) = 1 for each x ∈ W, while
χW(x) = 0 for each x /∈W.

Example 1. In particular, there may be As = D for each s ∈ S, where D is the Banach algebra
over F. In this case, A(S, {As}) will also be denoted by A(S, D), while Ba(S, {As}) is denoted by
Ba(S, D). In particular, the Banach algebra exists as Cb(S, D) of all continuously bounded maps,
x, from S into D.

Example 2. If S = {s1, . . ., sn} is a finite discrete space, then Ba(S, {As}) is isomorphic to the
direct sum As1 ⊕ . . .⊕ Asn .

Definition 2. Let F ⊆ FS. If f x ∈ A for each x ∈ A and f ∈ F , then it is said that algebra A is
invariant relative to F . Let J ⊆ A; then, family {x(s0) : x ∈ J} is called a projection of J onto As0

and is denoted by Js0 .

Theorem 1. Let S be an ultrametric space. Let the algebra A = A(S, {As}) (see Definitions 1
and 2) satisfy the following conditions:

(i) As = As for each s ∈ S;
(ii) f x belongs to the closed ideal in A generated by x for each f ∈ Cb(S, F) and each x ∈ A.
Let V be the closed left (or right or two-sided) ideal in A such that
(iii) ∑j∈λ χWj xj ∈ clAV for each xj ∈ V with supj |xj| < ∞ and each disjoint clopen

covering {Wj : j ∈ λ} of S, where λ is a set.
Then, there exists a closed left (or right or two-sided correspondingly) ideal Js in As for each

s ∈ S such that
(1) V = {x ∈ A : ∀s ∈ S, x(s) ∈ Js}.
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Proof. We consider the case of left ideals similarly to other cases. Let y ∈ A, and et
Js = clAs Vs be the closure of Vs in As for each s ∈ S. Let y(s) ∈ Js for each s ∈ S. The
case y = 0 is trivial. Let y 6= 0. Since A and V are over the field, F, it is sufficient to
consider the case of |y| = 1. We chose a monotonously decreasing positive sequence
{εj : ∀j ∈ N, 0 < εj} with limj→∞ εj = 0.

Note that the norm onA is non-Archimedean by Formula (2) in Definition 1, since the
norm is non-Archimedean for each s ∈ Son Banach algebra As . On the other hand, from
Condition (i) and the definition of Js and for y as stated above, it follows that for each q ∈ S,
there exists xεj ,q in V such that |xεj ,q(q)− y(q)| < εj. By the continuity of |xεj ,q(s)− y(s)|
as the function of s, there exists a clopen ball B(S, q, rj,q) containing q in S such that

(2) |xεj ,q(s) − y(s)| ≤ εj for each s ∈ B(S, q, rj,q), where 0 < rj,q < ∞, since S is
ultrametrizable and hence zero-dimensional. Notice that χW ∈ Cb(S, F) for each clopen
subset W in S, where χW denotes the characteristic function of W; that is, χW(s) = 1 for
each s ∈ W and χW(s) = 0 for each s ∈ S \W. The condition (ii) of this theorem implies
that clAχWV ⊆ V for each W clopen in S, since clAV = V, Cb(S, F) ⊆ Z(A), where Z(A)
denotes the center of A. Therefore, χWy ∈ A, χW xεj ,q ∈ V.

Thus Υj = {B(S, q, rj,q) : q ∈ S} is the clopen covering of S. It is known that in
ultrametric space S, as it follows from the strong triangle inequality for the ultrametric
space, either each pair of clopen balls do not intersect or one of them is contained in the
other [18,22]. Therefore, for S, there exists a disjoint clopen subcovering Ψj = {Wj,k =
B(S, qk, rj,qk ) : k ∈ λj}, where λj is a set. Thus,

⋃
k∈λj

Wj,k = S, Wj,k ∩Wj,l = ∅ for each k 6= l
in λj, and Wj,k is clopen in S for each j ∈ N, k ∈ λj. Therefore, hj = ∑k∈λj

χWj,k xεj ,qk belongs
to V by Condition (iii) of this theorem. By the construction above |hj − y| ≤ εj, since
limj→∞ εj = 0 and A comprise the Banach algebra, then limj→∞ |hj − y| = 0; consequently,
y ∈ V.

Example 3. If J is a closed ideal in D, either A = Ba(S, D) or A = Cb(S, D), V = Ba(S, J), or
V = Cb(S, J); then, they satisfy the conditions of Theorem 1, where S is the ultrametric space, and
D is the Banach algebra over F.

Corollary 1. Let S, A, and As be the same as in Theorem 1. Let V be a maximal closed left (or
right, or two-sided) ideal in A satisfying Condition (iii) in Theorem 1. Then, for each s ∈ S, Vs is a
closed maximal left (or right or two-sided correspondingly) ideal in As. If, moreover, the algebra As
is simple for each s ∈ S, then for each closed two-sided ideal V in A, there exists a closed subset SV
in S such that V = {x ∈ A : ∀s ∈ SV , x(s) = 0}.

Proposition 1. Let S be an ultrametric space, and let A = A(S, {As}). Let the following also be
the case:

(i) As = As for each s ∈ S;
(ii) A be invariant relative to multiplication on each f ∈ Cb(S, F);
(iii) ∑j∈λ χWj xj ∈ clAV for each xj ∈ V with supj |xj| < ∞ and each disjoint clopen

covering {Wj : j ∈ λ} of S, where λ is a set;
(iv) ∃1 < δ < ∞, ∀0 < ε < 1, ∀s ∈ S, ∀u ∈ As, (u ∈ clAs(uAs) & (∃v ∈ As, |v| < δ,

|uv− u| < ε)).
Then, gx belongs to the closed left ideal J generated by x in A for each x ∈ A and each

g ∈ Cb(S, F).

Proof. Let x ∈ A, 0 < εj+1 < εj < 1 for each j ∈ N, limj→∞ εj = 0. From Conditions
(i),and(iv), it follows that for each q ∈ S, there exists vj,q ∈ A such that |x(q)vj,q(q) −
x(q)| < εj and |vj,q(q)| < δ. By the continuity of |xvj,q − x| and |vj,q|, there exists a clopen
ball B(S, q, rj,q) such that |x(s)vj,q(s)− x(s)| ≤ εj and |vj,q(s)| ≤ δ for each s ∈ B(S, q, rj,q).
As in the proof of Theorem 1, the clopen covering Υj = {B(S, q, rj,q) : q ∈ S} of S possesses
a disjoint clopen subcovering Ψj = {Wj,k = B(S, qk, rj,qk ) : k ∈ λj}, where λj is a set.
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From Conditions (ii), (iii), and (iv), we deduce that |x ∑k∈λj
χWj,k vj,qk − x| ≤ εj and

hj = g ∑k∈λj
χWj,k vj,qk belong toA, sinceA is the Banach algebra over F and supk∈λj

|χWj,k vj,q|
≤ δ. Hence, |xhj − gx| ≤ εj|g| < ∞, where |g| = sups∈S |g(s)| < ∞, since g ∈ Cb(S, F).
Note that xh ∈ J, where J = clA(xA). Therefore, gx ∈ J, since Cb(S, F) ⊆ Z(A),
limj→∞ εj = 0, and A is the Banach algebra.

Example 4. If zero-dimensional space S is locally compact, there exists the Banach algebra
B∞(S, {As}) = {y ∈ Ba(S, {As}) : ∀ε > 0, ∃U compact subset in S, ∀s ∈ S \

U, |y(s)| < ε}.
In particular, if As = D for each s ∈ S, there exists Banach subalgebra C∞(S, D) =

Cb(S, D) ∩ B∞(S, D). For A ⊆ B∞(S, {As}), Condition (iii) of Theorem 1 can evidently be
omitted, since for each ε > 0 and y ∈ A, the set {s ∈ S : |y(s)| ≥ ε} =: Ωy,ε is compact so that
each open (or clopen in particular) covering of Ωy,ε has a finite subcovering. Moreover, in this case
of algebra A, Theorem 1 and Proposition 1 remain valid for the zero-dimensional locally compact
space, S, instead of the ultrametric space, S.

Corollary 2. Let S be an ultrametric space, A be a Banach algebra over F, and let z ∈ clA(zA) for
each z ∈ A. Let V be a closed ideal in A = Cb(S, A) satisfying Condition (iii) in Theorem 1. Then,
for each s ∈ S, there exists a closed ideal Js in A such that

V = {x ∈ A : ∀s ∈ S, x(s) ∈ Js}.

Remark 1. In particular, if S is a zero-dimensional compact space, then it implies that Condi-
tion (iii) in Theorem 1 and Proposition 1 is satisfied. This condition can also be omitted for
the zero-dimensional locally compact space S with A ⊆ C∞(S, A), since S has an Alexandroff
compactification αS = S ∪ {α}, for which C∞(S, A) is isomorphic with A(αS, {As}) such that
A(αS, {As}) ⊆ C∞(αS, A) with As = A for each s ∈ S and Aα = {0} (see also Examples 3, 4).

Theorem 1, Proposition 1, and Corollaries 1 and 2 remain valid for the zero-dimensional
Lindelöf space S instead of the ultrametric space. Indeed, each clopen covering Υ = {Wk : k ∈ λ}
of S has a countable subcovering Ψ = {Wki

: i ∈ ν}, where λ is a set, ν ⊆ N (see also [32]). Then,
U1 = Wk1 and Uj = Wkj

\ (⋃i∈ν,i<j Wki
) for each 1 < j ∈ ν provide a disjoint clopen covering

{Ui : i ∈ ν} of S.

Definition 3. Let y ∈ Ba(S, {As}); for each q ∈ S, there exists xq ∈ A(S, {As}) and an open
neighborhood U(q) of q such that y(s) = xq(s) for each s ∈ U(q). Then, it is said that y locally
belongs to the algebra A(S, {As}) at q. If y locally belongs to A(S, {As}) at q for each q ∈ S, then
it is said that y locally belongs to A(S, {As}).

Vector function y ∈ Ba(S, {As}) is called continuous relative to the algebra A(S, {As}), if
for each x ∈ A(S, {As}), and the function |y(s)− x(s)| is continuous.

Example 5. If As = D for each s ∈ S,A ⊆ Cb(S, D), y ∈ Cb(S, D), then y is continuous relative
to algebra A.

Definition 4. A family G ⊆ C(S, F) on S is called F completely regular if there exists x ∈ G for
each closed subset K in S and q ∈ S \ K such that x(q) 6= 0 and x(s) = 0 for each s ∈ K, where S
is a topological space and where C(S, F) denotes the space of all continuous functions f : S→ F.

The family G is called normal on S, if there exists x ∈ G for each closed subsets K and K1 in S
with K ∩ K1 = ∅ with x(s) = 0 for each s ∈ K and x(s) = 1 for each s ∈ K1.

Theorem 2. Let S be an ultrametric space, let Banach algebra A = A(S, {As})
(i) Be invariant relative to the multiplication on each f ∈ Cb(S, F);
(ii) ∑j∈λ χWj xj ∈ A for each xj ∈ A with supj |xj| < ∞ and each disjoint clopen covering

{Wj : j ∈ λ} of S, where λ is a set.
Let y belong to A locally. Then, y ∈ A.
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Proof. For each q ∈ S, there exists xq ∈ A and a clopen ball B(S, q, rq) in S such that
y(s) = xq(s) for each s ∈ B(S, q, rq), since y locally belongs to A and χB(S,q,rq) ∈ Cb(S, F).
The covering, Υ = {B(S, q, rq) : q ∈ S}, has a disjoint subcovering Ψ = {Wk = B(S, qk, rqk ) :
k ∈ λ}, since S is the ultrametric space where λ is a set. Then, χWk y = χWk xqk ∈ A for each
k ∈ λ, since χWk ∈ Cb(S, F) and A satisfies Condition (i). From ∑k∈λ χWk (s) = 1 for each
s ∈ S, it follows that ∑k∈λ χWk y = y. Hence, y ∈ A by Condition (ii) of this theorem, since
supk∈λ |xk| ≤ |y| < ∞.

Theorem 3. Let S be the ultrametric space. Let the Banach algebra A = A(S, {As}) satisfy the
following conditions (i)–(iii):

(i) As = As for each s ∈ S;
(ii) A is invariant relative to multiplication on each f ∈ Cb(S, F);
(iii) ∑j∈λ χWj xj ∈ A for each xj ∈ A with supj |xj| < ∞ and each disjoint clopen covering

{Wj : j ∈ λ} of S, where λ is a set.
Let y be continuous relative to A. Then, y ∈ A.

Proof. From Condition (i), it follows that there exists xq in A such that xq(q) = y(q).
Let 0 < ε < ∞. By the continuity of |y(s) − xq(s)| as a function of s ∈ S, there exists
clopen ball B(S, q, rq) such that |y(s)− xq(s)| < ε for each s ∈ B(S, q, rq). The covering
Υ = {B(S, q, rq) : q ∈ S} has a disjoint subcovering Ψ = {Wk = B(S, qk, rqk ) : k ∈ λ}, since
S is the ultrametric space, where λ is a set. Analogously to the proof of Theorem 1, we infer
that |y(s)−∑k∈λ χWk (s)xq(s)| < ε for each s ∈ S.

By Conditions (ii), (iii) gε(s) = ∑k∈λ χWk (s)xq(s) ∈ A. Hence, y ∈ A, since
limε→0 |y− gε| = 0, and A is the Banach algebra.

Corollary 3. Let S be the ultrametric space. Let A be a closed subalgebra in Cb(S, D), where D is
the Banach algebra over F. Let A satisfy the following:

(i) As = D for each s ∈ S
and Conditions (ii) and (iii) of Theorem 3. Then, A = Cb(S, D).

Definition 5. Let A = A(S, {As}) be the algebra over field F of characteristic char(F) 6= 2,
where As is the subalgebra in L(Xs, Xs), where Xs = c0(αs, F) is the Banach space over F, αs is a
set for each s ∈ S. Let A also be a B2-bimodule, where B2 = B2(F) is the commutative associative
algebra with one generator i1 such that i21 = −1 and it possesses involution (vi1)∗ = −vi1 for each
v ∈ F. Let I : A → A be a continuous bijective F-linear operator:

(1) I : A → A such that
(2) I(ab) = (Ib)(Ia) and
(3) I(ga) = (Ia)g∗ and I(ag) = g∗(Ia);
(4) IIa = a
(5) (θ(y))(ax) = θ((Ia)y)(x)

for each a and b in A, g ∈ B2 and x and y in the Banach space Ba(S, {Xs}), where θ :
Ba(S, {Xs})→ Ba(S, {X′s}) is the canonical embedding such that (θx)(s) = θsx(s), θs : Xs →
X′s is the canonical embedding of Xs into the topological dual space X′s for each s ∈ S.

Then, A is called a ∗m-algebra, and operator I is called the involution. Briefly, a∗ can also be
written instead of Ia.

Proposition 2. (i). If As is the Banach ∗-algebra over field F for each s ∈ S, char(F) 6= 2, then
A = A(S, {As}) can be supplied with the ∗m-algebra structure.

(ii). If A = A(S, {As}) is the ∗m-algebra and As = As for each s ∈ S, then As is the
∗-algebra for each s ∈ S.

Proof. (i). For each a ∈ A and s ∈ S, we define a∗(s) = (a(s))∗. As the ∗-algebra As has an
embedding into L(Xs, Xs), where Xs = c0(αs, F), αs is a set. Therefore, there exist Banach
spaces Ba(S, {Xs}) and Ba(S, {X′s}). This implies that Conditions (1)–(5) in Definition 5
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are satisfied. From (4) in Definition 5, it follows that I = I−1 and, consequently, |I| = 1,
where (Ia)(s) = a∗(s) for each a ∈ A and s ∈ S. Hence, I : A → A is the F-linear
continuous bijective operator.

(ii). For each s ∈ S and b ∈ As, there exists as,b ∈ A with a(s) = b, since As = As for
each s ∈ S. Inserting b∗ = a∗(s) and using Conditions (1)–(5) in Definition 5, As is the
∗-algebra.

Definition 6. LetA = A(S, {As}) be the Banach algebra over field F of characteristic char(F) 6=
2. Let A satisfy the following conditions:

(1) A is the ∗m-algebra;
(2) There exists a bilinear operator (·, ·) : A2 → Cb(S, F) such that |(a, b)| ≤ γ|a||b| for

each a and b in A, where 0 < γ < ∞ is a constant independent of a and b;
(3) (a, b) = (b, a) and (a, b) = (a∗, b∗) for each a, b in A;
(4) If there exists s ∈ S such that (a, b)(s) = 0 for each b ∈ A, then a(s) = 0;
(5) (ab, c) = (a, cb∗) for every a, b, c in A;
(6) a(s)a∗(s) 6= 0, if a ∈ A, s ∈ S and a(s) is a non-zero element in As.
Then, A will be called a B∗

m
-algebra.

Proposition 3. (i). Let As be the Banach B∗-algebra over the field, F, for each s ∈ S, and
let char(F) 6= 2. Let also 0 < sups∈S qs < ∞, where 0 < qs < ∞ is a constant such that
|(c, d)s| ≤ qs|c||d| for each c and d in As, and (·, ·)s is the bilinear functional on As. Then,
A = A(S, {As}) can be supplied with the B∗

m
-algebra structure.

(ii). Let A = A(S, {As}) be the B∗
m

-algebra and As = As for each s ∈ S. Then, As is the
B∗-algebra for each s ∈ S and sups∈S qs ≤ γ.

Proof. (i). By virtue of Proposition 2, (i) A can be supplied with the ∗m-algebra structure.
Let (a, b)(s) = (a(s), b(s))s for each s ∈ S, where (·, ·)s is the bilinear functional on As
corresponding to its B∗-algebra structure by Definition 4 in [10]. This implies (3)–(6) in
Definition 6, since As ⊆ As for each s ∈ S. From 0 < sups∈S qs < ∞, it follows that
0 < γ < ∞.

(ii). Since As = As for each s ∈ S, then there exists as,b ∈ A for any given s ∈ S and
b ∈ As with a(s) = b. In view of Proposition 2(ii), As is the ∗-algebra for each s ∈ S. From
Conditions (1)–(6) in Definition 6, it follows that As is the B∗-algebra for each s ∈ S and
sups∈S qs ≤ γ, since qs ≤ γ for each s ∈ S.

Theorem 4. Let A = A(S, {As}) be the unital algebra over field F satisfying the following
conditions:

(i) S is the ultrametric space;
(ii) For each s1 6= s2 in S, there exists x ∈ A such that x(s1) = 0 and x(s2) = e, where

e = e(s2) denotes the unit element in As2 , |e(s2)| = 1;
(iii) ∑j∈λ χWj xj ∈ A for each clopen disjoint covering {Wj : j ∈ λ} of S and each xj ∈ A

such that supj∈λ |xj| < ∞, where λ is a set.
Then, A contains f e for each f ∈ Cb(S, F), where e = {e(s) : s ∈ S} denotes the unit

element in A.

Proof. Let s1 6= s2 belong to S. By condition (ii), there exists x = xs1,s2 ∈ A such that
x(s1) = 0 and x(s2) = e(s2). Let 0 < ε < 1. By the continuity of |x| there exists a clopen
ball B(S, s1, rs1) such that |x(s)| < ε for each s ∈ B(S, s1, rs1).

Let U be a clopen subset in S and s2 ∈ S \U. The covering ΥU,ε = {B(S, s1, rs1) ∩U =
B(U, s1, rs1) : s1 ∈ U} of U has a disjoint subcovering ΨU,ε = {Wk = B(U, s1,k, rs1,k ) : k ∈
λU,ε}, where λU,ε is a set. From Condition (iii), we deduce that hU,ε,s2 = χS\U xs1,k0

,s2 +

∑k∈λU,ε
χWk xs1,k ,s2 ∈ A and |hU,ε,s2(s)| < ε for each s ∈ U, while hU,ε,s2(s2) = e(s2),

where k0 is a fixed element in λU,ε. Let U and U2 be two disjoint clopen subsets in
S. By the continuity of |hU,ε,s2(s)− e(s)|, there exists a clopen ball B(S \U, s2, ps2) with
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0 < ps2 < ∞ such that |hU,ε,s2(s)− e(s)| < ε for each s ∈ B(S \U, s2, ps2). The covering
ΥU2,ε = {B(S \U, s2, ps2) ∩U2 = B(U2, s2, ps2) : s2 ∈ U2} has the disjoint subcovering
ΨU2,ε = {Ej = B(U2, s2,j, ps2,j) : j ∈ λU2,ε} by Condition (i) of this theorem, where λU2,ε
is a set. Therefore, gU,U2,ε = χS\U2

hU,ε,s2,j0
+ ∑j∈λU2,ε

χEj hU,ε,s2,j belongs to A by Condition
(iii), where j0 is a fixed element in λU2,ε. Therefore, |gU,U2,ε(s)− e(s)| < ε for each s ∈ U2,
while |gU,U2,ε(s)| < ε for each s ∈ U.

Take any fixed f ∈ Cb(S, F). For each, q ∈ S there exists a clopen ball B(S, q, tq) with
0 < tq < ∞ such that | f (q) − f (s)| < ε for each s ∈ B(S, q, tq). The covering ΥS,ε =
{B(S, q, tq) : q ∈ S} has the disjoint subcovering ΨS,ε = {Hi = B(S, qi, tqi ) : i ∈ λ f ,S,ε},
where λ f ,S,ε is a set. Hence, f = ∑i∈λ f ,S,ε

χHi f . Therefore, vε = ∑i∈λ f ,S,ε
χHi gS\Hi ,Hi ,ε

belongs to A, since A is the F-algebra satisfying Condition (iii) of this theorem. From the
construction above and the strong triangle inequality, we deduce that | f (s)e− vε(s)| < ε
for each s ∈ S. Taking limε→0 and using A as the Banach algebra, we obtain the assertion
of this theorem.

Theorem 5. LetA = A(S, {As}) be the algebra over the field F such that the following is the case:
(i) S is the ultrametric space;
(ii) For each q in S, xq in A, there exists x ∈ A such that x(q) = xq;
(iii) ∑j∈λ χWj xj ∈ A for each disjoint clopen covering {Wj : j ∈ λ} of S and each xj ∈ A

with supj∈λ |xj| < ∞, where λ is a set. Then, A is invariant relative to multiplication on each f
in Cb(S, F).

Proof. If y = 0, then evidently f y = 0 ∈ A for each f ∈ Cb(S, F). Let y ∈ A be a
nonzero element and f ∈ Cb(S, F), and let 0 < ε < |y|. Since y ∈ A and f ∈ Cb(S, F),
then f y ∈ Ba(S, {As}) and | f y| ≤ | f ||y|. For each q ∈ S, there exists zq ∈ A such
that zq(q) = f (q)y(q) by Condition (ii), since Aq is the F-algebra. By the continuity of
|zq(s)− f (s)y(s)|, there exists the clopen ball B(S, q, tq) in S such that | f (s)y(s)− zq(s)| <
ε max(1, | f (q)||y(q)|) for each s ∈ B(S, q, tq). The covering Υε = {B(S, q, tq) : q ∈ S}
has the disjoint subcovering Ψε = {Wj = B(S, qj, tqj) : j ∈ λε}, where λε is a set. Then,
vε = ∑j∈λε

χWj zqj ∈ A by Condition (iii). From the construction above, we deduce that
|vε(s)− f (s)y(s)| < ε for each s ∈ S. Taking limε→0 and using A as the Banach algebra,
we obtain f y ∈ A.

Corollary 4. Let A = A(S, A) be the algebra over field F such that A ⊆ Cb(S, A) and the
following is the case:

(i) S is the ultrametric space;
(ii) Either A contains the unit element and A satisfies Condition (ii) in Theorem 4 or A

satisfies Condition (ii) in Theorem 5;
(iii) A satisfies Condition (iii) in Theorem 4, where A is the Banach algebra over F. Then,

A = Cb(S, A).

This corollary follows from Theorems 4 and 5.

Remark 2. Theorems 2–5 and Corollaries 3 and 4 are also accomplished for (i) a zero-dimensional
Lindelöf space S or (ii) a locally compact zero-dimensional space S with B∞(S, {As}), C∞(S, F),
C∞(S, A) instead of Ba(S, {As}), Cb(S, F), Cb(S, A) correspondingly.

3. Conclusions

The results of this article can be used for further studies of normed algebras and oper-
ator algebras on Banach spaces, the spectral theory of operators, PDEs, integral equations,
the representation theory of groups, algebraic geometry, and applications in the sciences,
including mathematical physics, gauge theory, quantum field theory, informatics, and math-
ematical geology, because they are based on normed algebras and vector-valued functions
with values in normed algebras [3,5,8,15,18,20,21,25–31,33,34]. Indeed, the spectrum of Ba-
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nach algebra A over normed field F is generally contained in the extension, G, of the initial
normed field by Theorem 2 in [11]. This extension, in its turn, is the normed field. If set S is
contained in G, then S is ultrametrizable, since norm on G is non-Archimedean. Therefore
algebras Ba(S, {As}) are related with representations of operators using their spectra.

Evidently, the considered above exposition in this article encompasses a particular case
of the algebras of compact operators. This also can be useful for some integral operators or
for finding subalgebras in algebras appearing in the representation theory of algebras or
groups and in the approximation of operator spectra.
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Appendix A

In order to avoid misunderstandings, we recall necessary definitions from previous
articles [10,12,13]. If the readers are familiar with them, they can skip this appendix.

Remark A1. Let F be an infinite field supplied with a multiplicative non-trivial non-Archimedean
norm (i.e., ultranorm) | · |F relative to which it is complete so that F is non-discrete and also
|x + y|F ≤ max(|x|F, |y|F) and |xy|F = |x|F|y|F for each x and y in F.

Usually, a commutative field is called a field, while a noncommutative field is called a skew
field or a division algebra.

A metric ρ on a metrizable space S is an ultrametric if it satisfies the strong triangle inequality
ρ(x, y) ≤ max(ρ(x, z), ρ(y, z)) for every x, y, and z in S. Notice that each ultrametric space is
topologically zero-dimensional [18,32].

Remark A2. c0(α, F) is denoted as a Banach space consisting of all vectors x = (xj : ∀j ∈ α xj ∈
F) satisfying condition

card{j ∈ α : |xj| > ε} < ℵ0 for each ε > 0
and furnished with the norm

(A1) |x| = supj∈α |xj|,
where α is a set. For normed spaces X and Y, the linear space L(X, Y) of all linear continuous
operators A : X → Y is supplied with the operator norm

(A2) |A| := supx∈X\{0} |Ax|/|x|.
Speaking about Banach spaces and Banach algebras, we stress that a field over which it is

defined is norm complete.
If X = c0(α, F), then to each A ∈ L(X, X) an infinite matrix (Ai,j : i ∈ α, j ∈ α)

corresponds in the standard basis {ej : j ∈ α} of X, where
(A3) x = ∑j xjej

for each x ∈ X = c0(α, F).
For a subalgebra V of L(X, X), operation B 7→ Bt from V into L(X, X) will be called a

transposition operation if it is induced by that of its infinite matrix such that (aA + bB)t =
aAt + bBt and (AB)t = Bt At and (At)t = A for every A and B in V and a and b in F; that is,
(At)i,j = Aj,i for each i and j in α. Then, Vt := {A : A = Bt, B ∈ V}.

An operator A in L(X, X) is called symmetric if At = A.
L0(X, X) is denoted as the family of all continuous linear operators U : X → X matrices

(Ui,j : i ∈ α, j ∈ α), of which all fulfill the conditions
(A4) ∀i ∃ limj Uj,i = 0 and ∀j ∃ limi Uj,i = 0.
For an algebra A over F, it is supposed that a norm | · |A on A satisfies the following conditions:
|a|A ≥ 0 for each a ∈ A, also;
|a|A = 0 if and only if a = 0 in A;
|ta|A = |t|F|a|A for each a ∈ A and t ∈ F;
|a + b|A ≤ max(|a|A, |b|A) and;
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|ab|A ≤ |a|A|b|A for each a and b in A.
In short, it also will be written | · | instead of | · |F or | · |A.

Definition A1. Suppose that F is an infinite field with a nontrivial non-Archimedean norm such
that F is norm complete, of the characteristic char(F) 6= 2 and B2 = B2(F) is the commutative
associative algebra with one generator i1 such that i21 = −1 and with the involution (vi1)∗ = −vi1
for each v ∈ F. Let A be a subalgebra in L(X, X) such that A is also a two-sided B2-module, where
X = c0(α, F) is the Banach space over F, and α is a set. We say that A is an ∗-algebra if there is a
continuous bijective (i.e injective and surjective) F-linear operator I : A→ A such that

(A5) I(ab) = (Ib)(Ia)
(A6) I(ga) = (Ia)g∗ and I(ag) = g∗(Ia)
(A7) IIa = a
(A8) (θ(y))(ax) = (θ((Ia)y))(x)

for every a and b in A and g ∈ B2 and x and y in X, where θ : X ↪→ X′ is the canonical embedding
of X into the topological dual space X′ so that θ(y)x = ∑j∈α yjxj. In summary, we can write a∗

instead of Ia. The mapping I is what we call the involution. An element a ∈ A is called self-adjoint
if a = a∗.

Definition A2. An algebra A is called an annihilator algebra if conditions (A9)–(A11) are
fulfilled:

(A9) Al(A) = Ar(A) = 0 and
(A10) Al(Jr) 6= 0 and
(A11) Ar(Jl) 6= 0

for all closed right Jr and left Jl ideals in A.
If for all closed (proper or improper) left Jl and right Jr ideals in A
(A12) Al(Ar(Jl)) = Jl and
(A13) Ar(Al(Jr)) = Jr

then A is called a dual algebra.
If A is an ∗-algebra and for each x ∈ A elements, a ∈ A and a1 ∈ A exist such that a norm

on A for these elements satisfies the following conditions:
(A14) |axx∗a∗1 | = |x|2 and |a||a∗1 | ≤ 1,

then the algebra A is called finely regular.

Definition A3. Let A be an normed algebra over field F satisfying the following conditions:
(A15) A is a Banach ∗-algebra and
(A16) There exists a bilinear functional (·, ·) : A2 → F such that |(x, y)| ≤ q|x||y| for all x

and y in A, where 0 < q < ∞ is a constant independent of x and y,
(A17) (x, y) = (y, x) and (x, y) = (x∗, y∗) for each x and y in A,
(A18) if (x, y) = 0 for each y ∈ A, then x = 0;
(A19) (xy, z) = (x, zy∗) for every x, y and z in A,
(A20) xx∗ 6= 0 for each nonzero element x ∈ A \ (0).
Then, we call A a B∗-algebra.
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